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OPTION PRICING WITH MARKOV-MODULATED DYNAMICS∗
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Abstract. Markov-modulated models for equity prices have recently been extensively studied in
the literature. In this paper, we apply some old results on the Wiener–Hopf factorization of Markov
processes to a range of option-pricing problems for such models. The first example is the perpetual
American put, where the exact (numerical) solution is obtained without discretizing any PDE. We
then show how the methodology of Rogers and Stapleton [Finance Stoch., 2 (1997), pp. 3–17] can be
used to tackle finite-horizon problems and illustrate the methodology by pricing European, American,
single barrier, and double barrier options under Markov-modulated dynamics.
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1. Introduction. Though outstandingly successful as a leading-order model for
an asset price, the familiar log-Brownian paradigm fails in various ways, such as the
fact that implied volatility is not constant. Among the many attempted variations
and extensions, one of the most natural is to allow the dynamics of the underlying
process to be a log-Brownian motion whose volatility and rate of return are stochastic
in some way. Allowing the volatility to be stochastic is the central theme of the
extensive literature on stochastic volatility modeling, of which [24, 15, 13, 2, 14] make
up a small sample. Allowing the rate of return to be stochastic is of relevance to
portfolio optimization, but not to asset pricing,1 and the literature on risk-sensitive
optimal control develops this theme in various ways; see, for example [5, 6, 3, 20].

Perhaps the simplest way to introduce additional randomness into the standard
log-Brownian model is to let the volatility and rate of return be functions of a finite-
state Markov chain; we can imagine that such a model might describe regime-switching
behavior of some kind, perhaps related to the business cycle, or other economic in-
dicators. The terms regime-switching and Markov-modulated dynamics are used to
describe such models, and there are already interesting contributions here, such as ap-
plications to option pricing [12, 11, 10, 9, 8, 4, 26], portfolio optimization [27, 25], and
optimal trading strategies [28]. In applications, it is likely that the number of states
of the Markov chain will be small (otherwise estimation becomes a problem), and it is
then natural to think of such a model as “nearly” a log-Brownian motion, with occa-
sional parameter shifts. Some explicit solutions can be found for a two-state Markov
chain, but as the problems get harder we are soon led into PDE-related numerical
methods (smoothed approximation of boundary conditions [26], two-point bound-
ary value problems [28], discretization of associated dynamic programming equations
[12]). The coupled PDEs which arise in these models will rarely be soluble in closed
form, though finite-difference methods are still quite competitive.
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This paper approaches such models from a different direction: by viewing the
Markov-modulated asset as nearly a Markov chain. This approach relies on some old
work on Wiener–Hopf factorization of Markov processes (and in particular, Markov
chains) dating back to the paper of Barlow, Rogers, and Williams [1] from 1980; the
focus is on level-crossings of the asset price process. We find a quite different toolkit
applies in this approach, namely, linear algebra; this leads to numerical schemes that
are very efficient and quite able to handle moderate-sized problems, which we will
illustrate by pricing a perpetual American put2 on such an asset. Let us emphasize
immediately a key difference between the present approach and the traditional PDE
approach: here we shall be obtaining (numerically) exact solutions to the problem, not
just approximations. There is no need to solve any dynamic programming equation
or discretize any PDE.

Next, we move to a pricing framework with finite time horizon and Markov
regimes. The approach here extends the methodology developed by Rogers and Sta-
pleton [22] for the standard log-Brownian model and is illustrated by pricing the
European call, the American put, and finally double barrier options.

2. General setup and noisy Wiener–Hopf factorization. The stock price
is modeled as

dSt = St[σ(ξt)dWt + r(ξt)dt],(1)

where Wt is a standard Brownian motion, r denotes as usual the risk-free interest
rate, σ denotes the Markov-modulated volatility of the stock, and ξ is an irreducible
Markov chain with values in the finite set I, |I| = d. Notice that the riskless rate may
vary with the underlying Markov chain. The log price Xt = log(St) then satisfies

dXt = σ(ξt)dWt +

[
r(ξt) −

1

2
σ(ξt)

2

]
dt,(2)

which can be rewritten as, say,

dXt = σ(ξt)dWt + v(ξt)dt.(3)

The idea of the Wiener–Hopf factorization approach is to study the crossings back
and forth over levels of X. To help in this, define for t ≥ 03

