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Abstract

This paper introduces a Bayesian approach to explain co-movements in stock
prices. The economy consists of a single agent and n production activities
(stocks) paying a Brownian dividend flow δ with unknown drift µ. The drift of
the dividend process is inferred in a Bayesian fashion from observed dividends. In
the observation filtration of the agent, the dividend process is no longer drifting
Brownian motion, but follows some more complicated (yet completely explicit)
time-dependent dynamics. A simple equilibrium analysis allows us to specify the
state price density of the economy uniquely. Stock prices are recovered by appro-
priately discounting future dividends via the state price density. We show that
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in this set-up a shock to the observed dividend of one stock will affect the prices
of all the other stocks, primarily because of market clearing, but also because of
the Bayesian learning.

1 Introduction

In this paper we introduce a simple multi-asset intertemporal financial model to explain
co-movements and contagion effects between security prices.

The economy consists of a single agent and n activities, each one producing a stochastic
output (dividend) at rate δi

t at time t. The dividend process δi is assumed to be
observable. We further assume that the drift µ of the stochastic dividends are not
known by the agent but must be inferred from the observation of the vector δt. The
agent maximizes his utility from consumption subject to a budget constraint. Market
clearing determines the equilibrium prices of the assets, allowing us to express the state
price density of the economy ζ as a function of δ.

In this set-up, stock prices are calculated as the net present value of all future dividends.
Thus changes in dividend rate cause changes in the stock prices. When observing a
change in the dividend level of the production activities, the Bayesian agent updates
his posterior on µi to incorporate this new information. But this will affect, through
the state price density and market clearing, the distribution of the drift of the dividend
processes, and thus the price of the remaining assets. The key point here is that the
pricing kernel ζ is a function of the vector process δ, that is, of all dividends, so changes
in the dividend rate of one asset will change the posterior distribution of ζ, and thus
affect the prices of all assets in the market.

This (Bayesian) point of view offers a possible mechanism to explain why trading in
the New York stock exchange may have an impact on asset prices in London or Tokyo.

In a related paper, Veronesi [4] proposes a model in which the dividend of a single
risky asset evolves as a log-Brownian motion, whose drift is a finite-state Markov chain
observed noisily. He then derives expressions for the dynamics of the equilibrium price
of the asset in this model. Our modelling assumptions differ significantly from his: we
take multiple risky assets, we assume that the growth rate of the dividend process is
constant but unknown, and we assume that the observation process is the dividend
process. Neither set of modelling assumptions contains the other. Our objective here
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is to understand the co-movement of many assets, and particularly to see the extent to
which simple Bayesian updating can account for what is loosely described as contagion.
Our modelling assumptions appear to be the most parsimonious for our objective.

2 Model set-up

The economy consists of a single representative agent and n production units (firms).
The n firms generate a stochastic dividend flow, paid continuously, which we model by
the vector process

dδt ≡ σ(dWt + αdt), (1)

where Wt is an n-dimensional Brownian motion, σ is the n× n volatility matrix of the
dividend process and α is the volatility adjusted drift of δ. The volatility matrix σ is
assumed to be known1 and non-singular. In our set-up the parameter α is not known
with certainty; rather, the agent takes a prior density

f0(α) ∝ ϕ(α) exp
[

− 1

2
(α− α̂0) · τ0(α− α̂0)

]

(2π)−n/2
√

det τ0 (2)

for α. Ignoring the prefactor ϕ, this is just the assumption that the parameter α has
a multivariate Gaussian prior. For reasons that we shall explain in Section 3, we shall
take for the prefactor

ϕ(α) ≡ (ρ− 1

2
|v|2 − α · v)2IA, (3)

where A ≡ {α : 1

2
|v|2 + α · v < ρ}, and

v ≡ −γσT 1. (4)

The agent will have to filter the value of α from observation of the dividend process δt.
Equivalently, we can rewrite

δt ≡ σXt ≡ σ(Wt + αt)

and estimate α from Xt. More precisely, if we define Gt ≡ σ({Xu : 0 ≤ u ≤ t}), then
we are looking to derive α̂t ≡ E[α | Gt].

