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1 Introduction.

In the absence of frictions if a portfolio strategy replicates the payoff of one unit
of a claim, an appropriately scaled strategy replicates any amount of the claim.
If assets are priced by arbitrage, the value per-unit is invariant to the amount of
the asset considered. In particular, in the case of American claims, the optimal
exercise time is independent of the amount of the claim that is considered. In
this paper we show that this result does not necessarily hold in the presence of
portfolio constraints or other frictions. We produce an example in which the
absence of short sales leads the holder of an American option on a (possibly
non-dividend paying) stock to exercise parts of his option over time.

There has been a lot of interest in the valuation of American type securities
with portfolio constraints (e.g. Cvitanic and Karatzas [1993], Detemple and
Sundaresan [1999]). However, in this literature, it is assumed that there is a
single unit of the derivative securities, and one studies the optimal exercise time
for that unit. It is implicitly assumed that the optimal strategy is independent
of the amount held.

To fix ideas, we will consider an executive who holds an American-style call option
on the stock of his firm; we make the (realistic) assumption that he is forbidden
to short sell the underlying stock. For simplicity we will actually assume that the
executive also cannot hold the stock, although it is obvious that this constraint is
not binding. The holder of the option can however exercise parts of the option at
any time, and deposit the proceeds from the exercise in a risk-free account. Risk-
aversion leads naturally to early exercise, and because the executive’s wealth
fluctuates with changes in the price of the underlying, the optimal amount of
options in the executive’s portfolio changes over time. If this optimal amount
increases there is nothing the executive can do. However if it decreases the
executive will exercise some of his remaining options. This leads to an exercise
boundary relating the time remaining to expiration, the price of the stock, and
the number of unexercised options. The optimal policy consists of exercising

1We thank Karim Belkheir for assistance with the computations of this paper. José
Scheinkman thanks the National Science Foundation for support through grant 0001647. The
bulk of the research reported here was done in 2002 while Scheinkman held a Chaire Blaise
Pascal de l’État et de la Région Ile de France.
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enough options to stay below the boundary.

Others have studied the problem faced by executives holding stock options that
they are not allowed to hedge. Lambert, Larcker and Verechia (1991), Carpenter
(1998) and Hall and Murphy (2002) consider an executive that must fully exercise
a block of options. In contrast, Ingersoll (2006) derives a model for the marginal
value of an option. None of these authors consider the possibility of partial
exercise. An exception is Jain and Subramanian (2004) who allow for partial
exercise in a discrete time framework.

In the next section we shall formulate the problem in a general setting, and
present our approach, which is to discretise the problem immediately. Since
we expect that most (if not all) interesting examples will admit no closed-form
solution, we discretise the problem, and prove that the optimal solutions to the
discretisations do indeed converge to the optimal solution of the original problem.
Section 3 presents a few examples which can be solved numerically. Special
scaling properties that result from assuming CARA or CRRA utility functions
are exploited to reduce the dimension of the problems, since in general the value
depends on four variables; the underlying state, the current value of realized
options, the number of options still to be exercised, and the time until expiry.
Computation is possible for the reduced three-dimensional problem, though care
is needed. The examples are used to illustrate some comparative statics results.
As the number of remaining options get larger, exercise will occur at lower prices.
Increases in risk-aversion have the same effect. The effect of the time-to-expiry
is more subtle. When time-to-expiry is very small, the agent is keen to seize
whatever value he can, so he will exercise for a small premium; when time-
to-expiry is large, he will be willing to exercise for less than he would require
when time-to-expiry is moderate, because of the interest that will accrue on the
exercised option value. In the examples these two forces combined yield a non-
monotonic pattern - agents are most conservative at exercising for intermediate
values of the time-to-go. Our emphasis on numerical methods is because our aim
is not to show that some behaviour is impossible - for that, only analytics will
do - but rather to show that certain types of behaviour can happen, and for that
it is sufficient to show a numerical example where the behaviour does happen.

Section 4 studies the limiting form of the optimal rule as the expiry gets ever
bigger. In this situation, the solution depends on just three variables, and is thus
quite a lot simpler. An example shows however that, for reasonable parameter
values, the finite-horizon solution differs substantially from the infinite-horizon
solution even when there are decades to go before expiration.
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2 The problem.