τ±t ≡ inf{u : ±Xu > t}.(4)

We aim to characterize the distribution of the times τ±t and the law of the chain at

these times, and to do this we will seek martingales Mf
t of the following form:

Mf
t = exp

(
−
∫ t

0

r(ξu)du

)
f(ξt, Xt)(5)

for some function f . Itô’s formula gives, up to a local martingale part,

dMf
t

.
= exp

(
−
∫ t

0

r(ξu)du

)[
(Q−R)f +

1

2
ΣfXX + V fX

]
dt,(6)

2This problem was solved for a two-state chain by Guo and Zhang [12].
3With the usual convention that inf(∅) = ∞.
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where R is the diagonal matrix whose ith diagonal element is equal to r(i), Σ is the
diagonal matrix whose ith diagonal element is equal to σ(i)2, and V = R − 1

2Σ. We
therefore require

(Q−R)f +
1

2
ΣfXX + V fX = 0.(7)

Seeking separable f of the form f(ξt, Xt) = g(ξt) exp(−λXt) gives rise to the following
equation to be solved in λ and g:

(Q−R)g +
1

2
λ2Σg − λV g = 0,(8)

Now this is just the “quadratic eigenvalue” problem considered by Kennedy and
Williams [17], which can be reduced to a standard eigenvalue problem as follows.
Premultiplying the above equation by 2Σ−1 gives

2Σ−1(Q−R)g + λ2g − 2λΣ−1V g = 0.(9)

This can be reformulated as a system of equations{
λg = h,
λh = 2Σ−1V h− 2Σ−1(Q−R)g,

(10)

which can be rewritten as the following (standard) eigenvalue problem:

A

(
g
h

)
≡

(
0 I

−2Σ−1(Q−R) 2Σ−1R− I

) (
g
h

)
= λ

(
g
h

)
.(11)

If (g, λ) solve (11), then

Mf
t = exp

(
−
∫ t

0

r(ξu)du− λXt

)
g(ξt)(12)

is a martingale. The argument given in [1] serves to show that there are exactly d
eigenvalues of A in the left open half plane, and d in the right open half plane, a fact
that will be needed later.

3. Markov-modulated perpetual American put. Our goal in this section
is to compute the value

v(j, x) ≡ sup
τ

E

[
exp

(
−
∫ τ

0

r(ξs)ds

)
(K − eXτ )+ | ξ0 = j,X0 = x

]
(13)

of the perpetual American put with Markov-modulated dynamics. The special case of
the problem where there is no Markov modulation (that is, |I| = 1) is well known:4 the
optimal rule is to wait until the price of the asset falls below some critical boundary
value L∗, and then immediately exercise. Standard first passage time calculations
for Brownian motion lead to the following closed-form expression for the perpetual
American put:

v(x) =

{
K − exp(x) if x ≤ log(L∗),
(K − L∗)(L∗)γ exp(−γx) if x > log(L∗),

(14)

where γ = 2r/σ2, L∗ = γK/(γ + 1).

4See the original solution of McKean [19] and Karatzas [16] for a discussion in a more general
setting.
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When |I| > 1, the optimal rule is to exercise when the price of the asset falls below
some critical level, which depends on the current state of the modulating Markov chain
ξ. This intuitively obvious form of the solution follows immediately from the next
simple result.

Proposition 1. If ϕ(x) ≡ (K − ex)+, then for each j ∈ I the function

x �→ v(j, x) − ϕ(x)

is nondecreasing in (0, log(K)).
Proof. Pick 0 < x < x + δ < log(K) and let τ∗ denote the optimal stopping

time to be used if X0 = x. We consider instead what would happen if we were to use
the stopping rule τ∗ but with initial log-price x + δ. Using the elementary inequality
(a− b)+ ≥ a+ − b+, we get5

v(j, x + δ) ≡ sup
τ

E[e−R(τ)ϕ(Xτ )| ξ0 = j,X0 = x + δ]

≥ E[e−R(τ∗)ϕ(Xτ∗)| ξ0 = j,X0 = x + δ]

= E[e−R(τ∗)ϕ(Xτ∗ + δ)| ξ0 = j,X0 = x]

= E[e−R(τ∗)(K − eX(τ∗)+δ)+| ξ0 = j,X0 = x]

