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Abstract. This paper develops the study of two-sector growth models of the form
introduced by Arrow and Kurz (1970). We extend their deterministic model by
allowing the population process to become random and by allowing the population
to choose their level of effort. We find that under suitable conditions the government
is able to tax and borrow in such as way as to induce the private sector to invest and
consume along the path which the government considers optimal. Moreover, we also
find that in some important cases the model can be solved explicitly in closed form,
to the extent that we can write down expressions for tax rates and interest rates.
This leads to new one-factor interest rate models, with related taxation policies;
numerical examples show very reasonable behaviour.
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1 Introduction

The history of growth models is long and illustrious, stretching back at least to
Ramsey (1928). Throughout this development, much attention has been devoted
to single-sector models, where there is just one type of capital or good, which is
produced at a rate depending on current capital levels, labour force and technology
levels, and is then either consumed or reinvested into capital. One analogy is a farm
producing corn which can either be eaten or used to produce more corn. There
are two basic types of continuous time single-sector growth model appearing in
the economic literature. Firstly the Solow model as developed by Solow (1956)
and Swan (1956). This is a growth model with an exogenously given savings rate
which determines the proportion of capital reinvested (and hence also the proportion
consumed). Denison (1961) showed that this model was able to explain trends in
empirical growth data for the United States. Secondly there is the Ramsey model.
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This was originally conceived by Ramsey (1928) but the term is now used to refer
to the version as refined4 by Cass (1965) and Koopmans (1965). This is a growth
model with consumer optimization - households choose their rates of consumption
over time to maximise a utility functional. See, for example, the books of Romer
(2001) and Barro and Sala-I-Martin (1995) for a more complete description of these
models and their variants.

The first two-sector model was developed by Uzawa (1961), (1963) who considered
an economy with two produced goods, a consumer good and an investment good,
produced by investment capital and labour. Again using the farm analogy, this is
using labour and tractors to make corn and tractors. Uzawa (1965) then refined this
model to one where the two goods are physical capital and human capital, both of
which are required for production of further physical capital (by manufacturing) and
human capital (by education). Arrow and Kurz (1970) chose public capital rather
than human capital and our work in this paper develops this model.

Arrow & Kurz proposed a deterministic model where there were two types of capital,
government capital and private capital, which were both needed in the production
of the single consumption good. They first set about solving the government’s opti-
mization problem, where the government’s objective was to maximise the integrated
discounted felicity from per capita consumption, where the felicity also depends on
the per capita level of government capital. This feature of the model recognises that
the felicity of the population is improved if the provision of education, healthcare,
transportation, etc. is improved, and that such infrastructure is provided largely (if
not exclusively) by government capital. Since Arrow & Kurz assume that private
and government capital can be freely switched at any time, it is clear that the state
of the optimally-controlled system at any time is completely described by the total
amount of capital, the split between government and private sectors being dictated
by optimality.

The problem gets more interesting when it comes to the behaviour of the private
sector, which is viewed as very large collection of identical non-collaborating small
households, each individually optimising its common objective, which is again an
integrated discounted felicity of per capita consumption and government capital,
but not of course the same as the government’s objective. History and fashion have
overwhelmed the centrally-planned economy, so we suppose that the government’s
control of the economy is exercised only through levying various proportional taxes,
and issuing and retiring riskless debt from time to time. The central question studied
by Arrow & Kurz is: can the government manipulate taxes and debt in such as way
as to induce the private sector to follow the government’s optimal policy?

The analysis of Arrow & Kurz is quite involved, but they are able to conclude
that, under certain conditions, various combinations of taxes and debt can steer the

4Although Ramsey’s original model was actually more subtle than Cass/Koopmans in some
respects, for example it included a disutility function to reflect the amount of labour supplied (i.e.
the longer the hours worked the less the utility). We will adopt a similar approach.
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economy along the government’s desired trajectory. However, the solutions they
find are in terms of deterministic trajectories for the various tax rates for all future
times, and this leaves undecided the interpretation of the solution: is this open-loop
or closed-loop control? That is, do we think of the solution for the income tax
rate (which will be an explicit function of time) as something that the government
commits to at time 0, or do we rather think of the income tax rate as being a
function of the underlying state variable (the total amount of capital)? The former
interpretation seems viable only if we assume that the world really is deterministic,
and that the government can predict with perfect foresight for all time. Casual
observation suggests that this is very unlikely to be the case, so we would prefer to
have a solution where tax rates would be expressed in terms of the current state
of the economy, rather than being set according to a centuries-old plan5. In the
deterministic model of Arrow & Kurz, these two cannot be distinguished.

Another feature of Arrow & Kurz’s solution is that we have little insight into the
properties of the tax regimes the government would need to follow: in particular,
are the tax rates always between 0 and 1? If not, are the suggested values actually
credible?

To address these issues, we plan in this paper to take the model of Arrow & Kurz,
and modify it in two respects:

(i) introduce random fluctuations in output and population size;

(ii) allow the population to choose their level of effort.

The first modification allows us to distinguish between solutions which are functions
of the underlying state of the economy, and solutions which are pre-determined pro-
cesses. Without the second modification, we find that the effects of income tax
are unrealistic. Once again, it turns out that the optimal solution of the govern-
ment’s problem can be expressed in terms of a single underlying state variable, the
technology-adjusted per capita capital in the economy, which now follows a stochas-
tic differential equation, and is thus a diffusion. We are then able to solve the private
sector’s problem, and deduce relations which must be satisfied by the various tax
rates and by government debt in order to induce the private sector to follow the
trajectory desired by government. In particular, we look for (and find) solutions for
the tax rates which are functions only of the state process.

As yet, these expressions for tax rates are still quite opaque, so we are no better
placed to decide whether they will always be between 0 and 1, for example. Our
response to that has been to find explicit examples which can be solved in closed
form, and where it is possible to find the range of any of the tax rates, as these
are expressed now as explicit functions of the state variable. A collection of such

5See Christiaans (2001) for further discussion on this point. He concludes that open-loop
solutions of dynamic optimization problems are unstable and therefore provide no reasonable basis
for a positive theory of economic growth.

3



examples helps us to build up a library of possible behaviours, may lead us to other
interesting questions, and allows us to check further analytical and numerical work.
The approach we use is simply to take the inverse problem; write down the solution
we would like, and then see whether we can find a model to which that is the
solution! So we obtain a simple solution to a possibly slightly complicated model,
rather than no solution to a simple model. This approach applies even to the basic
one-sector model, and we show in an appendix some of the solutions which can be
obtained for that. Our consideration of explicit examples is similar to the so called
“inverse optimal” problem first studied by Kurz (1968) of constructing the class of
objective functions that could give rise to given specified consumption-investment
functions. Chang (1988) solves a similar stochastic inverse optimal problem.

Shortly after the work of Arrow & Kurz growth theory fell out of favour, not making
a return until the mid-1980s. Lucas (1988) extended the work of Denison (1961) by
showing that a two-sector model can explain not only the trends in growth data,
but also diversity between countries in the data. Consequently much of the recent
growth literature deals with economies with two capital goods, the first usually being
physical capital and examples of the second including human capital, public capital,
financial capital, quality of products and embodied and disembodied knowledge
(Mulligan and Sala-I-Martin 1993).

Models considering directly the effects of public investment come in two formula-
tions. The first considers how the rate of government expenditure on public services
effects the productivity of the economy; see Aschauer (1988) for a discrete example
or Barro (1990) for a continuous time model. The second type of formulation con-
siders the total stock of public capital, invested in such things as roads and hospitals,
as the key input to the production rate. This was the problem first studied by Arrow
& Kurz, with the stock of government capital appearing in the utility function as
well as the production function. This second approach is arguably more realistic but
has not been widely adopted, although Futagami, Morita, and Shibata (1993) have
extended the model of Barro (1990) to include government capital, and Fisher and
Turnovsky (1998) have adopted a Ramsey style framework, although in both these
models the public capital only appears in the production function and not also the
utility6. Baxter and King (1993) considered a discrete time model very similar to
that of Arrow and Kurz.

