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Abstract: This paper approaches the problem of computing the price of an Asian option
in two different ways. Firstly, exploiting a scaling property, we reduce the problem to
the problem of solving a parabolic PDE in two variables. Secondly, we provide a lower
bound which is so accurate that it is essentially the true price. Both methods can be
implemented in real time.
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1. Introduction
Let us suppose that the price at time ¢, S, of some risky asset is given by

1
(1.1) S; = Spexp(o By — 50215 + ct),

where B is a standard one-dimensional Brownian motion, and c is some constant whose
value matters little for now. The problem of computing the value of an Asian (call)
option with maturity 7" and strike price K, written on this risky asset, is mathematically
equivalent to calculating

(1.2) IE(Y—K)+,

where we define Y by

(1.3) YE/O Sy p(du)

and assume that ¢ = r, the riskless interest rate. In the case of the ‘fixed strike’ Asian
option, the measure 4 is given by p(du) = T~ 'Ijp r1(u)du, although other candidates
for p are of interest and can be handled without difficulty. For example, if we take
p(u) = dr(du), then we have the classical European call option, and if we take p(du) =
T~ Ijo r)(u)du — 67(du) together with K = 0, then we have the ‘floating strike’ Asian
option, whose price at time zero is therefore

(1.4) E(T—1/T S, du—ST)+.
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Asian options are commonly traded; they were introduced in part to avoid a problem
common to European options, that by manipulating the price of an asset near to the
maturity date, speculators could drive up the gains from the option. Despite this, there
is not yet (and probably never will be) a simple analytical expression for the value, in
contrast to the situation for a European call, where the famous Black-Scholes formula
is available.

Previous work on this problem has been of three broad types. Firstly, there
are numerical studies, such as the work of Kemna & Vorst [6] who use Monte Carlo
techniques, and Carverhill & Clewlow [1] who use a Fourier transform method to com-
pute the law of the average. Secondly, there are methods which replace the law of the
average (which is hard to specify) by something more tractable; the work of Ruttiens
[10], Vorst [12], Levy [7], [8], Levy & Turnbull [9], Turnbull & Wakeman [10] is of this
nature, though it has to be admitted that these approaches offer little control on the
error produced by the ansatz. Thirdly, there is the determined analysis of Yor [13], and
Geman & Yor [3], [4]. This has produced notable expressions for the price as a triple
integral, and for the price of an Asian option with ‘independent exponential maturity’.
Numerical inversion of this Laplace transform seems likely to be slow, and no simple
analytic inversion has been found to date.

The present paper is a combination of analysis and numerics. In Section 2, we
exploit a scaling property to reduce the calculation of the price of an Asian option to
the solution of a parabolic PDE in two variables, rather that the three which at first
sight appear necessary. We have learned that a similar scaling property for the floating
strike Asian option was observed already by Ingersoll [5], p377; one can use this scaling
behaviour equally well for fixed strike Asian options, and indeed the formalism we use
covers also options whose averaging period starts at a time other than 0, or whose
averaging is with respect to a quite general weight function. Numerical solution of
this PDE in real time is a practical possibility, and we discuss in Section 4 how this is
done. We find that (even without great effort to lubricate the programs) it is possible
to compute a value accurate to about 5% in 3 seconds on a SUN SPARC 2 station,
provided o is not too small.

The approach of Section 3 is to try to obtain bounds on the price. We propose
only trivial methods for this, based on conditioning firstly on some variable Z. Thus
to obtain a lower bound, we have

(L5) E(Y") = EE(Y" | 2) > E(E(Y | 2)").

We investigated numerically several possible choices for Z, some of them bivari-
ate. However, for the fixed strike Asian option, by far the best choice turned out to

be
T
Zz/ X, du.
0

We obtain a two-dimensional integral as a lower bound, which (at least for a wide
range of values of Sy, K, o, r) is staggeringly accurate! (The yardstick here is the set
of results of the PDE method of Section 2, which agree with the Monte Carlo results
of Kemna & Vorst [7]). The reason why this bound is so good is quite general, and is
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applicable also to the floating strike Asian option, or an Asian option where the payoff
Y is computed as a discrete average of the prices throughout the period. It rests on
an analysis of the error committed in making the estimate (1.5), which simplifies very
pleasingly.