= E[e−R(τ∗)(K − eX(τ∗) − (eδ − 1)eX(τ∗))+| ξ0 = j,X0 = x]

≥ E[e−R(τ∗)
{

(K − eX(τ∗))+ − (eδ − 1)eX(τ∗)
}
| ξ0 = j,X0 = x]

= v(j, x) − (eδ − 1)E[e−R(τ∗)eX(τ∗)| ξ0 = j,X0 = x]

≥ v(j, x) − (eδ − 1)ex

= v(j, x) − ϕ(x) + ϕ(x + δ),

using the fact that e−R(t)+X(t) is a martingale, and therefore a supermartingale.
Immediately from Proposition 1, the optimal stopping time is of the form

τ = inf{t : Xt < b(ξt)},(15)

where the constants (bi)i∈I must be found.
This problem was solved by Guo and Zhang [12] in the simple case of two states,

where a closed-form expression can be derived for the price. Note that −1 is always
an eigenvalue of A, which is a key observation that makes the two-state problem
tractable. However, the current methodology will work for any number of states.
The time-0 value of the stopping rule (15) defined by the levels (bi)i∈I is

v(j, x) = E

[
exp

(
−
∫ τ

0

r(ξt)dt

)
(K − exp(b(ξτ )))

+|S0 = exp(x); ξ0 = j

]
(16)

There are thus two problems:
(1) Given some thresholds bi, derive the value function;
(2) find the optimal bi.
Problem 1. Let us suppose given (bi)i∈I , where without loss of generality6 b1 >

b2 > · · · > bd; our goal is to compute the value function associated with this set of
threshold levels.

5We use the abbreviation R(t) ≡
∫ t
0 r(ξs)ds.

6This assumption amounts to an inessential relabeling of the states and is merely for convenient
discussion. When it comes in practice to identifying the thresholds, no assumption is made on the
ordering, and all possible orderings are considered. We show in Proposition 2 that there is a unique
solution for the thresholds, whose ordering is determined by the parameters of the problem.
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Let us start with x in the interval [b1,∞). Here, the value function is larger
than the payoff function whatever the initial state. Recall that we are looking for a
martingale Mf

t of the form of (5) for some function f which satisfies (7) and which
will be represented as a weighted sum

f(ξ, x) = Σd
i=1wigi(ξ) exp(−λix),(17)

where for each i, (λi, gi) satisfies (8), with λi > 0. We restrict our attention to the d
eigenvalues with positive real part because this means that the martingale

Mt ≡ exp

(
−
∫ t

0

r(ξu)du

)∑
i

wigi(ξt) exp(−λiXt)

is bounded on [0, τ1], where τ1 ≡ inf{t : Xt < b1}. Therefore we may apply the
optional sampling theorem to obtain

E

[
exp

(
−
∫ τ1

0

r(ξu)du

)∑
i

wigi(ξτ1) exp(−λiXτ1)

∣∣∣∣ X0 = x, ξ0 = j

]

=
∑
i

wigi(j) exp(−λix).(18)

This is the expression for the value function over the interval [b1,∞). In particular,
for j = 1, this completes the determination of the time-0 price when the underlying
chain is initially in state 1, provided we impose

(K − exp(b1))
+ =

∑
i

wigi(1) exp(−λib1).(19)

This gives us a first equation satisfied by the d unknown weights w, and

v(1, x) =

{
K − exp(x) if x ≤ b1,∑

i wigi(1) exp(−λix) if x ≥ b1,
(20)

where w still needs to be determined. Continuity at b1 in (19) restricts w to a (d−1)-
dimensional subspace; to go further, we must look at the next interval I2 = [b2, b1]
and match values and slopes of V across b1.

When x ∈ I2, ξ can jump to state 1, causing exercise to happen. So we now
need to modify slightly the Wiener–Hopf argument and the equation for f . Let Σ̃,
R̃, Ṽ be the diagonal matrices defined in the following way: for every i = 2, . . . , d,
Σ̃(i, i) = σ(i)2, R̃(i, i) = r(i) and Ṽ = R̃− 1

2 Σ̃. Let Q̃ be the submatrix derived from
Q by removing its first row and first column.