Use of continuous time stochastic calculus in economic growth models first appeared
in the papers of Bourguignon (1974), Merton (1975) and Bismut (1975). These
extend the Solow growth model to a random setting by addition of a Brownian
element to the labour supply (Bourguignon, Merton) or to the production process
(Bourguignon, Bismut). Merton also considers a stochastic version of the Ramsey
problem, again with Brownian motion appearing in the dynamics of the labour
supply. Chapter 3 of Malliaris and Brock (1982) contains a good overview of these
and similar models. More recent contributions building on Merton’s ‘Stochastic

6This is true for other two-sector models too. Usually the utility function is restricted to being
a function of consumption and not of levels of capital or rates of investment.
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Ramsey Model’ include Foldes (1978), (2001) who adds Brownian motions to further
parameters of the model, and Amilon and Bermin (2001) who allow the government
to control the expected growth rate of the labour supply. We have been unable
to find any continuous time stochastic two-sector (private sector and government
capital) models anywhere in the literature.

One of the possible uses of a stochastic growth model is to study interest rate dynam-
ics. Merton (1975) does this for the stochastic Solow model using a Cobb-Douglas
production function and a constant savings ratio. Amilon and Bermin (2001) use a
stochastic Ramsey model and generate a variety of interest rate processes by consid-
ering different production and utility functions. Cox, Ingersoll, and Ross (1985a),
(1985b) develop a simple stochastic model of capital growth which they use to de-
termine the behaviour of asset prices including the term structure of interest rates.
Sundaresan (1984) builds on this work and that of Merton by considering multiple
consumption goods with a Cobb-Douglas production function.

The layout of the remainder of the paper is as follows. In Part I, we develop the
theory of the model, firstly (in Section 2) characterising the solution to the gov-
ernment’s problem in terms of the Lagrangian shadow price function, and then in
Section 3 we introduce taxation and a private sector independently optimising its
own utility functional subject to taxation constraints. We find conditions that the
tax rates must satisfy in order to induce the private sector to follow the government’s
optimal choices. In Part II, we try to find examples of the model studied in Part
I which can be solved in closed form. As mentioned above, we do this by solving
the inverse problem, where we postulate a particular solution to the government’s
problem, in terms of their utility, the proportion of capital held by the government
as a fraction of the total capital in the economy, and the value function, and then
we seek a production function which would give rise to this solution. One issue that
needs to be addressed (which is a methodological innovation of this paper) is that
if we have selected the government’s solution then we can only hope to know the
production function and its derivatives along the optimal path; can the production
function then be extended off this path so as to remain concave and homogeneous
of degree 1? We are able to show that under mild conditions this is possible, even
though the exact form of the production function may be rather indirect. We go
on to present some quite concrete examples, and look at the kinds of tax regimes
that would be applied by the government. We also find quite explicit and novel
one-factor models for interest rates. We conclude in Section 6, which is followed by
four appendices. Appendix A has proofs of statements made earlier in the paper.
Appendix B is a (technical) discussion of the behaviour of the level of government
debt. Appendix C shows how our results simplify to the one-sector Ramsey model.
Finally Appendix D contains a useful summary of the notation used in the paper.
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PART I

2 The government’s problem

The dynamics of the total capital Kt in the economy at time t evolves according to
the equation7

K̇(t) = F (Kp(t), Kg(t), T (t)L(t)π(t))− δKt − Ct, (2.1)

where Lt is the size of the population at time t, π(t) ∈ [0, 1] is the proportion of the
population’s effort devoted to production, and Kp(t) is the amount of private capital
in existence at time t, Kg(t) ≡ K(t) −Kp(t) the amount of government capital at
time t. The parameter δ is the rate of depreciation, a positive constant, the process
C is the aggregate consumption rate, and the process T is the labour-augmenting
effect of improvements in technology. We shall assume always that K, Kg, Kp and
C are non-negative. Following Arrow & Kurz (1970), we shall suppose that capital
can be freely switched between government and private sectors; the implications of
this assumption are discussed in detail by Arrow & Kurz, and we refer the reader
there for more detail. Suffice it to say that the problem is hard enough already
with this simplifying assummption. Concerning the production function F , we shall
make the usual assumption of homogeneity of degree 1, which is to say that

F (λKp, λKg, λL) = λF (Kp, Kg, L) (2.2)

for any λ > 0. The dynamics (2.1) are the same as the dynamics of Arrow &
Kurz (1971), but where our account begins to differ is in the assumptions we make
concerning population growth. While Arrow & Kurz took this to be deterministic,
we shall suppose (perhaps more realistically) that

dLt = Lt(σdWt + µLdt), (2.3)

dTt = µTTtdt, T0 = 1, (2.4)

where µL and µT ≥ 0 are constants and where W is standard Brownian motion.

The objective of the government is to maximise

E

∫ ∞

0

e−ρgtLt U

(

Ct
Lt
,
Kg(t)

Lt
, πt

)

dt, (2.5)

where U is strictly concave, and increasing in the first two arguments, decreasing
in the last. The objective (2.5) depends on per capita consumption and per capita
government capital, and the felicity is weighted according to the current population
size. In order to have the prospect of a time-homogeneous solution, we require that

7As a notational convenience, we use subscript and argument notations Kt ≡ K(t) interchange-
ably throughout, and will omit appearance of the time argument where there is no risk of confusion.
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U is also homogeneous of degree (1−Rg) for some Rg > 0
8; this means that U can

be represented as

U(C,Kg, π) = K1−Rg
g h(ξ, π), ξ ≡ C/Kg (2.6)

for some C2 function h strictly concave and increasing in its first argument and
decreasing in its second9.

As a consequence of the assumptions so far, it turns out to be advantageous to
work with per capita technology-adjusted variables, rather than their aggregated
equivalents. So if we define

ηt ≡ LtTt = L0 exp

{

σWt + (µL + µT −
1

2
σ2)t

}

, (2.7)

and then define

kt ≡ Kt/ηt, kg(t) ≡ Kg(t)/ηt, kp(t) ≡ Kp(t)/ηt, ct ≡ Ct/ηt, (2.8)

and so forth, we find that the dynamics of k follow from the dynamics (2.1) of K:

dkt = −ktσdWt +

[

F (kp(t), kg(t), πt)− γkt − ct

]

dt, (2.9)

where
γ ≡ δ + µL + µT − σ2.

It is now necessary to re-express the government objective (2.5) in terms of per
capita technology-adjusted variables, and here the assumption that U is homoge-
neous of degree (1 − Rg) enters in an essential way. We find that the objective of
the government can be expressed as

E

∫ ∞

0

e−ρgtLt U

(

Ct
Lt
,
Kg(t)

Lt
, πt

)

dt = E

∫ ∞

0

e−ρgtLt U(ctTt, kg(t)Tt, πt) dt

= E

∫ ∞

0

e−ρgtLtT
1−Rg

t U(ct, kg(t), πt) dt

= L0Eg

∫ ∞

0

e−λgtU(ct, kg(t), πt) dt (2.10)

where
λg ≡ ρg − (1−Rg)µT − µL,

8We also assume that Rg 6= 1, not because the case of logarithmic utility is in any way difficult,
but rather because some of the expressions to be developed have a different appearance in this
special case.

9In fact for U to have the required properties we will also need that (1− Rg)h > ξhξ, ξ
2hξξ +

2Rgξhξ −Rg(1−Rg)h < 0 and Rgh
2
ξ < −(1−Rg)hhξξ.
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and the final expectation is with respect to the measure Pg which is absolutely
continuous with respect to P on every Ft

10, and has density

dPg
dP

∣

∣

∣

∣

∣

Ft

= exp(σWt −
t

2
σ2).

The effect of changing measure from P to Pg is to introduce additional drift
11 into

the Brownian motion σW ; precisely, we have

Wt = wt + σt,

where w is a Pg-Brownian motion. This therefore transforms the dynamics (2.9)
into

dkt = −ktσdwt +

[

F (kp(t), kg(t), πt)− γgkt − ct

]

dt, (2.11)

where the constant γg is given by

γg = γ + σ2 = δ + µL + µT .

In order to maximise (2.10) with the dynamics (2.11), we can proceed to find the
Hamilton-Jacobi-Bellman equation for the value function

V (k) ≡ supEg

[
∫ ∞

0

e−λgtU(ct, kg(t), πt) dt

∣

∣

∣

∣

k0 = k

]

. (2.12)

The HJB equation satisfied by V is

sup
c,kg ,0≤π≤1

U(c, kg, π)− λgV (k) +
1

2
σ2k2V ′′(k) + [F (k− kg, kg, π)− γgk− c]V

′(k) = 0.

(2.13)
From this, we deduce the necessary first-order conditions for optimality:

Uc(c, kg, π) = V ′(k) (2.14)

Ug(c, kg, π) = V ′(k)(Fp(kp, kg, π)− Fg(kp, kg, π)), (2.15)

Uπ(c, kg, π) = −V ′(k)FL(kp, kg, π) (2.16)

where we use subscripts to denote differentiation, as in the abbreviations:

Uc ≡
∂U

∂c
, Ug ≡

∂U

∂kg
, fp ≡

∂f

∂kp
, fg ≡

∂f

∂kg
.