As we discuss in the final section, Section 4, this bound also computes very
quickly, taking less than one second, on a SUN SPARC 2 station, to get a value accurate
to about 1%. This estimate for the price has also been used by Curran [2] in the case
of fixed strike Asian options.

2. A PDE for the price of an Asian option

We shall assume until further notice that the maturity of the option is 7', fixed, and
that the probability measure p has a density p; in (0,7). There is no essential loss of
generality in this. If we define

(2.1) b(t, z) EIE[(/tTSuu,(du) —a) ' |si=1],

where S is given as at (1.1), then we develop the martingale

M, = ]E[(/OT Supi(du) — K)+ Fa
:E[(/tT Sup(du) — (K /0 Sup( dU |-,Ft}
s [ G - G “>> 0
(2.2) = Sip(t, &),
where
(2.3) &t = i fOt Suy’(dU)-

St

It is immediate from the definition of ¢ that ¢ is jointly continuous, decreasing in t,
and decreasing convex in z. Now by It0’s formula,

d&; = —pidt + & (—0dB; — rdt + o2dt),

so assuming that ¢ has enough smoothness to apply It6’s formula to (2.2), we have
(with “=” signifying that the two sides differ by a local martingale)

AM =¢dS + S(q’sdt +glde + %qﬁ”d[&]) + dSde

=r¢Sdt + S(q’s + ¢'(—pe — 7‘§ + %) + l0—252¢”)dt — oS- ¢'otdt

=5[ro+ 6~ (et 008 + 50%%" |t



which implies that

(2.4) 0= +r+ 0% — (oo + )8,

If we now write f(t,z) = e~" T ¢(t, x), we find that f solves

(2.5) j+gf=o,
where G is the operator
1, ., 02 o)
g= 57 % 53 (pt—i-m:)ax.

The boundary conditions depend on the problem; in the case of the fixed strike
Asian option,

(2.6) f(T,z) =z,
whereas in the case of the floating strike Asian option, we shall have
(2.7). f(T,z)=(1+z)".

Now the PDE (2.5) is quite simple and can be solved numerically, as we shall discuss in
Section 4. Let us denote the solution to the PDE (2.4) with the (fixed strike) boundary
condition (2.6) by ¢, and let the solution to (2.4) with the (floating strike) boundary
condition (2.7) be denoted by 1. Thus in the case where p is uniform on [0,77], the
price of the Asian option with maturity 7', fixed strike price K, and initial price Sy is

([ (5.~ K)2) " = sus0. 157

=e "TSo0(0, KS5 ),
and the price of the Asian option with maturity 7" and floating strike is simply

T
du +
—rT el — —rT
e ]E(/O Su' ST) =T S46(0, 0).

Notice that in this case, for z < 0,

¢(ta ZE) = T_l(eT(T_t) - 1) — T,

which makes the solution of the PDE easier in this case. Also, for large negative z,
Y (t, ) is very close to

T T—t
du er(T=t) _q _
]E(/t S"_T —St—:v) = — eIt _ g,

which helps to set boundary values for numerical methods. Other formulae can be
derived simply from these; for example, for an Asian option with strike K and maturity
T, but whose average is computed over the interval [T —¢,T], 0 <t < T, the price is
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=T / TP (Sr_s € dn)ad(T — 1, K /),
0

where ¢ is computed using the measure p which is uniform on [T — ¢, 7], and this is
easily computed once the function ¢(T — ¢,-) is known. The case where u puts equal
weight on a finite sequence of equally-spaced time-points is just as easy.

3. Lower bounds.

If we condition the process X on some zero-mean Gaussian variable Z, it remains
a Gaussian process, and this is the heart of the lower-bound method used here. To set
up some notation, let us write

(3.1) E(B:|Z) = miZ, cov(Bs,Bi|Z) = vgt.
It is well known that
(3.2) my = B(B:Z)/IE(Z?), v =s At —E(B,Z)E(B:Z)/E(Z?).