We still seek a martingale Mf
t of the form of (5) for some function f , which now

satisfies the following modified equation:

(Q̃− R̃)f +
1

2
Σ̃fXX + Ṽ fX + K̃ = 0,(21)

where K̃ is defined so that it accounts for jumps to the payoff function in state 1:
K̃ = q̃(K−exp(x)), where q̃ denotes a (d−1)-dimensional vector, such that q̃(i) = qi1
for every i = 2, . . . , d. The value function over the interval [b2, b1] is characterized by
(21).
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A particular solution to (21) is easily obtained and is of the form B +C exp(x). The
homogeneous equation

(Q̃− R̃)f +
1

2
Σ̃fXX + Ṽ fX = 0(22)

is structurally similar to (7) and is solved similarly. Let λ̃i and g̃i denote the 2(d− 1)
corresponding eigenvalues and eigenvectors for this new problem. For any scalars w̃i,

exp

(
−
∫ t

0

r(ξu)du

)(
Σ

2(d−1)
i=1 w̃i exp(−λ̃iXt)g̃i(ξt) + B + C exp(Xt)

)
(23)

is a martingale, at least if we stop at first exit from I2, and is bounded up to that time.
Provided that we ensure that v(j, ·) joins in a C1 fashion across b1, for j = 2, . . . , d,
we therefore have for any x ∈ I2, and any j = 2 . . . d,

Ex,j

[
exp

(
−
∫ τ2

0

r(ξu)du

)(∑
i

w̃ig̃i(ξτ2) exp(−λ̃iXτ2) + Bj + Cj exp(Xτ2)

)](24)

=
∑
i

w̃ig̃i(j) exp(−λ̃ix) + Bj + Cj exp(x),

where τ2 = min{t : Xt ≤ b2}, and Ex,j denotes the usual expectation conditional
upon X0 = x, ξ0 = j . This is the expression for the value function in the interval
I2; in particular, for j = 2, this completes the determination of the time-0 price when
the underlying chain is initially in state 2, provided we impose continuity at b2.

Notice that at the end of the first step, we were left with d−1 degrees of freedom.
Once we have solved the problem over the interval [b2, b1], matching the values and
the slopes of v(j, ·), j = 2, . . . , d across b1, we have 2 × (d− 1) new linear equations,
for the 2(d − 1) new unknowns w̃i. Continuity across b2 of v(2, ·) provides us with
another equation so that at the end of our second step, we are left with d− 2 degrees
of freedom.

From the above, it is now clear that we can proceed recursively, from b1 to bd,
by solving d successive problems of this type and considering the standard eigenvalue
problem associated with our modified setup and our updated generator for the under-
lying Markov chain. At the end of the dth problem over the interval [bd, bd−1], we no
longer have any degrees of freedom, once we have imposed the continuity of v(d, x)
across bd. Finally, over [0, bd], we have: v(1, x) = · · · = v(d, x) = K − exp(x). This
deals with the first problem, namely, given thresholds to compute the value function.7

Problem 2. The method just presented shows how for any given sequence of
threshold values we may compute the value. For optimality, we need to make v(j, ·)
be C1 at bj for j = 1, . . . , d. This gives us d nonlinear equations to be solved in
d unknowns, which can be solved by standard numerical techniques; we used sequen-
tial quadratic programming. The latter optimization routine is converging efficiently
toward a set of b values which make v to be C1. It remains to check that

(Q−R)v +
1

2
ΣvXX + V vX ≤ 0

7The above procedure leaves us in fact with a linear system to solve in order to determine the
unknown weights on every subinterval: d weights on [b1,∞), 2× (d−1) weights on [b2, b1], 2× (d−2)
weights on [b3, b2], . . . and finally 2 weights on [bd, bd−1]. This gives rise to a linear system with d2

unknowns and d2 equations.
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everywhere; from this, it follows that the solution v found is in fact optimal. The
following results deals with this point.

Proposition 2. Suppose that thresholds (bj) < logK have been found such that
the (unique) bounded solution f to the coupled system of ODEs

1

2
σ2
i fXX(i,X) + VifX(i,X) − rif(i,X) +

∑
j

qijf(j,X) = 0 (X > bi),(25)

f(i,X) = ϕ(X) (X ≤ bi)(26)

is C1 in X at each point (j, bj). Then the (bj) are uniquely determined, and f is the
value of the problem.