The holder of the executive stock options faces an optimal control problem of the
following form. There is some given adapted2 non-negative3 process ϕ0, and the
executive has to choose a right-continuous increasing adapted process m, started
at zero, so as to maximise

EU(xT ), (1)

where U is a concave increasing function and

xT = x0 +

∫ T

0

βs ϕ0
s dms ≡ x0 +

∫ T

0

ϕs dms (2)

is the time-0 value of the terminal wealth from exercise of the options, and x0 is
the initial wealth. The discount factor βs ≡ exp(−

∫ s

0
ru du) discounts all gains

from exercise back to time-0 values; for brevity, we have absorbed this into the
payoff by writing βϕ0 ≡ ϕ. The process m records the cumulative total of options
exercised as time evolves, and so must satisfy the constraint

mT ≤ A, (3)

where A is the total number of options initially held. Since ϕ ≥ 0, we may (and
shall) without loss of generality suppose that the bound (3) holds with equality,
with any remaining options at time T being optimally instantaneously exercised
at that time. We use the notation

V ∗ = V ∗(T, x0, A) = sup EU(x0 +

∫ T

0

ϕs dms) (4)

subject to the constraint
mT = A. (5)

In any particular application, V ∗ will depend on variables other than T , x0 and
A, of course. To incorporate this, it is conventional at this stage to introduce
some underlying diffusion or Markov process, and show that V ∗ satisfies some
more or less complicated Hamilton-Jacobi-Bellman (HJB) equation, which in the
case of a diffusion will be a second-order non-linear PDE, with suitable boundary
conditions. This leads to a number of questions of a technical nature:

(i) Does this PDE have a unique solution?

2.. to the filtration (Ft)t≥0 of some filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying
the usual conditions; see, for example, Rogers & Williams (2000)

3If ϕ0 ever took negative values, the holder would certainly not exercise at any such time, so
it is clear that we could replace ϕ0 by its positive part without altering the value to the holder.
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(ii) If so, does the unique solution provide the value function of the problem?
This is usually a straightforward if tedious verification result.

(iii) How can we solve the equation? If we can find a closed-form solution, then
(i) and (ii) were to a large extent unnecessary; if not, the only recourse is to
numerical methods.

(iv) If we have to use numerical methods to solve the problem, can we show
that the solutions to the approximating problems converge to the solution of the
original problem?

Any or all of these questions may be challenging. For our problem, however,
only in the most exceptional situations will there be any closed-form solution.
Answering questions (i) and (ii) will therefore lead no further than answers to
questions (i) and (ii), and if we are to attempt to solve the problems by numerical
means then we will be left with (iv).

We will pass directly to (iv) by introducing discrete approximation immediately.
If we let A denote the class of all right-continuous increasing adapted processes
m such that m0 = 0 and mT = A, then A is the set of admissible controls. If
m ∈ A is a generic control, we define the stopping times τa for 0 ≤ a ≤ A by

τa ≡ inf{t : mt > a} (0 ≤ a < A)

≡ T (a = A).

Now we introduce the subsets of A defined by

An ≡ {m ∈ A : mt ∈ 2−nAZ
+ for all t ∈ [0, T ], τa ∈ 2−nTZ

+ for all a ∈ [0, A]}.
(6)

This apparently clumsy definition masks a simple reality; the processes in An are
just staircase processes of the kind illustrated in Figure 1. They increase only
by jumps, which must be multiples of 2−nA, and which must occur at multiples
of the time 2−nT . With this notation, we have the following simple but central
result.

Proposition 1 Assume that the process ϕ has right-continuous paths and satis-

fies the condition

EU(x0 + Aϕ̄T ) < ∞, (7)

where ϕ̄t ≡ sup{ϕs : 0 ≤ s ≤ t}. Then

sup
m∈An

EU(xT ) ↑ sup
m∈A

EU(xT ) (n ↑ ∞). (8)
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Proof. Since evidently An ⊆ An+1 ⊆ A, it is immediate that the approximate
values supm∈An

EU(xT ) increase with n to a limit which is no bigger than the
true value supm∈A EU(xT ), and the only issue is to prove that the limit is equal
to the true value.