The conditions (2.14), (2.15) and (2.16) arise from considering the optimization
problem

sup
c,kg ,0≤π≤1

U(c, kg, π) + p[ F (k − kg, kg, π)− c ]; (2.17)

10The filtration (Ft)t≥0 denotes the working filtration, with respect to which all processes are
adapted.

11This is the famous Cameron-Martin-Girsanov Theorem; see, for example, Rogers and Williams
(2000) for an account
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implicit in the statements (2.14) and (2.15) is the following assumption:

For every p, k > 0, the problem (2.17) has an interior solution

which depends in a C1 fashion on (p, k) (2.18)

(In fact, the assumed strict concavity of U makes an interior solution unique.) This
assumption does not always hold, but we shall make it for the sake of the simplifi-
cations in the statements and proofs of results; no doubt similar conclusions can be
reached without it, but we leave that as an issue for further research.

The observation that the optimising values (c, kg, π) are uniquely determined as
functions of (p, k) reduces the HJB equation (2.13) to a non-linear differential equa-
tion for V ; once the solution is found, we are able to express the optimal values of
(c, kg, π) as functions of (V (k), k), or, more simply put, functions of k. We shall
henceforth use the notation c∗, k∗g and π

∗ for these optimal functions12 of the un-
derlying state variable k, and also we shall introduce the notation

Φ(k) = F (k∗p(k), k
∗
g(k), π

∗(k))− γgk − c∗(k) (2.19)

for the drift in the dynamics (2.11), which therefore are more compactly expressed
as

dkt = −σktdwt + Φ(kt)dt. (2.20)

Under the original measure P the dynamics (2.9) can be written as

dkt = −σktdWt + Φ̃(kt)dt, (2.21)

with the identification
Φ̃(k) ≡ Φ(k) + σ2k.

Under mild conditions13 on Φ, (2.20) has a pathwise-unique strong solution, and the
value function V will satisfy the equation

U(c∗(k), k∗g(k), π
∗(k))− λgV (k) +

1

2
σ2k2V ′′(k) + Φ(k)V ′(k) = 0. (2.22)

Although there may be some issues concerning smoothness of the (c, kg) optimizing
in (2.18), the following result is the starting point of our investigations.

Theorem 1 (i) Assuming that the value function (2.12) is finite valued and C2,
and that assumption (2.18) holds then there exist differentiable functions Φ, c∗, k∗g ,
π∗ and twice-differentiable Ψ ≡ V ′ such that the equalities

0 = U − λgV +
1

2
σ2k2V ′′ + ΦV ′ (G1)

Uc = V ′ (G2)

Ug = (Fp − Fg)V
′ (G3)

Uπ = −FLV
′ (G4)

12The notation k∗p will also be used, with the obvious interpretation k
∗
p(k) = k − k∗g(k).

13Global Lipschitz will certainly be enough: Rogers & Williams (2000) again, Theorem V.11.2.

9



hold along the path given by (c∗(k), k∗g(k), π
∗(k))14, where

Φ = F − γgk − c. (G5)

(ii) Conversely suppose that there exist differentiable functions Φ, c∗, k∗g , π
∗ and

C3 function15 V such that the equalities (G1)– (G5) hold along the path given by
(c∗(k), k∗g(k), π

∗(k)). If k∗ is the solution to the SDE (2.20) then provided the
transversality condition

sup
t
e−λgtk∗t V

′(k∗t ) ∈ L
1, lim

t→∞
e−λgtk∗t V

′(k∗t ) = 0 (GT)

holds, the policy given by (c∗, k∗g , π
∗) is optimal for the government, the optimally-

controlled economy follows the dynamics (2.20) and V is the value function.

Proof. (i) follows from the discussion above. (ii) - see Appendix A

Theorem 1 characterises the optimal solution to the government’s problem, but what
can we do with it? Are there examples where the solution can be expressed in closed
form? In view of the complicated way in which the optimising values c∗, k∗g and π

∗

were defined, it appears at first sight unlikely, but we shall later see that it is possible
to exhibit explicit solutions.

Though nothing in the analysis so far (or for some time to come) requires it, we have
it in mind that we are looking for a solution where k is an ergodic diffusion; this
is the stochastic equivalent of a balanced growth path in a deterministic model. A
balanced growth path is a path where k is (or tends to) a fixed point of the dynamics,
and in some sense describes an economy where everything grows in step with the
technology-adjusted population. It makes most sense economically to consider such
situations; models where this does not happen either offer the population something
for nothing, or nothing for something.

3 Government borrowing and taxation

The government’s optimal policy has been determined, but the issue now is how
to implement that policy when the government cannot directly control the private
sector, but can only shape its choices through taxation and the issuing of government
debt. Since the optimal policy of the previous Section was Markovian, in the sense
that the total technology-adjusted per capita capital k was a Markov process (even
a diffusion), we shall now seek Markovian taxation policies, which are defined by
the property that the rates of tax are functions only of k.

14This means, for example, that Ug(c
∗(k), k∗g(k), π

∗(k)) = (Fp − Fg)(k
∗
p(k), k

∗
g(k), π

∗(k))Ψ(k) in
the case of (G3).

15We require 3 continuous derivatives because the proof uses the Lagrangian process e−λgtV ′(kt),
and to apply Itô’s formula to this we request two continuous derivatives for V ′.
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Before we can understand the effects of government fiscal policy, we have to under-
stand the behaviour of the private sector on which it acts, and we turn to that now.
We think of the private sector as made up of a very large number L0 of identical
households; if one of these households receives a flow (∆Ct)t≥0 of the consumption
good, then it values this flow as

E

∫ ∞

0

e−ρptu

(

L0∆Ct
Lt

,
Kg(t)

Lt
, πt

)

dt, (3.1)

and it wishes to maximise this. Here, u is strictly concave, increasing in its first
two arguments, and decreasing in the third, and ρp > 0 is constant. The felicity u
depends on the per capita level of government capital, and on the per capita rate
of consumption for the household, which is assumed to be subject to the same size
fluctuations as the entire population; it also varies inversely with the proportion of
effort devoted to production. As with the government objective, we assume that u
is homogeneous, of degree (1−Rp), where Rp > 0 is different from 1, and typically
different from Rg.

We suppose that the objectives of the government and private sector are different,
and that the government aims to set taxes and to borrow in such a way as to
induce the private sector to follow the government’s desired path. We need now to
decompose the dynamics (2.1) of the economy so as to understand the effects of the
taxes. Homogeneity of order 1 of F implies16 that we may express the output as the
sum of three terms,

F (Kp, Kg, L) = KpFp(Kp, Kg, L) +KgFg(Kp, Kg, L) + LFL(Kp, Kg, L), (3.2)

which are interpreted as the return on private capital, the return on government
capital, and the return on labour, respectively.

We shall suppose that the government is able to appropriate some fixed proportion
1 − θp − θL of the returns to its capital by direct charging for services such as toll
roads, university tuition fees, subsidised rail fares, and some healthcare costs, but it
is in the nature of government expenditure that much of the return on government
capital cannot be directly appropriated, so in practice this proportion may be near
to zero. A proportion θp of the returns to government capital are included in the
returns to private capital, and the remaining proportion θL is included in returns
to labour, so that from an accounting point of view we suppose that the returns on
private capital and labour are (respectively)

KpFp + θpKgFg, θLKgFg + πLTFL, (3.3)

with the remaining (1− θp − θL)KgFg going directly to government.

The evolution of the levels of private and government capital are determined by the
equations

dKp = dIp − δKpdt (3.4)

dKg = dIg − δKgdt, (3.5)

16Differentiate the identity (2.2) with respect to λ.

11



where Ip(t) is the cumulative amount invested in private capital by time t.

The government will issue debt and levy taxes; returns on private capital will be
taxed at rate 1−βk, income at rate 1−βw, consumption at rate 1−βc, and interest
on government debt at rate 1 − βr, so that the private sector’s aggregate budget
equation17 is therefore

dIp+dD+β
−1
c Cdt = βk

[

KpFp+θpKgFg
]

dt+rβrDdt+βw
[

F−KpFp−(1−θL)KgFg
]

dt
(3.6)

where Dt denotes the amount of government debt at time t. The interpretation
of the left-hand side is that this is the total outgoings of the private sector: the
investment in private capital, the investment in government debt, and the cost of
consumption. The right-hand side (3.6) is the after-tax income of the private sector:
return on private capital plus interest on government debt plus wage income.