Proof. The proof proceeds in a number of steps. Given the thresholds (bj), we
set τ∗ = inf{t : Xt ≤ b(ξt)}, and we observe that

f(ξt∧τ∗ , Xt∧τ∗) exp{−R(t ∧ τ∗)} is a bounded martingale,

and so in particular

f(j, x) = E
[
ϕ(Xτ∗)e−R(τ∗)

∣∣ ξ0 = j,X0 = x
]
.

Since ϕ ≥ 0, it follows that f > 0.
(i) We claim that f(j, x) > ϕ(x) whenever x > bj . To see why, let τ0 ≡ inf{t :

f(ξt, Xt) ≤ ϕ(Xt)} ≤ τ∗, and observe that

f(j, x) = E
[
ϕ(Xτ∗)e−R(τ∗)

∣∣ ξ0 = j,X0 = x
]

= E
[
(K − eX(τ∗))e−R(τ∗)

∣∣ ξ0 = j,X0 = x
]

= E
[
ϕ(Xτ0)e

−R(τ0)
∣∣ ξ0 = j,X0 = x

]
= E

[
(K − eX(τ0))e−R(τ0)

∣∣ ξ0 = j,X0 = x
]
.

The fact that exp(Xt −Rt) is a martingale8 tells us that

E
[
Ke−R(τ∗)

∣∣ ξ0 = j,X0 = x
]

= E
[
Ke−R(τ0)

∣∣ ξ0 = j,X0 = x
]
,

whence immediately τ∗ = τ0, and the claim is proved.
(ii) We claim next that f(j, ·)−ϕ(·) is nondecreasing in (0, log(K)). The proof of

this is in effect a reprise of the proof of Proposition 1. As there, we take two starting
points x, x + δ ∈ (0, log(K)), and let τ denote the stopping time that would be used
if we started from x. Using the fact that f ≥ ϕ, we have

f(j, x + δ) = E[e−R(τ)f(ξτ , Xτ )| ξ0 = j,X0 = x + δ]

≥ E[e−R(τ)ϕ(Xτ )| ξ0 = j,X0 = x + δ]

= E[e−R(τ)ϕ(Xτ + δ)| ξ0 = j,X0 = x]

= E[e−R(τ)(K − eX(τ)+δ)+| ξ0 = j,X0 = x]

= E[e−R(τ)(K − eX(τ) − (eδ − 1)eX(τ))+| ξ0 = j,X0 = x]

≥ E[e−R(τ)
{

(K − eX(τ))+ − (eδ − 1)eX(τ)
}
| ξ0 = j,X0 = x]

= f(j, x) − (eδ − 1)E[e−R(τ)eX(τ)| ξ0 = j,X0 = x]

≥ f(j, x) − (eδ − 1)ex

= f(j, x) − ϕ(x) + ϕ(x + δ).

8It is in fact the discounted stock price.
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(iii) The final step is to prove that

Φ(i, x) ≡ 1

2
σ2
i fXX(i,X) + VifX(i,X) − rif(i,X) +

∑
j

qijf(j,X) ≤ 0(27)

in X ≤ bi. From (26), we have that in fact

Φ(i, x) = −riK +
∑
j �=i

(f(j,X) − ϕ(X)),

which is seen to be nondecreasing in [0, bi], in view of point (ii) proved above. It is
therefore sufficient to prove that Φ(i, bi−) ≤ 0 to establish (27). By the C1 property
of the solution f , we note that all of the terms in Φ(i, ·) are continuous across bi except
perhaps the second derivative term; thus any discontinuity in Φ is entirely accounted
for by the jump in this. But now consider the function f(i, ·) − ϕ(·). Its second
derivative at bi− is zero, and yet its second derivative at bi+ must be nonnegative,
since the function is nonnegative to the right of bi, and the function and its first
derivative both vanish there. We deduce that the change in the second derivative of
f(i, ·) at bi is nonnegative, and the conclusion (27) follows.

(iv) The standard verification argument for optimal control now shows that stop-
ping at τ∗ is optimal and that f is the value function of the problem.

As a check, take the case d = 1, which is the standard perpetual American put
problem mentioned earlier; we have R = r, Σ = σ2, V = r − 1

2σ
2, Q = 0 and set

γ = 2r/σ2. Now the matrix A defined at (11) is simply

A =

(
0 1
γ γ − 1

)

with eigenvalues γ and −1, so the solution is of the form

v(x) =

{
K − exp(x) if x ≤ b,
w exp(−γx) if x > b,

(28)

where the critical level b and the weight w are to be determined. The C1 condition
for v at b becomes {

K − exp(b) = w exp(−γb),
exp(b) = γw exp(−γb),

from which we easily deduce the form given in (14).