In most cases of practical interest, it will prove to be quite easy to compute explicitly
what these functions are. For example, if we fix T'=1 and take Z = fol B;dt then

(3.3) my =3t(2—1)/2, vee =8Nt —3st(2—5)(2—1)/4,
and when Z = fol B,dt — B, = fol tdB;, we obtain likewise
(3.4) my = —3t2/2, vy =s At —3s5*t%/4.

The lower bound of (1.5) is not guaranteed to be good, but we can estimate the
error made as follows. For any random variable U, we have

0 < B(U+) — BU)*
$(E(U]) - [EW)))
<3E(U-EU)))

< tvar(U)Y/2.

Accordingly,

0 < EE(Y*Z) - E(Y[2)"]
< tE[var(Y|2)?,

(3.5)

and it is the variance of Y given Z which we propose to estimate. Firstly, the mean of
Y given Z is

1 1
(3.6) I / exp(c By — 202t + rt) p(dt)| 2] = / exp(omiZ — 1o2vm? + rt)u(dt),
0 0
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where we have made the abbreviation v = var(Z), and then similarly we have that
var(Y'|Z)

= [ a9 [ a0y explozm, + ) — 0%o0m 4 m) + s+ ) (e - 1)

after a few rearrangements. Let us now consider what we would have if we used the
approximation e® = 1 4+ z in this integral; we would obtain

1 1
V= / w(ds) / p(dt)(1+ o Z(mg +my) — 02v(m? +m?) + r(s +t))ovs,
0 0

which vanishes if Z = fol Byu(dt). To see this, note that the first factor in the integrand
may be written in the form

L+ f(s,2)+ f(t, Z) =14+ {rs + 0 Zm,s — t0%vm?} + {rt + 0 Zm; — 30%vm?},

and that
1 1
/ vsep(ds) = cov(/ Bsu(ds), Be|Z) = cov(Z, B;|Z) = 0.
0 0

Accordingly, we may estimate
(3.7) var(Y|Z) =var(Y|Z2) -V < I + I,

where

1 1 ,
Il = / 'u,(ds)/ u(dt) (ef(S,Z)+f(t,Z) —1- f(S, Z) _ f(t, Z))‘ea Vst 1‘
01 01 2
I :A ,u,(ds)/o ,U(dt) (60 Vst —1—0'2’1)5t)-|1+f($,Z)+f(t,Z)|.

Now the estimate (3.7) depends on Z, and will not be small for all values of Z. However,
we have (using (3.5) and (3.7)) the estimates

(3.8) 0 < E[E(Y*2) - B(Y|2)*] < 4(B(L: + 1)) /2,
so our task is to estimate IEI; and IEI;. We shall use the inequalities

le® — 1| < |zlel®!, |e® —1— x| < 122!,

2

valid for all real . We shall also write g(s) = rs — Lo°vm, in what follows, and let c,

71, ¥2 be constants such that for all 0 < s, ¢t <1,

vst| < e, (ms +my)? <1, |gs + g < e
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Now we estimate

1 1
EL < co2e / / |u|(ds)|u|(dt)E[exp(gs + gt + Zo(ms + my))
o Jo

—1—gs— gt — Zo*(ms +my)]
1 1
2
= co?et / / 1al(ds) ] (@0)[exp(ga + e + 3020(ma +me)2) — 1 — go — gi]
0 0
1 1
2 2 2
— co2eC / / ‘u|(d8)‘u|(dt)[{6%0 v(ms+me)” _ 1}egs+gt +edstor 1 gs — gt]
0 0
1 1
< eo?er | sotapuet v 0d) [ [ aslulan)
0 0

_ 2 c0'2—|— 2 152~0 2
=coe® T [%0’ yive2? MY 4+ lyy | M,

w= [ 1 / " ) e ).

As for the other term, we have

where we have abbreviated

1 1
2
El, = / / || (ds)|p|(dt)(e” Ut — 1 — vst).|1 + gs + g
o Jo
< %0’46260462 (1+y2) M.
Assembling this, the estimate on the right of (3.8) becomes

1/2
2 _col4vs |1 2 %02711) 1 A2 1 42 otc? 1 M1/2
coe Loy ve + 195 | + Lto*c®e” ¢ (14 v2) .