The relation (3.4) can be used to eliminate dIp and rewrite the private-sector budget
equation as

dKp+dD = Kp(βkFp− δ)dt+ rβrDdt−β
−1
c Cdt+βwπηFLdt+(βkθp+βwθL)KgFgdt

(3.7)
which bears the simple interpretation that the change in private-sector wealth is
accounted for by the return on private capital (adjusted for depreciation) plus the
return on government debt, less consumption, plus the wage income, plus unappro-
priated return on government capital.

Recall that we seek tax rates as functions of k which will cause the private sector to
follow the government’s optimal trajectory. So we shall suppose that such tax rates
have been set, the economy as a whole is following the government’s optimal policy
as discussed in Section 2, and shall consider the optimisation problem faced by a
single household. If any deviation from the government’s optimal path is suboptimal
for the individual household, then we have an equilibrium in which all households
follow the government’s optimal path; we shall suppose that this is what happens,
and deduce the implications for the tax rates and borrowing policy. These are
summarised in the following result.

Theorem 2 Suppose that the government sets proportional taxes 1 − βc on con-
sumption, 1 − βw on income, 1 − βk on returns on private capital, and 1 − βr on
returns on government debt, all functions only of the total technology-adjusted per
capita capital k in the economy at the time. If there exists a C2 function ψ, and a

17Arrow & Kurz have also a tax on savings, which alters the term dIp+dD in (3.6) to β
−1
s (dIp+

dD). Since this could be absorbed into our formulation simply by reinterpreting the other β·, we
lose no generality by studying the equations as given.
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function r such that the equations

0 = ψ(βkFp − γ − λp) + ψ
′(Φ̃ + σ2k) +

1

2
σ2k2ψ′′ (PS1)

uc = β−1
c ψ (PS2)

uπ = −βwFLψ (PS3)

βkFp = rβr + δ (PS4)

all hold along the government’s optimal path18, where λp = ρp − (1 − Rp)µT , then
the private sector faced with these tax rates will choose to follow the government’s
optimal path, provided the transversality condition

sup
t
e−λpt|xt|ψ(k

∗
t ) ∈ L

1, lim
t→∞

e−λptxtψ(k
∗
t ) = 0 (PST)

is satisfied, where x ≡ kp + ∆p is the total technology-adjusted per capita wealth of
the private sector, split between private capital kp and government debt ∆p.

Proof. See Appendix A.

Remarks. (i) Of course, the way we plan to use Theorem 2 is to enable us to find the
tax regimes which will persuade the private sector to follow the government optimal
path. So if we suppose that the government’s optimal path has been determined,
as in Section 2, we want now to know whether it is possible to have the conditions
(PS1), (PS2), (PS3) and (PS4) all holding at the same time. But this is in fact
quite easy: for example, if we choose the functional form of βc and βr, then (PS2)
determines the function ψ and then βk, βw and r are determined from (PS1), (PS3)
and (PS4) respectively.

(ii) Note the similarities between conditions (PS1), (PS2) and (PS3) and the cor-
responding conditions (G1), (G2) and (G4) of Theorem 1. If we set the tax rates
to zero (so βk = 1 etc.) then these conditions of Theorem 2 are identical in form
to those of Theorem 1; however they depend on the private sector parameters λp
and γ and on the private sector utility function u rather than the corresponding
government quantities. Only if the private sector and government share identical
values λp = λg, γ = γp and u ≡ U will the private sector follow the government’s
optimal path under a no-tax regime.

(iii) We do not claim (nor is it true in general) that the solution is Markovian in the
sense defined above, because the process ∆p may fail to be a function only of k

∗.
However, it is possible19 to express the private sector’s wealth x ≡ kp +∆p as

xt = kt

[

e−
∫ t

s
G0(ku)du xs

ks
+

∫ t

s

e−
∫ t

v
G0(ku)du B̃(kv)

kv
dv

]

, (PSW)

18For example, in full (PS3) says uπ(c
∗(k), k∗g(k), π

∗(k)) = −βw(k)FL(k
∗
p(k), k

∗
g(k), π

∗(k))ψ(k).
19See (A.5).

13



where

G0(k) = (F − c∗)/k − βkFp, (3.8)

B̃(k) = k∗g(βkθp + βwθL)Fg + βwπ
∗FL − β−1

c c∗, (3.9)

with the understanding that F and its derivatives are evaluated along the optimal
path; see Appendix B for the details.

In general, the expression (PSW) for the private-sector wealth will be path de-
pendent; the effects of earlier borrowing persist. In this sense, the solution is not
Markovian, in that private-sector wealth depends not just on k, but on the history
of k. A special situation obtains when

B̃(k) = qkG0(k) > 0; (3.10)

the integral in (PSW) is exact, and under mild conditions (ergodicity of k will
certainly be enough) we can let s→ −∞ in (PSW) to learn that

xt = qkt; (3.11)

the private sector’s wealth is a fixed proportion of the total capital in the economy.

(iv) Note the interpretation of (PS4): the net return on private capital βkFp is equal
to the net return on debt rβr plus depreciation δ.

PART II

4 Explicit solutions: the government’s problem.

Given the government’s felicity function U , impatience parameter λg, and the pro-
duction function F , it will in general not be easy to find the value function V . Our
approach here is to solve the inverse problem: given the government’s felicity func-
tion U , impatience parameter λg and V , try to find a production function F for
which V is the value.

The homogeneity of degree 1−Rg assumed for U gives the expression

U(c, kg, π) = k1−Rg
g h(ξ, π) (4.1)

where h(x, π) ≡ U(x, 1, π), and ξ ≡ c/kg. Differentiation gives

Uc(c, kg, π) = k−Rg
g hξ(ξ, π), (4.2)

Ug(c, kg, π) = k−Rg
g

[

(1−Rg)h(ξ, π)− ξhξ(ξ, π)
]

, (4.3)

Uπ(c, kg, π) = k1−Rg
g hπ(ξ, π). (4.4)
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Accordingly, the conditions (G1)–(G5) of Theorem 1 take the form

0 = U − λgV +
1

2
σ2k2V ′′ + ΦV ′ (g1)

Uc = k−Rg
g hξ = V ′ (g2)

Ug = k−Rg
g

[

(1−Rg)h− ξhξ
]

= (fp − fg)V
′ (g3)

Uπ = k1−Rg
g hπ = −fLV

′ (g4)

Φ = f − γgk − c (g5)

The reason for the notational switch from F to f is that in Theorem 1 the pro-
duction function F was known, with certain assumed properties, such as concavity,
monotonicity and homogeneity. Here however, we shall be starting with assumed
forms for h, V , and ξ, π, and will use (g1)–(g5) to try to find F . Of course, we will
use (g1)–(g5) to try to define f, fp, fg, fL, but there is a priori no reason to sup-
pose that there is any (concave, increasing, homogeneous) function F relating them,
and the use of a different notation is to emphasise that no such relations should be
assumed. For F , the homogeneity property (3.2) holds20, giving us

F = kpFp + kgFg + πFL, (4.5)

and differentiating F = F (k) ≡ F (k∗p(k), k
∗
g(k), π

∗(k)) gives us

F ′ = k′pFp + k
′
gFg + π

′FL (4.6)

along the path, but there is no reason to suppose that the corresponding properties

f = kpfp + kgfg + πfL, (g6)

and
f ′ = k′pfp + k

′
gfg + π

′fL (g7)

should hold for f, fp, fg, fL obtained from (g1)–(g5). Certainly properties (g6) and
(g7) are necessary for f, fp, fg, fL to be related through a production function F ; the
remarkable thing is that (g6) and (g7) are effectively sufficient for such a relation,
as the following result establishes.

Theorem 3 (Extension Theorem.) Suppose given monotone21 C1 functions z :
R+ → Rd

+ and ψ : R+ → Rd
+, where ψ and z are co-monotone

22, and C1 φ : R+ →
R+. Then the following are equivalent.

(i) There exists some concave F : Rd
+ → R+ which is increasing in each argument,

and homogeneous of degree 1, such that for all t ≥ 0

φ(t) = F (z(t)) (4.7)

20For this Section, we will omit the superscript stars when not essential.
21By this we mean that each component of z is monontone; some components may be increasing

while others are decreasing.
22That is, ψ increases in the components where z decreases, and vice versa.
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and ψ(t) is a supergradient23 to F at z(t).