To do this, we show that given m ∈ A we can find approximating m(n) ∈ An

converging to m in such a way that the values of the strategies m(n) converge to
the value of m. Define the two staircase functions4

θn(t) ≡ T2−n[T−12nt], fn(x) ≡ A2−n[A−12nx],

and then the approximations to m

m
(n)
t ≡ fn(m(θn(t))),

with corresponding right-continuous inverses

τ (n)
a ≡ inf{t : m

(n)
t > a} (0 ≤ a < A).

≡ T (a = A).

Because of the monotonicity of m and the fact that fn ≤ fn+1, θn ≤ θn+1, it is
clear that m(n) increase, and that τ (n) decrease. Although there may be isolated
points t where the limit of m

(n)
t is not mt, it is true that for every a, τ

(n)
a ↓ τa,

because for any a < A

τa < t ⇒ for some ε > 0, ms > a for all s ∈ (t − ε, T )

⇒ for all large enough n, m(n)
s > a for all s ∈ (t − ε/2, T )

⇒ for all large enough n, τ (n)
a ≤ t − ε/2

⇒ ↓ lim
n

τ (n)
a < t.

Now by simple change-of-variables,

x0 +

∫ T

0

ϕs dms = x0 +

∫ A

0

ϕ(τa) da

= x0 + lim
n

∫ A

0

ϕ(τ (n)
a ) da

= x0 + lim
n

∫ T

0

ϕs dm(n)
s

using the right-continuity of ϕ and dominated convergence (since ϕ(τ
(n)
a ) ≤ ϕ̄.)

Finally,

EU(x0 +

∫ T

0

ϕs dms) = lim
n

EU(x0 +

∫ T

0

ϕs dm(n)
s )

4For any real x, we use [x] to denote the largest integer not greater than x.
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once again using dominated convergence and the integrability condition (7).

�

Remarks. The importance of Proposition 1 is that it reduces the original prob-
lem to discrete time and discrete quantities of the option. This way we can solve
a ‘stack’ of optimal stopping problems, the stopping value for each being defined
by the value on the level below. This is illustrated in Section 3. It is worth noting
that the equal spacing of the time and m grids is not really necessary; all that is
required is a sequence of refinements with mesh tending to zero. We shall make
use of this extension later.

3 Some examples.

We consider here the motivating example of an executive who holds A American
call options on the stock of his firm. The options all have strike K and expiry
T . He is forbidden to trade the stock, but is free to exercise the options at will
through the interval [0, T ]. We shall take the model for the log stock price Y 0 to
be the standard log-Brownian model

dY 0
t = σdWt + µ0dt

where the volatility σ and the drift µ0 are assumed constant. It turns out to be
better5 for the numerical work to use instead the log discounted price process

dYt = dY 0
t − rdt = σdWt + µdt,

with µ = µ0 − r. Write a for the amount of options still available for exercise.
We expect that the value function VT (t, y, x, a), for this problem6, defined by

V (t, y, x, a) ≡ sup E
[

U(x+

∫ T

t

(eYu −e−ruK)+ dmu)
∣

∣

∣
mt = A−a, Yt = y

]

, (9)

should satisfy the differential inequality

max
{∂V

∂t
+ GV,−

∂V

∂a
+ (ey − e−rtK)+∂V

∂x

}

= 0, (10)

with boundary conditions

V (T, y, x, a) = U(x + a(ey − e−rT K)+), (11)

V (t, y, x, 0) = U(x), (12)

5The integrand (eYu − e−ruK)+ = e−ru(eY
0

u − K)+ in (9) remains O(1) if Y stays in some
fixed interval, but if Y 0 stays in some fixed interval the integrand gets extremely small for large
u.

6We use the abbreviation V ≡ VT whenever the time horizon T does not need to be empha-
sised in the notation.
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where

G ≡
1

2
σ2 ∂2

∂y2
+ µ

∂

∂y

is the generator of Y . We make no attempt to prove that the value function
(9) solves (10), (11), (12); we know of no interesting examples where the value
function can be found in closed form, so our philosophy is to investigate the
problem through its discrete approximations which can at least be evaluated
numerically. Proposition 1 establishes that the numerical values found will be
‘close’ to the true values. However, even for this simple example, it can be
hard to grasp the features of the numerical solution, being as it is a function
of four variables; so we shall content ourselves with some interesting but special
cases where the problem simplifies. Nevertheless, one feature is obvious; for fixed
(t, x, a), there will be a critical η(t, x, a) such that we will choose to exercise if
y > η(t, x, a) and not to exercise if y < η(t, x, a), since ϕ is increasing in y. We
translate this exercise boundary into log price (rather than log discounted price)
terms, by setting

η0(t, x, a) = rt + η(t, x, a).