As a piece of notation, we shall write E0[·] for expectation computed under the as-
sumption that the prior is just the standard Gaussian prior (that is, we take ϕ ≡ 1 in
(2) ), so that we have for any bounded Y , and any t ≥ 0

E[ Y | Gt] =
E0[ ϕ(α)Y | Gt]

E0[ ϕ(α) | Gt]
. (5)

1The assumption of known σ is quite substantive, but when estimating the dynamics of a stock it
is well known that the rate of growth is far harder to estimate well than the volatility.
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2.1 The filtering problem

The filtering problem facing the agent is of conventional type; see, for example, [2]
for a more detailed account. Note that the appearance of the prefactor ϕ in (2) does
not affect the prior-to-posterior Bayesian updating; it simply stands in front of the
posterior as it stood in front of the prior. We shall briefly summarise here the results
and their derivation, as we shall have need of their precise form. A simple approach to
the problem is to update the law of α using the likelihood for a path (Xs)0≤s≤t with
respect to the Wiener measure2:

exp
(

α ·Xt − 1

2
|α|2t

)

(6)

The posterior density for α, given (Xs)0≤s≤t will be

ft(α) ∝ ϕ(α) exp
(

α ·Xt − 1

2
|α|2t− 1

2
(α− α̂0) · τ0(α− α̂0)

)

(7)

∝ ϕ(α) exp (− 1

2
(α− α̂t) · τt(α− α̂t)) (8)

where α̂t admits a closed form expression given by

τt ≡ τ0 + tI (9)

α̂t ≡ τ−1
t (τ0α̂0 +Xt). (10)

Under this updating rule, the posterior for α is again a multivariate gaussian, apart
from the prefactor. Notice however that we may not interpret α̂t as the posterior mean
of α given Gt, because of the prefactor.

2.2 Equilibrium analysis

As in the classical equilibrium approach, we assume that there exists a single repre-
sentative agent, maximizing his expected utility from consumption. More precisely the
agent will face the following problem:

sup
c
E

[∫ ∞

0

e−ρuU(cu)du

]

(11)

subject to the budget constraint

E

[
∫ t

0

ζu(1 · δu)du
]

= E

[
∫ t

0

ζucudu

]

, (12)

2This is the celebrated Cameron-Martin-Girsanov Theorem; see, for example, [3], IV.38.
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where the process ζ is the state price density, or pricing kernel, of the simple economy.

The above optimization problem yields the following standard equality

e−ρtU ′(c∗t ) = λζt, (13)

for some Lagrange multiplier λ > 0. By requiring market clearing, ct = 1 · δt, we can
write the state price density in terms of the dividend vector process,

ζt ∝ e−ρtU ′(1 · δt). (14)

In order to do computations, we need to put a bit more structure to the model, so we
assume that the utility function of the agent is of CARA type, with coefficient γ. The
state price density becomes

ζt = exp
(

−ρt− γ1T δt
)

≡ exp (−ρt + v ·Xt) , (15)

where v ≡ −γσT 1.

3 Asset prices

3.1 The stock price

The vector of stock prices is simply the net present value of all future dividends:

St ≡
1

ζt
E

[
∫ ∞

t

ζuδudu

∣

∣

∣

∣

Gt

]

. (16)

Our goal in this section is to derive (29) an explicit form for the stock price. Substi-
tuting the expression for the dividend vector δ and the state price density ζ into (16),
we have

St = E

[
∫ ∞

t

exp (−ρ(u− t) + v · (Xu −Xt))σXudu

∣

∣

∣

∣

Gt

]

= E

[
∫ ∞

t

exp (−ρ(u− t) + v · (Xu −Xt))σ(Xt + {Xu −Xt})du
∣

∣

∣

∣

Gt

]