(ii)

φ(t) = z(t) · ψ(t) (4.8)

φ′(t) = z′(t) · ψ(t) (4.9)

Remarks. The amazing thing about this result is that knowledge of φ and ψ only
tells us about the function F and its gradient at points on the path z; nevertheless,
co-monotonicity and (4.8)-(4.9) are together sufficient to extend F off the path z so
as to be globally concave, homogeneous and increasing.

Proof.

(i)⇒ (ii) is immediate in view of the previous discussion.

(ii)⇒ (i). Define for each x ∈ R+
d and each t ≥ 0

Λ(x; t) ≡ φ(t) + (x− z(t)) · ψ(t)

= x · ψ(t)

in view of (4.8). Notice that Λ(·; t) is concave, increasing, and homogeneous of
degree 1. If there were to be a concave F with the properties we seek, then Λ(·; t)
would have to be a supporting hyperplane to F at z(t). Consequently, we define F
by

F (x) ≡ inf
t≥0
Λ(x; t) (4.10)

and observe that F (z(t)) ≤ φ(t). We also observe that ψ(t) is a supergradient to F
at z(t), so all that now remains is to establish (4.7), for which we must check is that
for all t, w ≥ 0,

φ(t) ≤ Λ(z(t);w) = φ(w) + (z(t)− z(w)) · ψ(w).

However, for 0 ≤ t < w,

φ(w)− φ(t) =

∫ w

t

φ′(s) ds

=

∫ w

t

z′(s) · ψ(s) ds

≥

∫ w

t

z′(s) · ψ(w) ds

= (z(w)− z(t)) · ψ(w),

using (4.9) going from the first line to the second, and using the co-monotonicity
going from the second line to the third. The case w < t follows mutatis mutandis.

23That is, F (y) ≤ F (z(t)) + ψ(t) · (y − z(t)) for all y.
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The strategy should now be clear. We assume given U , V , λg, γg, and shall propose
π(·), ξ(·). We now use (g2) to determine kg(·), which will tell us what U(k) ≡
U(c(k), kg(k), π(k)) should be, and then we use (g3) to give us fp − fg, (g4) to give
us fL. As yet, we do not know fp, but from (g6) we have

f = kfp − (fp − fg)kg + πfL,

so substituting this into (g5), (g1), gives us fp in terms of known functions. All that
remains is to check (g7) and the co-monotonicity of (kp, kg, π) and (fp, fg, fL), and
the Extension Theorem finishes the job for us, constructing a production function
F . The check of (g7) will impose an equation to be satisfied by the proposed π(·),
ξ(·), so we are not able to choose both of these freely.

Carrying out this programme in more detail, we have firstly from (g2) that

kg = (hξ/V
′)1/Rg , (4.11)

then dividing (g3) by (g2) we learn that

fp − fg = (1−Rg)
h

hξ
− ξ; (4.12)

dividing (g4) by (g2) gives us

fL = −
kghπ
hξ

. (4.13)

Using (g5), (g6) and (g1) gives two alternative expressions for Φ:

Φ = k(fp − γg)− kg(fp − fg) + πfL − c

= k(fp − γg)− kg(fp − fg) + πfL − ξkg

=
λgV −

1
2
σ2k2V ′′

V ′
−
U

V ′

=
λgV −

1
2
σ2k2V ′′

V ′
−
kgh

hξ
.

Rearrangement gives an expression for fp:

fp − γg =
λgV −

1
2
σ2k2V ′′

kV ′
−
kgh

khξ
+
kg(fp − fg)

k
−
πfL
k
+
ξkg
k
. (4.14)

Now (g6) holds by construction, so (g7) will hold if and only if

0 = kf ′p − kg(f
′
p − f ′g) + πf

′
L,

a condition equivalent (in view of (4.14) to

0 =

(

λgV −
1
2
σ2k2V ′′

kV ′

)′

−

(

kgh

khξ

)′

+ (fp− fg)

(

kg
k

)′

− fL

(

π

k

)′

+

(

ξkg
k

)′

. (4.15)
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5 Particular choices.

5.1 Special forms for V and U .

The equation (4.15) is as far as we can expect to get without more specific assump-
tions. In this Section, we shall make some very specific assumptions to begin the
exploration of this model. We shall see that these assumptions are in a sense too
special, but they give us a place to begin. We shall take the value function to be
CRRA:

V (k) =
Ak1−S

1− S
(5.16)

for some S ∈ (1, Rg), and positive A. Notice that this eliminates the first term in
(4.15). Inspection of this equation suggests that we should introduce the function

ϕ(k) ≡ kg(k)/k. (5.17)

Our next assumption concerns h, which we shall suppose is of Cobb-Douglas form,

h(ξ, π) = −ξ−ν(1− π)−κ, (5.18)

for positive ν, κ, where we assume that

ω ≡ Rg − 1− ν > 0. (5.19)

Returning to (g2), (g3), (g4) gives us respectively

ξ =
(

kS−Rgϕ−Rg(1− π)−κ/A
)1/(1+ν)

, (5.20)

fp − fg =
ωξ

ν
, (5.21)

fL = kϕ
κξ

ν(1− π)
. (5.22)

This now allows us to write ξ as a function of π, and, assuming ϕ has been chosen,
to treat (4.15)

0 =
ν + 1

ν

(

ξϕ
)′
+
ωϕ′ξ

ν
−

κξϕk

ν(1− π)

(

π

k

)′

as an equation to determine π. The derivatives of π vanish from this equation, and
π is determined simply as

π(k) =
Rg − S

Rg − S + κ
, (5.23)
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a constant24 in (0, 1) ! Abbreviating (1 − π)−κ/(1+ν)A−1/(1+ν) to ag, we are able to
simplify various expressions:

c = agk
(S−ω)/(1+ν)ϕ−ω/(1+ν) (5.24)

fL =
κ

ν(1− π)
c (5.25)

fp − fg =
aω

ν
k(S−Rg)/(1+ν)ϕ−Rg/(1+ν) =

ωc

νkϕ
(5.26)

fp = γg +Q+
S

ν

c

k
(5.27)

f = k(γg +Q) +
(1 + ν)c

ν
(5.28)

Φ = Qk + ν−1c (5.29)

fg = γg +Q+
c

νkϕ

(

Sϕ− ω
)

(5.30)

where

Q =
λg +

1
2
σ2S(1− S)

1− S
.

5.2 A special form for ϕ.

This is as far as we can get without specific choices for ϕ. Let us then assume that
there exist positive constants a0, a1, b, and α such that

ϕ(k) = a0 + a1(1 + bk)
−α. (5.31)

Notice that ϕ is decreasing; the interpretation of this is that the government’s share
of capital should decrease as the total stock of capital grows. There may be interest
in other types of behaviour, but this seems a natural enough property for any realistic
economy. Note also that we shall require that

a0 + a1 ≤ 1 (5.32)

in order that 0 ≤ ϕ ≤ 1 everywhere. We propose also to restrict attention to
situations where both kg and kp are increasing, just to fix ideas. This will not
happen for all possible parameter choices, but by insisting that

α ≤ 1 (5.33)

we guarantee that kg is increasing (kp is automatically increasing). We now have
to ensure the co-monotonicity, which is to say that fp and fg are both decreasing
(the monotonicity of fL is irrelevant in view of the fact that π is constant.) For the
decrease of fp (equivalently, of c/k), it is sufficient that

α ≤
(Rg − S)(1 + ν)

ω
, (5.34)

24In fact, it can be shown that π is constant whenever h is separable.
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a condition that we shall assume. Finally, we have to guarantee that fg decreases,
and that it is non-negative. For non-negativity, it is sufficient to suppose that

a0 > ω/S (5.35)

which we shall also assume25. Now fg is decreasing as a function of k if and only if
it is increasing as a function of z ≡ (1 + bk)−α; a few calculations now lead to the
conclusion that the condition (5.34) will also ensure that fg is decreasing.

We therefore have the required co-monotonicity to apply the Extension Theorem,
and deduce that there does exist a production function consistent with the solution
constructed here. It remains for us to check the transversality condition (GT), which
concerns the growth of k∗t . Since k

∗ solves the SDE

dk = σkdw + (Qk + ν−1c)dt,

by the Yamada-Watanabe stochastic comparison theorem (see, for example, Rogers
& Williams (2000), V.43), since c ≥ 0 we can say that k is pathwise everywhere
above the solution y to the SDE

dy = σydw +Qydt.