This is easier to interpret, in that η0(t, x, a) > log K always. With no real loss of
generality, we shall in the numerical examples always take

K = 1;

this means that values of η0 are greater than 0, and often (for large a) very close
to 0. In the plots, we shall display log η0 to make the shape of the surface more
evident when the number of remaining options is large.

Example 1: exponential utility. If we assume that the utility is

U(x) ≡ − exp(−γx)

for some constant γ, then a familiar argument shows that the value function
simplifies to

V (t, y, x, a) = exp(−γx)V (t, y, 0, a)

≡ exp(−γx)v(t, y, a)

so computing the value function requires us to find a function of only three
variables. Since the current wealth x factors out of the problem, we see that the
critical value η(t, x, a) of y at which exercise happens will depend only on (t, a);
but how does this critical boundary η look?

In order to study this, we make a discrete approximation. In more detail, we
divide the interval [0, T ] into Nt equal intervals of length ∆t = T/Nt and take a
spatial discretisation of Y onto a grid

{l∆y : L− ≤ l ≤ L+}
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with spacing ∆y. Finally, we take a finite sequence a0 = 0 < a1 < . . . < aJ = A
of discretisation points in the variable a. There is no need for these to be equally
spaced (and indeed it is not necessary to set the grid points in time at equal
spacings), but because of our numerical approach we do need the spacings of Y
to be equal. We then compute the array

{v(n, l, j) : 0 ≤ n ≤ Nt, L− ≤ l ≤ L+, 0 ≤ j ≤ J}

where v(n, l, j) approximates V (n∆t, l∆y, 0, aj). The boundary condition (12)
gives us that

v(n, l, 0) = −1

for all n and l, and we have for each j ≥ 1 the American-style optimal stopping
problem, where stopping at grid point (n, l) produces reward

exp( −γ(aj − aj−1)(e
l∆y − e−rn∆tK)+ ) v(n, l, j − 1).

The dynamics of the approximating process can be modelled in various differ-
ent ways, but our method was to approximate the steps of Y by their exact

N(µ∆t, σ2∆t) distribution; this was computed by convoluting the discretised
values of v with the discretised values of the transition density. The computa-
tions (carried out in Scilab) use the (fast and accurate) FFT algorithm. Not only
can the numerical values be expected to be quite accurate, but it would also be
possible with minimal changes to the code to replace the log-Brownian dynamics
with any log-Lévy dynamics.

We present some numerical results here. The plots show the level of log η0 at
which the agent should exercise, as a function of time, and the number of re-
maining options (on log scale). For each set of parameter values we present five
sections through the surface, each representing a distinct number of remaining
options. Notice that as the number of remaining options gets larger, the critical
threshold gets lower, as we would expect. The first set of figures, that we will
use as a baseline, Figures 2 and 3, also show that the critical threshold is not
always monotone in time-to-go. As time-to-go gets small, we find the threshold
gets small quite fast, because the agent is keen to get some value, however small,
from his options before they expire. On the other hand, when time-to-go is quite
large, the agent is willing to cash the options in for less than he would get by
waiting, in order to gain from the interest on the earlier-realised cash.

Figure 4 show the effect of an increase in risk-aversion. As should be expected,
the critical values go down for every value of a, the number of remaining options,
and time to expiry. Figure 5 exhibits the consequences of an increase in volatility.
Notice that, in this example, critical prices go down, indicating that the effect of
the increase in risk exceeds that of the increase in optionality. In Figure ?? we
choose a negative value of µ, but hold all other parameters as in Figure ??. As
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expected critical prices go down. The next Figure ??, differing from Figure ??

only by increasing σ from 0.3 to 2.0, is interesting in that it shows that in some
cases an increase in volatility can lead to higher critical prices, indicating that
the increase in optionality dominates the increase in risk. However, the effect is
not uniform across different values of a; comparing the initial values of the η0

curves in Figures 6 and 7, we see that the top five curves start higher in Figure
7, whereas the bottom one starts lower, by 0.0194.