3.1. Numerical results.

3.1.1. Two states. First, we check that we recover the results of Guo and Zhang
[12] for the simple case of two states. The strike K is taken to be equal to 5,

R =

(
0.03 0
0 0.03

)
,

Q =

(
−1 1
1 −1

)
,

Σ =

(
0.25 0
0 0.81

)
.
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Fig. 1. Perpetual American put with two states (value function against log price).

This gives optimal thresholds: exp(b) = (0.612, 0.441), which is close to Guo and
Zhang’s solution (0.614, 0.441). Figure 1 plots the price of the Markov-modulated
perpetual American put in every state of the chain and enables us to visualize the cor-
responding smooth pasting conditions. Above the optimal thresholds, where smooth
pasting occurs, the upper curve is the value function for the perpetual American put
and the lower curve is the reward function. Below the optimal thresholds, the value
function is equal to the reward function represented by the lower curve. We keep
drawing the upper curve below the optimal thresholds for the sole purpose of assess-
ing the quality of smooth pasting. All the plots below are drawn using a logarithmic
scale for the stock price.

Decreasing the volatility in the second state,

Σ =

(
0.25 0
0 0.49

)
,

leads to higher optimal thresholds exp(b) = (0.801, 0.646). On the other hand, in-
creasing the jump intensity from state 2 to state 1, where σ2

2 = 0.81 and σ2
1 = 0.25,

decreases the average volatility and we expect therefore our optimal thresholds to be
bigger, which turns out to be the case: exp(b) = (0.633, 0.455).
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Fig. 2. Perpetual American put with three states (value function against log price).

3.1.2. Three states. Consider now the case of an underlying Markov chain with
three states (high, low, and intermediate levels for the volatility):

R =

⎛
⎝ 0.03 0 0

0 0.03 0
0 0 0.03

⎞
⎠ ,

Q =

⎛
⎝ −2 1 1

1 −2 1
1 1 −2

⎞
⎠ ,

Σ =

⎛
⎝ 0.25 0 0

0 0.50 0
0 0 0.81

⎞
⎠ .

This gives the following thresholds: exp(b) = (0.600, 0.544, 0.455). Figure 2 plots the
results.

3.1.3. More states. The methodology specified above enables us to deal with
a moderately large number of states; in this example, there are eight. In each of
the states, r is taken to be equal to 0.03. The jump intensities from one state to
another are taken to be equal to 1, the volatility matrix is given by a diagonal matrix
with diagonal entries (0.35, 0.4, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9), and in Figure 3, we plot
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Fig. 3. Perpetual American put with eight states (value function against log price).

the value functions for the eight states of the chain, with the corresponding optimal
thresholds,

exp(b) = (0.290, 0.239, 0.238, 0.227, 0.220, 0.169, 0.155, 0.140).

As one would expect, the less volatile a state is, the bigger is the corresponding
threshold.

4. Binomial pricing with Markov regimes. The standard binomial pricing
method approximates the log-price process by a random walk, which jumps at the
times Δt, 2Δt, . . . and, at each jump, moves either up or down. The probability of
an up step and the size of the jump are chosen to match the drift and variance to
the Black–Scholes asset. In this section, we will extend the alternative random walk
approximation introduced by Rogers and Stapleton [22] to the case of Markov regimes.

With X still denoting the Markov-modulated log-price (2), the idea of [22] was to
fix some Δx > 0 and view X only at the discrete set of times at which it has moved
by Δx from where we last observed it. Formally, if

{
τ0 = 0,
τn+1 ≡ inf{t > τn : |X(t) −X(τn)| > Δx} if n ≥ 0,

(29)

then we take (X(τn)) as the discrete approximation to X, observed for ν steps, where
ν ≡ sup{n : τn < T} (T is the expiry of the option). We need to compute the
distribution of (X(τ1), ξ(τ1)). Take X0 = 0, τ ≡ τ1 for notational simplicity.
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Let λi and gi denote the eigenvalues and the eigenvectors of the eigenvalue prob-
lem (11): (

0 I
−2Σ−1(Q−R) 2Σ−1R− I

) (
g
h

)
= λ

(
g
h

)
.