. (17)

Observing that for t < u

E[ exp{ v · (Xu −Xt) } | Gt ∨ σ(α) ] = exp{ ( 1

2
|v|2 + α · v)(u− t) },
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we learn by differentiating with respect to v that

E[ exp{ v ·(Xu−Xt) } (Xu−Xt) | Gt∨σ(α) ] = exp{ ( 1

2
|v|2+α ·v)(u−t) }(α+v)(u−t),

and so after conditioning first on the larger σ-field Gt ∨ σ(α) the expression for the
stock price (17) becomes

St = σE

[
∫ ∞

t

exp{−(ρ− 1

2
|v|2 − α · v)(u− t)}(Xt + (α + v)(u− t)) du

∣

∣

∣

∣

Gt

]

. (18)

To understand why the prefactor ϕ was needed in the prior density (2), let us suppose
that in fact ϕ ≡ 1, so that the stock price is

St = σE0

[
∫ ∞

t

exp{−(ρ− 1

2
|v|2 − α · v)(u− t)}(Xt + (α + v)(u− t)) du

∣

∣

∣

∣

Gt

]

.

This expression is always infinite3, because the set Ac ≡ {α : ρ − 1

2
|v|2 − α · v ≤ 0}

gets positive weight under the law P 0. However, converting P 0 into P by introducing
the prefactor4 ϕ as at (3) rescues the situation; the integral with respect to u in the
expression (18) for the stock price can be evaluated, since the term ρ− 1

2
|v|2 − α · v in

the exponent is almost always negative, and we end up (as at (5)) with

St = σE

[

Xt

ρ− 1

2
|v|2 − α · v +

α + v

(ρ− 1

2
|v|2 − α · v)2

∣

∣

∣

∣

Gt

]

(19)

= σ
E0[ { Xt(ρ− 1

2
|v|2 − α · v) + α + v }IA | Gt]

E0[ ϕ(α) | Gt]
, (20)

and our task now is to compute the numerator and denominator in the expression (20).
Everything we need is contained in the following little result.

Proposition 1 For any λ ∈ R
n and any t ≥ 0,

E0[eλ·(α−α̂t) IA | Gt] = exp
{

1

2
λ ·Mtλ+ 1

2
(θt · λ)2kt

}

Φ

(

bt − kt(θt · λ)√
kt

)

(21)

≡ Ht(λ),

3This problem has also been observed by Geweke [1].
4This is not as contrived as it might appear. No-one would propose a prior distribution which

gave positive weight to impossible parameters, and yet the Gaussian prior gives positive weight to
parameters which imply an infinite stock price!
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say, where

θt =
τ−1
t v

v · τ−1
t v

, (22)

Mt = τ−1
t − τ−1

t vvT τ−1
t

v · τ−1
t v

, (23)

bt = ρ− 1

2
|v|2 − α̂t · v (24)

kt = v · τ−1
t v, (25)

and α̂t and τt are as at (10), (9), and Φ is the standard normal distribution function.

We defer the proof of this to an appendix. Using this now, we have by differentiating
a couple of times that5

P 0[A|Gt] = Ht(0) = Φ(bt/
√

kt), (26)

E0[(α− α̂t);A | Gt] = −τ−1
t v q(kt, bt), (27)

E0[ (v · (α− α̂t))
2 ;A | Gt] = ktΦ(bt/

√

kt) − btktq(kt, bt), (28)

where
q(T, x) ≡ exp(−x2/2T )/

√
2πT

is the Gaussian density.

Now substituting these into the expression (20) for the stock price, we arrive after some
calculations at the expression

St = σ
(btXt + α̂t + v)Φ

(

bt/
√
kt

)

+
(

Xtkt − τ−1
t v

)

q(kt, bt)

(b2t + kt) Φ
(

bt/
√
kt

)

+ btktq(kt, bt)
(29)

for the stock, expressed explicitly as a function of Xt ≡ σ−1δt.