Example 2: CRRA utility. Taking the utility to be

U(x) = x1−R/(1 − R),

where R 6= 1 is a positive constant, we obtain a situation rather like that of the
previous example. Indeed, a moment’s thought shows that the value function is
homogeneous of degree 1 − R:

V (t, y, λx, λa) = λ1−RV (t, y, x, a) (13)

for any λ > 0. Negative values of x are not ruled out, but it is clear that if at
any time we get x + aϕ < 0 then the value to the agent will be −∞, since there
is a positive probability that at all times between now and T the total xt + atϕt

will be strictly negative. To simplify the analysis, we shall assume henceforth
that we are in the interesting case, where x > 0, and introduce the reduced value
function v defined via

V (t, y, x, a) = x1−RV (t, y, 1, a/x) ≡ x1−Rv(t, y, a/x) ≡ x1−Rv(t, y, s), (14)

with the notation s ≡ a/x. To compute a numerical approximation to v, we shall
assume that s is only allowed to take finitely many values 0 = s0 < s1 < . . . < sN ,
and when an exercise takes place, the current value sn of a/x drops to sn−1. The
number ∆a of options that are exercised to achieve this is easily shown to be

∆a = x
sn − sn−1

1 + ϕsn−1

.

Hence the value of x gets scaled up by a factor

x + ϕ∆a

x
=

1 + ϕsn

1 + ϕsn−1

The computed values of η display similar qualitative features to the CARA ex-
ample, so we omit these.
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4 Limiting behaviour as T → ∞.

We expect that as the horizon T recedes into the indefinite future, the form of the
optimal strategy and the value should both settle down to some limit. Indeed, it
is clear that as T increases, the value

VT (t, y, x, a) ≡ sup E
[

U(x +

∫ T

t

e−ruϕ0
u dmu)

∣

∣

∣
mt = A − a, Yt = y

]

, (15)

will increase7. Let us remark immediately that the limiting form of the problem
(15) will be ill posed if µ0 ≥ r; if this condition applies, then the discounted asset
process Y will reach arbitrarily high values with probability 1, so a good (though
not optimal) policy would be to wait until Y rises to 1090 and then exercise all
options.

We shall therefore assume that µ0 < r for this section. For this problem, it is
better to be working with Y 0

t , the log of the asset price, rather than Yt, the log
of the discounted asset price. Introducing the notation dm̃u = e−rtdmu, we have

V 0
T (t, y, x, a) ≡ sup E

[

U(x + e−rt

∫ T

t

e−r(u−t)ϕ0
u dmu)

∣

∣

∣
mt = A − a, Y 0

t = y
]

= sup E
[

U(x +

∫ T

t

e−r(u−t)ϕ0
u dm̃u)

∣

∣

∣

∫ T

t

dm̃u = e−rta, Y 0
t = y

]

= sup E
[

U(x +

∫ T−t

0

e−ruϕ0
u dm̃u)

∣

∣

∣

∫ T−t

0

dm̃u = e−rta, Y 0
0 = y

]

≡ fT−t(y, x, e−rta)

↑ sup E
[

U(x +

∫ ∞

0

e−ruϕ0
u dm̃u)

∣

∣

∣
m̃∞ = e−rta, Y 0

0 = y
]

≡ f(y, x, e−rta)

as T ↑ ∞. Notice that

VT (t, y, x, a) = fT−t(y + rt, x, ae−rt).

The optimality characterisation, that for T fixed the process

VT (t, Yt, x0 +

∫ t

0

e−ruϕ0
udmu, (A − mt)) is a supermartingale

and a martingale under optimal control, translates in the limit as T ↑ ∞ to the
statement

f(Y 0
t , x0 +

∫ t

0

e−ruϕ0
udmu, αt) is a supermartingale (16)

7We are assuming a constant interest rate throughout this section.
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and a martingale under optimal control, where αt ≡ (A−mt)e
−rt. The dynamics

of the system are easy to describe. The process Y 0 diffuses as a Brownian motion
with constant and volatility, and the residual number of options αt decays at
constant rate r. When ∆α of the residual options are exercised at time t, the
increment in the time-0 value of the cash held is ∆α(exp(Y 0

t ) − K)+. As in
Section 2, we make a discretisation where time moves in steps of ∆t, and changes
in α can only be made at multiples of ∆t. When such changes are made, the
change in z ≡ log(α) must be a multiple of ∆z ≡ r∆t.