There are d negative and d positive eigenvalues. For any scalars wi,

exp

(
−
∫ t

0

r(ξu)du

)
Σ2d

i=1wigi(ξt) exp(−λiXt)

is a martingale, so by the optional sampling theorem,

E

[
exp

(
−
∫ τ

0

r(ξu)du

)∑
i

wigi(ξτ ) exp(−λiXτ )|X0 = 0, ξ0 = j

]
=

∑
i

wigi(j).

(30)

The discounted probability of an upwards step from state j to state k is given by

P+
j,k = E

[
exp

(
−
∫ τ

0

r(ξu)du

)
I{Xτ = Δx, ξτ = k}|ξ0 = j

]
(31)

where I denotes the indicator function. Therefore, in order to find P+
j,k we need to

solve the following system:⎧⎨
⎩

∑
i
wigi(ξ) exp(−λiΔx) = I{ξ = k} ∀ξ = 1, . . . , d,

∑
i
wigi(ξ) exp(+λiΔx) = 0 ∀ξ = 1, . . . , d.

(32)

This leaves us with 2d equations for the 2d unknown weights, from which we calculate
the discounted probability of an upwards step. Similarly, we can compute the proba-
bility of a downwards step from state j to state k by replacing in the above system Δx
with −Δx. When the initial logarithmic price is equal to x, the price of a standard
European call option in this Markov-modulated framework is now computed using
the following dynamic programming equation, written using vector notation:{

V0(x) = (exp(x) −K)+,
Vn+1(x) = P+Vn(x + Δx) + P−Vn(x− Δx),

(33)

where n is the number of time steps to go before expiry T . The matrices P+ and P−

are defined above and denote, respectively, the up and down transition matrices for
the underlying Markov chain.

Observe that (as in Rogers and Stapleton [22]) this approximation is well suited
to pricing barrier options; we merely change appropriately the matrices P± at the
vertices adjacent to the barrier(s).

Once we have computed the discounted probabilities of an upwards and a down-
wards step, it remains for us to deal with the fact that the number ν of time steps is
random. One solution to this problem is to match bond prices so that

E

[
exp

(
−
∫ T

0

r(ξu)du

)
1

]
� E

[
exp

(
−
∫ τν

0

r(ξu)du

)
1

]
.(34)
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Let P = P+ + P−. From the above, it is enough to find ν so that

πP
ν
1 = π exp [T (Q−R)1] ,(35)

where π denotes the invariant distribution of the underlying Markov chain. This sim-
ple approximation turns out to give very satisfactory results for the Markov-modulated
setup.

Notice finally that for the case of the American put, the dynamic programming
equation for the value function now becomes{

V0(x) = (exp(x) −K)+,
Vn+1(x) = max{(K − exp(x))+, P+Vn(x + Δx) + P−Vn(x− Δx)}.(36)

The case of the finite expiry Markov-modulated American put was tackled by
Buffington and Elliott [4] but only in the case of a two-state Markov chain and by
extending the Barone-Adesi–Whaley analytic approximation.

4.1. Numerical results.

4.1.1. Markov-modulated European call. One way of checking our results
is to consider the case when the chain switches between two identical states for the
volatility. The price in each state should then be equal approximately to the Black–
Scholes price for this given volatility. The expiry time is taken to be equal to one
year; the initial stock price is S0 = 95. The strike is K = 100. Finally, the size of the
space grid is taken to be Δx = 0.022. We take

R =

(
0.03 0
0 0.03

)
,

Q =

(
−0.01 0.01
0.01 −0.01

)
,

Σ =

(
0.25 0
0 0.25

)
.

The price in each state of the chain is found to be equal to 17.9667, compared to the
Black–Scholes value of 17.9506 (relative error: 0.0009).

4.1.2. Markov-modulated American put. Here we compare with the prices
tabulated in [21].

(i) Let us first consider the case of two identical states, with T = 0.5, Δx = 0.022,
X0 = log(85), K = 100:

R =

(
0.06 0
0 0.06

)
,

Q =

(
−0.01 0.01
0.01 −0.01

)
,

Σ =

(
0.16 0
0 0.16

)
.