From the previous equation it is clear that a shock to one component of the dividend
vector δ is going to impact all the stocks in the economy. In order to have a more
precise understanding of the contagion mechanism we can calculate the derivative of St

5The notation E0[Y ; A] is equivalent to E0[Y IA]
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with respect to the observation process Xt; the derivative with respect to the dividend
process δ is a corollary. To this end define,

SN(Xt) ≡ (btXt + α̂t + v)Φ
(

bt/
√
kt

)

+
(

Xtkt − τ−1
t v

)

q(kt, bt) (30)

and
SD(Xt) ≡

(

b2t + kt

)

Φ
(

bt/
√
kt

)

+ btktq(kt, bt). (31)

The derivative of SN with respect to Xt is the matrix

(btI + τ−1
t −Xtv

T τ−1
t )Φ

(

bt/
√
kt

)

+ q(kt, bt)
[

ktI − (α̂t + v + k−1
t btτ

−1
t )vT τ−1

t

]

, (32)

where I denotes the n × n identity matrix, and the derivative of SD with respect to
Xt is the row vector

2
[

btΦ
(

bt/
√
kt

)

+ ktq(kt, bt)
]

(−vT τ−1
t ). (33)

3.2 The bond price

Our goal in this section is to derive an explicit expression for the bond price

B(t, t+ s) ≡ ζ−1
t E [ζt+s | Gt]

= E [exp(−ρs + v · (Xt+s −Xt)) | Gt]

= E
[

exp(−ρs + 1

2
|v|2s + sα · v) | Gt

]

= e−btsE
[

es(α−α̂t)·v | Gt

]

= e−bts
E0

[

ϕ(α)es(α−α̂t)·v | Gt

]

E0 [ϕ(α) | Gt]
(34)

where bt is as at (24). To simplify this, we again use Proposition 1. Notice that the
denominator in (34) is the same as in the expression (29) for the stock, so only the
numerator of (34) needs to be calculated. Writing Y ≡ (α − α̂t) · v as before, the
expression in the numerator which we need to evaluate is

E0
[

ϕ(α)es(α−α̂t)·v | Gt

]

= E0
[

(bt − Y )2esY ;A | Gt

]

.

= b2tE
0
[

esY ;A | Gt

]

− 2btE
0
[

Y esY ;A | Gt

]

+E0
[

Y 2esY ;A | Gt

]

. (35)
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Now from Proposition 1, we have that

ψ0(s) ≡ E0
[

esY ;A | Gt

]

= es2kt/2 Φ

(

bt − skt√
kt

)

, (36)

which deals with the first term in (35), and the other two terms are obtained by
differentiating (36) with respect to s. After some routine calculations, we arrive at the
expression

E0
[

ϕ(α)es(α−α̂t)·v | Gt

]

= { (bt − skt)
2 +kt }ψ0(s)+(bt − skt)ktq(kt, bt − skt)e

sk2

t
/2 (37)

for the numerator in the expression (34) for the bond price. From (29), the denominator
in (34) is

(

b2t + kt

)

Φ
(

bt/
√
kt

)

+ btktq(kt, bt),

which is the form of the numerator (37) when s = 0, as of course it must be.

4 Numerical simulations

In this section we present some simulated data in order to shed light on some of the
main features of the model. In particular we fix the parameter set at some reasonable
values, we simulate the vector process δ, and observe how stock prices evolve. In
particular we set: n = 3, ρ = 0.15, γ = 0.06, τ0 = 10σ−1, α̂0 = (0, 0, 0)T and

σ =





3.6 0 0
0 3.6 0
0 0 3.6



 (38)

In order to simulate the stock price, we fix the level of the unknown dividend drift α.
We then simulate the Brownian motion X with drift, and apply formula (29) to recover
the corresponding stock price vector process S.