We propose to solve the infinite-horizon problem numerically for the two exam-
ples we have dealt with earlier, exploiting the scaling relationships to reduce the
dimension of the problem by 1. In the CARA example, we have the scaling
relationship

F (y, x, z) = exp(−γx)F (y, 0, z) ≡ exp(−γx)F (y, z) (17)

and in the CRRA example we have

F (y, x, z) = x1−RF (y, 1, z − log x) ≡ x1−RF (y, z − log x) (18)

at the expense of a slight notational abuse.

In more detail, we discretise the problem by setting a grid z0 < z1 < . . . < zJ in
the variable z with equal spacing ∆z, and solve an American-style problem; when
z reaches z0, all remaining options are immediately exercised, and when z = zk,
k > 0, the decision is taken (based on the current value of Y 0) either to allow
the process (Y 0, z) to diffuse for further time ∆t = ∆z/r or to exercise enough
options to jump z down immediately to zk−1, with the appropriate scaling of the
value of F .

The results of the calculations for the second example considered above (where
the infinite-horizon problem is well posed) are now displayed in Figures 8 (for the
CARA example) and 9 (for the CRRA example). In order to display everything
on the same picture, we have replaced the time parameter by τ/(5 + τ) in the
plot, where τ denotes time-to-go. Thus the infinite-horizon limit corresponds to
τ/(5 + τ) = 1 in the plots. Notice how these infinite-horizon results (computed
using the method of this Section) match up well with the finite-horizon results
computed using the (quite different) method of the previous Section. Notice
also that for the numerical examples chosen here (with fairly typical parameter
values) the finite-horizon result is noticeably different from the infinite-horizon
result, even when time-to-go is of the order of 10 years. This suggests that the
infinite-horizon result may not be appropriate for a given finite-horizon problem.
For a finite horizon, the optimal policy is not approximately to wait until the
price rises to a level which depends on the number of remaining options but not
on time; even the form of the optimal rule in the finite-horizon problem is very
different from what would be expected from the infinite-horizon analysis.
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5 Conclusion

In this paper we showed that optimal exercise policies of American-call options
when the option holder cannot trade on the underlying may involve partial exer-
cise. There is an optimal exercise boundary that relates the time to expiration,
the price of the underlying and the number of options held. The optimal policy
consists of exercising enough options to stay below the boundary. We also com-
puted the optimal exercise boundary for some examples and discussed the effect
of changes in parameters on this boundary.

The insights in these paper should apply to a much larger set of problems. Risk
averse agents facing incomplete markets will typically partially exercise a deriva-
tive security as the price of the underlying changes.
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Figure 1: A typical path from An.
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Plot of eta0, gamma = 0.0655931
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Figure 2: The critical level as a surface, base case.
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Figure 3: Base case: Critical level of η0, for a = 16, 4, 1, 1/4, 1/16, 1/64 from
bottom to top.
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Figure 4: Higher absolute risk aversion: Critical level of η0, for a =
16, 4, 1, 1/4, 1/16, 1/64 from bottom to top.
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Figure 5: Higher volatility: Critical level of η0, for a = 16, 4, 1, 1/4, 1/16, 1/64
from bottom to top.
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Figure 6: Lower growth rate: Critical level of η0, for a = 16, 4, 1, 1/4, 1/16, 1/64
from bottom to top.
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Figure 7: Lower growth rate, higher volatility: Critical level of η0, for a =
16, 4, 1, 1/4, 1/16, 1/64 from bottom to top.
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Plot of eta0, gamma = 0.0655931, sigma = 0.3, r = 0.04, mu = −0.02, T = 10
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Figure 8: Critical surface as a function of τ/(5+τ), where τ is time-to-go. values
of a, parameters as given, CARA example.
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Plot of eta0, R = 2
sigma = 0.3, r = 0.04, mu = −0.02, T = 10
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Figure 9: Critical surface as a function of τ/(5+τ), where τ is time-to-go. values
of a, parameters as given, CRRA example.
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