This then bounds

e−λgtk∗t V
′(k∗t ) ≤ e−λgty

1−Rg

t

= exp{(1−Rg)σwt + (1−Rg)(Q−
1

2
σ2)t− λgt}

= exp

{

(1−Rg)σwt +

(

λg(Rg − S)

S − 1
−
1

2
σ2(S − 1)(Rg − 1)

)

t

}

using the particular expression for Q. In view of this, provided the inequality

λg(Rg − S)

S − 1
<
1

2
σ2(S − 1)(Rg − 1) (5.36)

is satisfied (which we shall assume), the transversality condition (GT) is satisfied.

5.3 Taxation and the private sector

The government’s choice of taxes will depend on the private sector’s preferences,
which we here will assume are of the form

u(c, kg, π) = −kg
−ωpc−νp(1− π)−κp , (5.37)

where νp > 0, ωp ≡ Rp − 1 − νp > 0 and κp > 0. We modify the notation of
the previous subsections by writing ωg in place of ω, νg in place of ν and so on,

25Note that this imposes the condition ω ≡ Rg − 1− ν < S.
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to emphasise the distinction between government and private-sector parameters in
what is an otherwise similar specification. With the private sector’s felicity function
specified as above conditions (PS2) and (PS3) from Theorem 2 combined with the
very similar conditions (G2) and (G4) from Theorem 1 tell us that

βcβw =
uπUc
ucUπ

=
κpνg
κgνp

≡ K−1, (5.38)

say, a constant.

The equations (PS1)–(PS4) do not determine the tax rates uniquely; we could, for
example, pick any nice enough ψ and then invert those four equations to find the β’s.
We therefore propose to study two possible approaches, applied to a few numerical
examples.

We will consider the following parameter regimes for government:

Cautious government: Rg = 4, Sg = 3, λg = 0.02, σ = 0.02, δ = 0.1, µL = 0.02,
µT = 0.03, νg = 1.2, a0 = 0.1, a1 = 0.8, b = 1, κg = 0.2, α = 0.9;

Adventurous government: Rg = 1.5, Sg = 1.4, λg = 0.2, σ = 0.1, δ = 0.2, µL = 0.05,
µT = 0.05, νg = 0.2, a0 = 0.3, a1 = 0.65, b = 1, κg = 0.2, α = 0.5;

and the following parameter regimes for the private sector:

Cautious private sector: Rp = 4, νp = 2.5, κp = 0.06, λp = 0.04;

Adventurous private sector: Rp = 2, νp = 0.5, κp = 0.06, λp = 0.14;

The cautious government has a relatively high coefficient of relative risk aversion
Rg = 4, and has quite a long mean look-ahead time in its objective (50 years).
The volatility and mean of population growth are both quite small, as would be
expected. The technology is also growing at a modest rate of 3%. When k = 0, the
government holds 90% of all the capital, but as k →∞, this falls to 10%.

The adventurous government (perhaps in a developing nation) has quite small co-
efficient of relative risk aversion, and a short mean look-ahead time, 5 years (next
election?!). The population is growing faster, with more volatility, and technological
progress is also faster.

The cautious private sector is more risk-averse, and also has a longer mean look-
ahead (25 years) than the adventurous private sector.

Approach 1: constant βc, βw. This approach is driven by the fact that the
product βcβw is constant. We use the relation (PS2) to determine ψ, and then
the ODE (PS1) gives us βk. We shall make the not unreasonable assumption that
βk = βr as the way to determine the short rate r. We present the plots of the
invariant density (scaled to have height 1), βk, and the short rate r for the four
possible combinations of government and private sector.
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Figure 1: Invariant density, βk, and r, cautious government, and cautious private
sector (βk above r, βc = βw = 0.38).
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Figure 2: Invariant density, βk, and r, cautious government, and adventurous private
sector (βk above r, βc = βw = 0.849).
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Figure 3: Invariant density, βk, and r, adventurous government, and cautious private
sector (βk above r, βc = βw = 0.155).
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Figure 4: Invariant density, βk, and r, adventurous government, and adventurous
private sector (βk above r, βc = βw = 0.346).

23



We see some very reasonable values for the tax rates and interest rates, reflecting the
nature of the two participants in the economy. For example, the cautious government
has to offer the cautious private sector a tax break on returns to capital in order to
get the private sector to invest. The adventurous government must actually penalise
the cautious private sector for investing in government debt if k is too high - there
is too much capital around for the government’s liking, and the private sector is to
be induced to consume. In all four examples, the riskless rate falls as capital rises,
which is intuitively reasonable; high rates of interest are needed at low k to get the
private sector to invest so as to raise capital levels, but the need for this diminishes
as k rises.

Approach 2: ψ(k) ∝ k−Sp. Looking at (5.24), we see that for small values of k we
have c(k) ∼ k(Sg−ωg)/(1+νg), so a few calculations show that

uc(k) = β−1
c ψ(k) ∼ k−Sp

using (PS2). Here, the constant Sp satisfies

Sp − ωp
1 + νp

=
Sg − ωg
1 + νg

.

We therefore propose to take ψ(k) = aψk
−Sp for all k > 0, and derive the forms of

the βs from that.
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Figure 5: Invariant density, βc, βw, βk, and r: cautious government, and cautious
private sector. (βk > βc > βw > r on the right of the diagram)

Once again, we see tax rates that make a lot of sense: the cautious government
facing the cautious private sector gives a subsidy on returns to capital, but gives a
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Figure 6: Invariant density, βc, and βw, βk, and r: cautious government, and adven-
turous private sector. (βk > βc > βw > r on the right of the diagram)
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Figure 7: Invariant density, βc, and βw, βk, and r: adventurous government, and
cautious private sector. (βk > βc > βw > r on the right of the diagram)
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Figure 8: Invariant density, βc, and βw, βk, and r: adventurous government, and
adventurous private sector. (βk > βc > βw > r on the right of the diagram)

low rate of interest on riskless investment. The cautious government encouages the
adventurous private sector by tax breaks on returns to invested capital, and lowered
tax on consumption as k rises, but takes more of labour income in tax as k rises.
The adventurous government faced with a cautious private sector gives negative
rates of interest when k is high, but quite generous positive rates when k is low so
as to encourage investment. In contrast, the rates of tax on consumption and on
labour income remain almost constant; as a result, as would be expect then, Figures
3 and ??-?? look very similar. Similar comments apply to the case of adventurous
government and adventurous private sector.

Let us briefly explore the implications of this model for the riskless rate. Under the
assumption that βr = βk, we have that

r = Fp − δ/βk,

which in this case gives us explicitly that

r = Fp
γ + λp − δ + Sp(σ

2 + Φ̃(k)/k)− 1
2
σ2Sp(1 + Sp)

γ + λp + Sp(σ2 + Φ̃(k)/k)− 1
2
σ2Sp(1 + Sp)

. (5.39)

The interest rate is thus expressed as a function of the underlying diffusion k, which
itself solves the SDE

dk = −σkdW + ((Q+ σ2)k + ν−1
g c(k)). (5.40)
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If we take ϕ to be constant, then c is proportional to kB, whereB ≡ (Sg−ωg)/(1+νg);
the SDE can now be reduced to linear form by considering instead the variable
ζ ≡ k1−B which solves

dζ = σ(B − 1)ζdW + (1−B)
{

(Q+ σ2 −
1

2
σ2B)ζ + aν−1

g

}

dt

Merton (1975) finds structurally similar interest rate processes in a study of a single-
sector growth model, and Kloeden and Platen (1992) present this under the name
of the stochastic Verhulst equation.

6 Conclusions.

We have introduced stochastic population fluctuations into the model of Arrow
and Kurz (1970), which we have further modified by allowing the population to
choose the proportion of its time to devote to working, as in the original model of
Ramsey (1928). With these modifications we have then solved the government’s
central-planning problem. Under the assumption that tax rates are chosen so that
the private sector, optimising its own utility functional, follows the optimal path
of the government we have found tax and interest rates as functions of per-capita
technology-adjusted capital - in other words, closed-loop control.

While it is not obvious whether the original problem can be solved in closed form
if we assume that the production function is given, in a methodological innovation
we have shown that the inverse problem, of finding a production function which
gives rise to a particular (simple explicit) solution, may be solved in considerable
generality. This opens the way to a host of explicit solutions, some of which we
have begun to explore. The dependence of tax rates and interest rates on the state
variable in the few examples we have studied takes on credible forms; there is scope
for fitting the model to data, but such a study must wait til later.
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Appendix A Proofs.