N

Let us now see how these estimates shape up in the two examples of main interest to
us, the fixed and floating strike Asian options.

Firstly for the fixed strike, we see that v = var(Z) = 1 and easily that we may
take y1 = 9, y2 = 7 + 02/4. Tt is also not hard to establish that we may take ¢ = 1.
The integral of |u(ds)| |u(dt)| over the square is 1.

For the floating strike Asian option, the constants are the same except that now
we take ¢ = 3%/3/4 and the integral of the measure over the square comes to 4.

It is now clear that for typical values, say r and o of the order of 10~!, we shall
have that IEI; is bounded by something that is of the order of 10=* and IEI, is bounded
by something which is of the order of 10=* also, so we can expect that the bound on
the error will be something of the order of 1072 at worst; in the next section we discuss
the outcome of numerics on the bounds.

4. Computational aspects



Throughout this section, we assume that 7' = 1 and Sy = 100. We tried a variety
of methods for solving the PDE (2.5), and report here on what worked well, and on
what worked less well. Neither of the authors is an expert in numerical methods, and it
was not the goal to obtain the most rapid possible program. However, even the clumsy
computing which we carried out showed that it is possible to obtain accuracies of a few
percent in times of the order of a few seconds.

It turns out that by treating (2.5) simply as a parabolic PDE and solving it
with the NAG routine DO3PAF (as the coefficient o222 /2 vanishes at x = 0, we replace
it by 0222/2 + 10759 to justify the use of DO3PAF), quite acceptable combinations of
accuracy and speed were obtained. Tables 1.1, 1.2 and 1.3 give some specimen results
for typical values of the parameters for the fixed strike problem, with maturity time
T =1 (computations carried out on a SUN SPARC 2 station). We also took the step
size h = 1/1000; the values were very close to h = 1/300, but the times were longer.
The effect of o on the speed and accuracy is very noticable. For ¢ = 0.05, it requires 11
seconds to get the first two significant figures correctly, for small values of r, whereas
for 0 = 0.3, it takes less than one second. We carried out the calculations for volatilities
o bigger than 0.3, and the speed and accuracy were as good as for o = 0.3.

Table 2 gives the corresponding results for the floating-strike problem, and once
again it takes only a couple of seconds to get a rather precise answer when either the
volatility o or the interest rate r is not too small, and the calculation becomes longer
when both ¢ and r are very close to zero.

Table 3 gives some specimen upper and lower bounds for typical values of the
parameters with maturity time 7" = 1, initial price Sy = 100 and interest rate r = 0.09.
Computations have been carried out on a SUN SPARC 2 station, using estimations
described respectively in Sections 2 and 3(ii) and it took about ten seconds to get an
upper bound, and less than one second a lower one. In practical computations, it is
more than sufficient to condition on X7 = z (or on fOT X,du = x for the lower bound)
for z € [—6,6]. In both situations, the NAG routine DOIBAF(D01BAZ) was used for
the first integral, and then we summerized over x € [—6, 6] with step size 1072, which
turned out to be a satisfactory at both speed and precision level (one can manage so
that the larger the step size is, the less accurate the estimations become). Comparisons
are given with respect to Monte Carlo results given in Levy & Turnbull [9].



Table 1.1 (0=0.05)
interest rate r strike price K step size PDE result time (sec.)

0.020 5.97 1

0.010 5.47 3

95 0.005 5.83 11

0.003 5.88 25

0.020 2.17 1

0.010 1.78 3

0.02 100 0.005 1.68 11
0.003 1.68 25

0.020 0.96 1

0.010 0.38 3

105 0.005 0.21 11

0.003 0.17 25

0.020 8.83 1

0.010 8.67 3

95 0.005 8.82 11

0.003 8.81 25

0.020 3.91 1

0.010 3.93 3

0.09 100 0.005 4.18 11
0.003 4.26 25

0.020 1.97 1

0.010 1.19 3

105 0.005 1.01 11

0.003 0.98 25

0.020 16.48 1

0.010 15.35 3

95 0.005 15.42 11

0.003 15.42 25

0.020 11.19 1

0.010 11.78 3

0.28 100 0.005 11.64 11
0.003 11.64 25

0.020 7.74 1

0.010 7.69 3

105 0.005 7.88 11

0.003 7.86 25




Table 1.2 (0=0.10)
interest rate r strike price K step size PDE result time (sec)