The price in each of the two states is found to be equal to 18.0285, which needs to be
compared with the value 18.0374 found by Rogers [21] (relative error: 0.0005).
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(ii) Let us now decrease the volatility in the second state:

Σ =

(
0.16 0
0 0.10

)
.

The prices in each of the two states are now found to be (17.3070, 16.7677). Decreasing
the volatility decreases the price in the two states, as expected. Correspondingly,
increasing the volatility in one of the states increases the price in the two states, as
shown by

Σ =

(
0.40 0
0 0.16

)
,

where the price is now given by (20.3454, 19.1986).

(iii) Taking example (i) and changing just the start value X0 to log(100) allows us
to compare our values with other values in [22]. We find the price is (9.9279, 9.9279),
to be compared with 9.9458 (relative error: 0.00192). Taking X0 = log(115), the price
is (5.1109, 5.1109), to be compared with 5.1265 (relative error: 0.00304).

It therefore turns out that the random walk approximation provides an accurate
and very quick method for Markov-modulated asset dynamics.

The solution for the finite expiry American put should provide a way of checking
the results of the preceding section for the perpetual American put, by letting T tend
to ∞. For the example of Guo and Zhang [12], where exp(b) = (0.616, 0.441), the
time-0 price of the Markov-modulated perpetual American putm, (4.2239, 4.2758),
compares well with our results for the finite expiry American put when T = 40:
(4.2180, 4.2692) (relative errors: 0.00139, 0.00155).

A similar check can be made for the perpetual American put example with three
states, where the prices are (4.2278, 4.2486, 4.2706), to be compared with (4.2244,
4.2439, 4.2631) for the finite expiry case, where T = 40 (relative errors: 0.0008, 0.0011,
0.0017).

4.1.3. Markov-modulated barrier options. In this section, we price a num-
ber of double knockout barrier options in a Markov-modulated setup.

(i) Let us first consider the case of constant barriers, where we compare our
results with those of Geman and Yor [7]. With two identical states, taking T = 1,
X0 = log(100), K = 100, Δx = 0.022, b∗ = log(150), and b∗ = log(75), and

R =

(
0.05 0
0 0.05

)
,

Q =

(
−0.01 0.01
0.01 −0.01

)
,

Σ =

(
0.25 0
0 0.25

)
.

the price of the double knockout is then found to be (0.8994, 0.8994), to be compared
with the value 0.89 computed by Geman and Yor [7] (relative error: 0.01061).

(ii) Changing K to 87.5 and b∗ to log(50), the price becomes (3.8274, 3.8274), to
be compared with 3.8075 from Geman and Yor (relative error: 0.00519).
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(iii) The next example is the same as the previous one, but now we have two
different volatility levels:

Σ =

(
0.50 0
0 0.25

)
.

The price of the double knockout is now equal to (2.6055, 2.5882).
(iv) We finally consider the case of a double knockout with moving barriers, which

are linear for the log-price b∗ = log(U)+Δx1t and b∗ = log(L)+Δx2t. We compare our
results with those of Kunitomo and Ikeda [18] Let us take: T = 0.5, X0 = log(1000),
K = 1000, Δx1 = 0.1, Δx2 = −0.1, L = 500, and U = 1500:

R =

(
0.05 0
0 0.05

)
,

Q =

(
−0.01 0.01
0.01 −0.01

)
,

Σ =

(
0.04 0
0 0.04

)
.

The price of the double knockout in this Markov-modulated setup is found to be
(67.2596, 67.2596), to be compared with 67.78 from Kunitomo and Ikeda [18] and
67.7834 from Rogers and Zane [23] (relative error: 0.00773).

5. Conclusions. We have shown how to use classical results from the Wiener–
Hopf factorization of Markov processes to price options on a Markov-modulated asset.
Such a model can accommodate “bull” and “bear” markets, as well as changes in
interest rate and volatility. This method has been applied to the optimal stopping
problem of the Markov-modulated perpetual American put. It yields a very efficient
and accurate numerical method, which amounts to computing the eigenvalues and
eigenvectors of some particular matrices. There is no dynamic programming nor
discretization of any PDE. Finally, with a finite time horizon, the approach can be
used to construct a modified binomial lattice methodology, which has been applied
to the European call, the American put, and double barrier options in a Markov-
modulated setup. This modified binomial method turns out to provide an efficient
numerical scheme for Markov-modulated option pricing.
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