Proof of Theorem 1. Suppose that the process kt has dynamics given by (2.11)
for some consumption process ct and some choice θt = kg(t)/k(t) of the proportion
of capital held by the government. We define a Pg-Brownian motion w by −z

L ≡ σw
and introduce a (Lagrangian) semimartingale e−λgtΨt ≡ e−λgtΨ(k∗t ) where k

∗ is the
conjectured optimal process, satisfying (2.20), and where

dΨt ≡ Ψt(atdw + btdt).

We have for any stopping time τ that (omitting explicit appearance of t in most
places)

∫ τ

0

e−λgtU(c, kg, π)dt =

∫ τ

0

e−λgt

[

U(c, kg, π) + Ψ(F (kp, kg, π)− γgk − c) +

kΨ(b− λg) + σakΨ

]

dt+ k0Ψ0 − e−λgτkτΨτ +Mτ

for some Pg-local martingale M ; this is just obtained by integrating the process
e−λgtΨtkt by parts. Taking a stopping time τ which reducesM strongly, we can now
take expectations to obtain

Eg

∫ τ

0

e−λgtU(c, kg, π)dt = Eg

∫ τ

0

e−λgt

[

U(c, kg, π) + Ψ(F (kp, kg, π)− γgk − c)+

kΨ(b− λg) + σakΨ

]

dt+ k0Ψ0 − Ege
−λgτkτΨτ .

(A.1)

We now consider the maximisation over k, c, kg and π of the integrand on the
right-hand side of (A.1): the first-order conditions we obtain will be

Ψ(k∗)(Fp(kp, kg, π)− γg) = (λg − b− aσ)Ψ(k∗)

Uc(c, kg, π) = Ψ(k∗)

Ug(c, kg, π) = Ψ(k∗)(Fp − Fg)

Uπ(c, kg, π) = −Ψ(k∗)FL.
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The last three of these are satisfied at c = c∗(k∗), kg = k∗g(k
∗), π = π∗(k∗) in view of

(G2), (G4) and (G3). The first is satisfied due to (G1), since from the Itô expansion
of Ψ(k∗) we must have that

a =
σk∗Ψ′(k∗)

Ψ(k∗)

b =
Φ(k∗)Ψ′(k∗) + 1

2
σ∗k∗2Ψ′′(k∗)

Ψ(k∗)
.

To summarise then: the integrand on the right-hand side of (A.1) is maximised at
c = c∗(k∗), kp = k∗p(k

∗), kg = k∗g(k
∗), π = π∗(k∗). Reversing the integration-by-parts

argument by which we arrived at (A.1), we conclude that26

Eg

∫ τ

0

e−λgtU(c, kg, π) dt ≤ Eg

∫ τ

0

e−λgtU(c∗(k∗t ), k
∗
g(k

∗
t ), π

∗(k∗t )) dt

+Eg
[

e−λgτ (k∗τ − kτ )Ψ(k
∗
τ )
]

≤ Eg

∫ τ

0

e−λgtU(c∗(k∗t ), k
∗
g(k

∗
t ), π

∗(k∗t )) dt

+Eg
[

e−λgτk∗τΨ(k
∗
τ )
]

.

Now it only remains to let the reducing time τ tend to infinity, and appeal to the
transversality condition (GT), together with the fact that U does not change sign
to give us the required optimality result.

Finally, suppose that we take V (k) given by

V (k) ≡

∫ k

1

Ψ(y) dy + V1

where

V1 ≡
1

λg

[

Ψ(1)Φ(1) +
1

2
σ2Ψ′(1) + U(c∗(1), k∗g(1), π

∗(1))

]

.

If we differentiate

−λgV (k) + V
′(k)Φ(k) +

1

2
σ2k2V ′′(k) + U(c(k), kg(k), π(k)) (A.2)

with respect to k, using the fact that V ′(k) = Ψ(k) we obtain

Ψ(−λg + (1− k′g)Fp + k
′
gFg + π

′FL − γg − c′)

+ Ψ′(Φ + σ2k) +
1

2
σ2k2Ψ′′ + c′Uc + k

′
gUg + π

′Uπ = 0

26There is a detail here: the stopping time τ which reduced M strongly may not reduce the
corresponding local martingale for the optimal process. We can nevertheless replace τ by a stopping
time which is no larger and which reduces both local martingales. Since we are interested in letting
the reducing time tend to infinity, this little change affects nothing in the end.
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by (G1)–(G3). Hence expression (A.2) is constant and this constant is 0 by the
construction of V1. ¤

Proof of Theorem 2. The strategy is firstly to discover the dynamics faced by
a single household optimising in an economy which is following the government’s
optimal path. Next we rework the private household’s objective, expressing it in
intensive variables. We then use the Lagrangian method to characterise the private
household’s optimal path,

So suppose we consider what happens if we add one more household to the (large)
economy which is following the government’s optimal path. The total labour avail-
able has increased by Lt/L0, an O(1) quantity, and the total amounts of both types
of capital and of government debt will also have changed by an O(1) quantity. If
∆C, ∆Kp, ∆D denote the changes in the corresponding aggregate quantities, and
π̃ denote the proportion of effort which the new household devotes to production,
then the perturbation of (3.7) to leading order is not

d∆Kp + d∆D = ∆Kp(βkFp − δ)dt+ rβr∆Ddt− β−1
c ∆Cdt

+βwπ̃t
ηt
L0

FLdt+
ηt
L0

kg(βkθp + βwθL)Fgdt. (A.3)

This is because if we consider the change in (3.7) when the new household joins,
not only do the total amounts of capital, labour, consumption and debt change
by the O(1) amounts indicated in (A.3), but the coefficients β· and the derivatives
f· also get changed, by amounts which are O(1/L0). Since these changes then get
multiplied by quantities which are O(L0), the net impact on the budget equation of
these changes is still O(1). Nevertheless, we argue that equation (A.3) is the correct
equation for the evolution of the new household’s wealth, where the tax rates and all
derivatives of f are evaluated along the original (government-optimal) path. This
is because the quantities on the right-hand side of (A.3) are items directly visible to
the new household: the return on its private capital, the wages for its labour, etc..
The other O(1) changes in the budget equation, such as the changes in total wages
due to the O(1/L0) shift in wage rates, get distributed among the population as a
whole, and so have only an O(1/L0) effect on any one household.

This agreed, the problem facing the typical private sector household is to optimise
the objective (3.1) with the dynamics given by (A.3), where the tax rates, the β·,
the f·, r and f are all evaluated along the government’s optimal path. As with the
government’s problem, we first reduce to technology-adjusted per capita variables,
expressing the objective as

E

∫ ∞

0

e−ρptu

(

L0∆Ct
Lt

,
Kg(t)

Lt
, π̃t

)

dt, = E

∫ ∞

0

e−ρptT
1−Rp

t u(ct, k
∗
g(t), π̃t) dt

= E

∫ ∞

0

e−λptu(ct, k
∗
g(t), π̃t) dt, (A.4)

where we are reserving starred variables (k∗p, k
∗
g) for the government’s optimal values,
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and are using the notations27

kp ≡ ∆KpL0/η, ∆p ≡ ∆DL0/η, ct ≡ ∆CtL0/ηt, λp ≡ ρp − (1−Rp)µT .

The dynamics (A.3) implies the following dynamics for the (technology-adjusted per
capita) private-sector wealth process x ≡ kp +∆p:

dx = kp
[

σdW + (βkFp − γ)dt
]

+ βwπ̃FLdt

+∆p

[

σdW + (δ + rβr − γ)dt
]

− β−1
c cdt+Bdt,

= x(σdW + (δ + rβr − γ)dt) + (B + βwπ̃FL − β−1
c c)dt

≡ x(σdW + (δ + rβr − γ)dt) + B̃dt (A.5)

where we have used (4.9) and the abbreviations B = k∗g(βkθp + βwθL)Fg, B̃ =
B + βwπ̃FL − β−1

c c.