Figure 4 shows the simulated paths of the n stock prices. To exhibit the contagion
effect from one stock to the others, we impose an upward shock in X3

t at time t = 0.5.
Such a jump in the dividend of an asset is of course impossible under the model we
have presented, but this experiment makes evident the contagion effects in a way that
a continuous perturbation of the dividend processes would not show so dramatically.

The level of stock price 3 jumps upwards. At the same time we observe a downward
shock for the remaining assets in the economy, a price contagion phenomenon. Market
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clearing on its own will generate contagion, but the Bayesian transmission of infor-
mation about the assets will affect the extent of contagion. The magnitude of the
contagion effect in this example is affected by various parameters; for example, in the
limit of infinite prior precision, there would be no contagion in this (independent asset)
example.

5 Conclusions and discussion

We have presented a very simple representative agent model for the prices of many
assets in an uncertain world, where the agent knows the volatility of the (multivariate)
dividend process, but not the growth rates. The agent then estimates the growth rates
as a Bayesian; in his observation filtration, the dynamics of the dividends are no longer
drifting Brownian, but are something more complicated, yet completely explicit. The
agent then optimises his investment and consumption when faced with this dividend
dynamic. The equilibrium prices of the stocks and the bond are computed, and allow
us to study the effect on the prices of shocks to individual dividend processes. We find
that a shock to one dividend process impacts the prices of all assets, thus providing a
mechanism for the transmission of price shocks across assets.

A key part of the analysis of the problem is to introduce a prefactor into the prior dis-
tribution of the growth rates. This prefactor is essential to guarantee finite stock prices,
but the choice we made, though convenient, is obviously not unique. If we assumed
that σ were diagonal, and that τ0 were diagonal, then in the reference (Gaussian-prior)
measure P 0, the assets would be independent, but the introduction of the prefactor
makes them dependent. Is the co-movement of stock prices we observe just an artefact
of the dependence imposed by the prefactor? We could study this further by changing
our prefactor to

ϕ̃(α) =
n

∏

i=1

I{αi<−vi/2}

which would certainly keep stock prices finite, and would ensure that the dividend pro-
cesses in the measure P would be independent. However, inspection of the expression
(19) for the stock price (valid for general prefactors) shows that the stock prices will
not be independent - the involvement of the terms in ρ− 1

2
|v|2−α ·v in the denominator

is the cause. The dependence in the stock prices is not coming from the assumptions
on the priors (because the prior makes the dividend processes independent), nor is it
coming from the Bayesian updating (because under the posterior the dividend pro-
cesses are still independent), it is in fact coming from market clearing. However, the
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Bayesian learning process contributes to the effect, because if the drift were known
with certainty then there would be no transmission of shocks.
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Appendix A Proof of Proposition 1.

Conditional on Gt, the law of α under P 0 is N(α̂t, τ
−1
t ), so the law of α− α̂t ≡ η given

Gt is N(0, τ−1
t ). Thus if we condition on the value y of Y ≡ v · η, then the law of η

given this is
(

η
∣

∣ v · η = y
)

∼ N( θty,Mt ),

where θt and Mt are given by (22), (23). The set A is the set

A = {α : v · η < ρ− 1

2
|v|2 − v · α̂t},

so we evaluate the expectation E0[eλ·(α−α̂t) ;A | Gt] by firstly conditioning on Y . We
find that (with bt as at (24) )

E0[eλ·(α−α̂t) ;A | Gt] = E
[

E(eλ·(α−α̂t)|Y ) ;A | Gt

]

= E
[

exp( 1

2
λ ·Mtλ+ λ · θt Y ) ;A | Gt

]

= e
1

2
λ·Mtλ

∫ bt

−∞

exp(−y2/2kt + λ · θt y)
dy√
2πkt

= exp
{

1

2
λ ·Mtλ+ 1

2
(θt · λ)2kt

}

Φ

(

bt − kt(θt · λ)√
kt

)

as claimed.

13



Figure 1: Stock prices simulation. X axis: t, Y axis: St
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Figure 2: Stock prices simulation. X axis: t, Y axis: St
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