0.020 10.34 1

0.010 10.77 3

90 0.005 10.82 11

0.003 10.83 25

0.020 2.92 1

0.010 2.79 3

0.02 100 0.005 2.79 11
0.003 2.80 25

0.020 0.48 1

0.010 0.28 3

110 0.005 0.22 11

0.003 0.20 25

0.020 13.12 1

0.010 13.38 3

90 0.005 13.38 11

0.003 13.38 25

0.020 4.69 1

0.010 4.80 3

0.09 100 0.005 4.89 11
0.003 4.90 25

0.020 1.00 1

0.010 0.74 3

110 0.005 0.66 11

0.003 0.64 25

0.020 19.34 1

0.010 19.20 3

90 0.005 19.20 11

0.003 19.20 25

0.020 11.32 1

0.010 11.63 3

0.28 100 0.005 11.65 11
0.003 11.65 25

0.020 4.47 1

0.010 4.58 3

110 0.005 4.66 11

0.003 4.67 25
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Table 1.3 (0=0.30)
interest rate r strike price K step size PDE result time (sec.)

0.020 13.13 1

0.010 13.17 3

90 0.005 13.18 11

0.003 13.18 25

0.020 7.30 1

0.010 7.31 3

0.02 100 0.005 7.31 11
0.003 7.31 25

0.020 3.68 1

0.010 3.65 3

110 0.005 3.64 11

0.003 3.64 25

0.020 14.93 1

0.010 14.97 3

90 0.005 14.98 11

0.003 14.98 25

0.020 8.80 1

0.010 8.82 3

0.09 100 0.005 8.83 11
0.003 8.83 25

0.020 4.72 1

0.010 4.70 3

110 0.005 4.70 11

0.003 4.70 25

0.020 19.62 1

0.010 19.66 3

90 0.005 19.67 11

0.003 19.67 25

0.020 13.28 1

0.010 13.32 3

0.28 100 0.005 13.33 11
0.003 13.33 25

0.020 8.29 1

0.010 8.30 3

110 0.005 8.31 11

0.003 8.31 25
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Table 2

volatility o interest rate r step size PDE result time (sec.)

0.0200 1.39 3

0.0100 0.97 7

0.02 0.0080 0.89 11

0.0025 0.72 60

0.0200 0.67 3

0.0100 0.33 7

0.05 0.08 0.0080 0.26 11
0.0025 0.13 56

0.0200 0.29 3

0.0100 0.09 7

0.14 0.0080 0.06 11

0.0025 0.01 48

0.0200 2.04 2

0.0100 1.86 8

0.02 0.0080 1.84 12

0.0025 1.82 50

0.0200 1.13 2

0.0100 0.90 8

0.10 0.08 0.0080 0.86 13
0.0025 0.80 45

0.0200 0.56 3

0.0100 0.38 8

0.14 0.0080 0.35 12

0.0025 0.30 45

0.0200 2.98 2

0.0100 2.96 9

0.02 0.0080 2.95 12

0.0025 2.95 45

0.0200 1.88 2

0.0100 1.80 9

0.15 0.08 0.0080 1.79 13
0.0025 1.77 45

0.0200 1.13 2

0.0100 1.02 9

0.14 0.0080 0.99 11

0.0025 0.97 46
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Table 3

volatility o strike price K upper bound M-C result lower bound

95 8.95 8.91 8.91

0.10 100 5.10 4.91 4.92
105 2.34 2.06 2.07

90 15.23 14.96 14.98

0.30 100 9.39 8.81 8.83
110 5.37 4.68 4.70

90 18.52 18.14 18.18

0.50 100 13.69 12.98 13.02
110 9.97 9.10 9.18
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