Let us now combine the objective (A.4) with the dynamics (A.5) using a Lagrangian
process e−λptψ∗t ≡ e−λptψ(k∗t ), where by Itô’s formula

dψ∗ = ψ∗
[

−a∗dZ + b∗dt
]

, (A.6)

using the notation a∗t = a(k∗t ), b
∗
t = b(k∗t ), and where

a(k) = kψ′(k)/ψ(k) (A.7)

b(k) =
1
2
σ2k2ψ′′(k) + ψ′(k)Φ̃(k)

ψ(k)
. (A.8)

Again omitting superfluous appearances of the time variable, integrating xe−λptψ∗

by parts gives us for the Lagrangian

∫ τ

0

e−λpt

[

u(c, k∗g , π̃) + ψ
∗
{

x(βkFp − γ) + B̃
}

+ a∗ψ∗xσ2 + xψ∗(b∗ − λp)

]

dt

+x0ψ
∗
0 − xτe

−λpτψ∗τ +Mτ

=

∫ τ

0

e−λpt

[

u(c, k∗g , π̃) + ψ
∗x
{

βkFp − γ − λp + b
∗ + a∗σ2

}

+ ψ∗B̃

]

dt

+x0ψ
∗
0 − xτe

−λpτψ∗τ +Mτ

=

∫ τ

0

e−λpt

[

u(c, k∗g , π̃) + x
{

ψ∗(βkFp − γ − λp) +
1

2
σ2k2ψ′′(k∗) + ψ′(k∗)(Φ̃ + σ2k)

+ψ∗B̃

]

dt+ x0ψ
∗
0 − xτe

−λpτψ∗τ +Mτ

27This notation conflicts slightly with the earlier use of c, kp for the technology-adjusted per

capita consumption C/η and private capital Kp/η. For the remainder of this proof, we shall treat
c and kp as local variables, distinct from those discussed earlier, and to be freely chosen by the
private sector household. It will turn out in the end that the private sector will choose ct = c∗(k∗t ),
kp(t) = k∗p(k

∗
t ), of course.
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where M is some continuous local martingale. Now because we are assuming that
the conditions

0 = ψ∗(βkFp − γ − λp) + ψ
′(k∗)(Φ̃ + σ2k) +

1

2
σ2k2ψ′′(k∗)

uc(c
∗, k∗g , π

∗) = β−1
c ψ∗

uπ(c
∗, k∗g , π

∗) = −βwFLψ
∗

βkFp = rβr + δ

of Theorem 2 hold, and using the identity σ2 = γg − γ, we deduce that

∫ τ

0

e−λptu(c, k∗g π̃) dt ≤

∫ τ

0

e−λpt
[

u(c∗, k∗g , π
∗) + ψ∗B̃

]

dt+ x0ψ
∗
0 − xτe

−λpτψ∗τ +Mτ

=

∫ τ

0

e−λptu(c∗, k∗g , π
∗) dt+ (x∗τ − xτ )e

−λpτψ∗τ + M̃τ

≤

∫ τ

0

e−λptu(c∗, k∗g , π
∗) dt+ x∗τe

−λpτψ∗τ + M̃τ

for some other local martingale M̃ . Here, we obtained the second line by reversing
the integration-by-parts used on the Lagrangian form. Taking expectations gives us
that

E

∫ τ

0

e−λptu(c, k∗g , π̃) dt ≤ E

∫ τ

0

e−λptu(c∗, k∗g , π
∗) dt+ Ex∗τe

−λpτψ∗τ ,

and the transversality condition (PST) allows us to let τ →∞ to conclude that

E

∫ ∞

0

e−λptu(c, k∗g , π̃) dt ≤ E

∫ ∞

0

e−λptu(c∗, k∗g , π
∗) dt

as required. ¤

Appendix B The wealth process x.

The dynamics
dk = σkdW + Φ̃(k)dt. (B.1)

of k and the dynamics (A.5) of x

dx = x(σdW + (δ + rβr − γ)dt) + B̃dt

allow us to develop x/k:

d

(

x

k

)

=
x

k

{

δ + rβr − γ −
Φ̃(k)

k

}

dt+
B̃

k
dt

≡ −
x

k
G0(k) dt+

B̃

k
dt, (B.2)
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where

G0(k) = k−1Φ̃(k) + γ − βkFp

= k−1Φ(k) + γg − βkFp

= (F (k∗p, k
∗
g , π

∗)− c∗)/k − βkFp.

The SDE (B.2) can be solved reasonably explicitly: for s < t,

xt = kt

[

e−
∫ t

s
G0(ku)du xs

ks
+

∫ t

s

e−
∫ t

v
G0(ku)du B̃(kv)

kv
dv

]

(B.3)

Appendix C The one-sector problem

In the one-sector problem there is no distinction between public and private capital,
and we can follow a similar development; or we may alternatively deduce the one-
sector results as special cases of the two-sector results above. Either way, we will
assume that the private sector works all the hours available to them (π = 1 in the
previous notation) so that the rate of production is given simply by F (K,LT ) ≡
LTf(k) and the objective of the government is to maximise

E

∫ ∞

0

e−ρgtLtU

(

Ct
Lt

)

dt = L0Eg

∫ ∞

0

e−λgtU(ct)dt

where we use exactly the same notation as in the two-sector problem, and again
assume that U is homogeneous of order 1 − Rg. The optimality equations corre-
sponding to those of Theorem 1 are

0 = U(c)− λgV (k) +
1

2
σ2k2V ′′(k) + Φ(k)V ′(k) (C.1)

Φ(k) = f(k)− γgk − c (C.2)

U ′(c) = V ′(k). (C.3)

We have assumed that U is homogeneous of order 1−Rg so it must have the Constant
Relative Risk Aversion (CRRA) form

U(c) =
c1−Rg

1−Rg

,

with Rg > 0 and Rg 6= 1. Again it is possible to construct an explicit solution to the
government’s problem; choosing V , we find the optimal c from (C.3), then deduce
Φ from (C.1), and then deduce f from (C.2). It remains only to check that the f
so obtained is concave, increasing and non-negative.

As a simple example, if we pick a value function that is also CRRA

V (k) =
A
−Rg

V k1−S

1− S
,
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with AV > 0, S > 0 and S 6= 1 then (C.3) gives us

c(k) = AV k
S/Rg

and then (C.1) yields

Φ(k) =

(

λg
1− S

+
1

2
σ2S

)

k −
AV k

S/Rg

1−Rg

≡ Qk −
AV k

S/Rg

1−Rg

.

Finally (C.2) gives

f(k) = (γg +Q)k +

(

1−
1

1−Rg

)

c

= (γg +Q)k −
RgAV k

S/Rg

1−Rg

.

For these last two equations to make economic sense we require that

Q+ γg ≥ 0, Rg > S > 1.

Appendix D Summary of notation

A t argument/subscript denotes a quantity at time t. Other subscripts are used to
denote partial differentiation in the case of functions of two or more variables (e.g
fg ≡ ∂f/∂kg). Notation unique to the section on explicit solutions (Section 4) is
not covered in this appendix.

C Consumption rate

D Level of government debt

Ig Amount invested in government capital

Ip Amount invested in private capital

K Total capital

Kg Government capital

Kp Private sector capital

L Labour force / population size

T Technology level

X Total private sector wealth Kp +D

c, k, kg, kp, x ≡ C/LT,K/LT,Kg/LT,Kp/LT,X/LT
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c∗(k), k∗g(k), π
∗(k) Optimal values of c, kg, π for a given k

1− βc Tax rate on consumption

1− βk Tax rate on returns on private capital

1− βr Tax rate on returns on government debt

1− βw Tax rate on wages

∆p ≡ D/η

∆C,∆D,∆Kp Per household rate of consumption, holding in government debt
and amount of private capital

η ≡ LT

ξ ≡ C/Kg ≡ c/kg

π Proportion of time devoted to production

F (Kp, Kg, πLT ) Production (rate) function

U(c, kg, π) Government felicity function

u(c, kg, π) Private sector felicity function

V (k) Government value function

Φ(k) ≡ F (k∗p(k), k
∗
g(k), π

∗(k)) − γgk − c∗(k). The drift in k along the
optimal path under Pg

Φ̃(k) ≡ F (k∗p(k), k
∗
g(k), π

∗(k)) − γk − c∗(k). The drift in k along the
optimal path under P

ψ The Lagrange multiplier process corresponding to the private sec-
tor’s optimization problem.

E,Eg Expectation taken under P, Pg respectively

P Real world probability measure

Pg Government’s valuation measure

Rg U is homogeneous of order 1−Rg in c,kg

Rp u is homogeneous of order 1−Rp in c,kg

δ Rate of depreciation of capital

γ ≡ δ + µL + µT +−σ
2

γg ≡ γ + σ2

θp, θL Proportion of return on government’s capital included in returns
to private sector capital and labour respectively

λg ≡ ρg − (1−Rg)µT − µL

λp ≡ ρp − (1−Rp)µT

µL Exponential drift term of labour

µT Exponential growth rate of technology level

ρg, ρp Government and private sector utility time-discount factors
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