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Abstract

If Xi, i = 1, . . . , n are independent exponential random variables with parameters

λ1, . . . , λn, and if Yi, i = 1, . . . , n are independent exponential random variables with

common parameter equal to (λ1 + · · · + λn)/n, then there is a monotone coupling of

the order statistics X(1), . . .X(n) and Y(1), . . . Y(n); that is, it is possible to construct on

a common probability space random variables X ′
i, Y

′
i , i = 1, . . . , n, such that for each

i, Y ′
(i) ≤ X ′

(i) a.s., where the law of the X ′
i (repectively, the Y ′

i ) is the same as the

law of the Xi (respectively, the Yi.) This result is due to Ball. We shall here offer a

new proof, extended to a more general class of distributions for which the failure rate

function r(x) is decreasing, and xr(x) is increasing. This very strong order relation allows

comparison of properties of epidemic processes where rates of infection are not uniform

with the corresponding properties for the homogeneous case. We further prove that for a

sequence Zi, i = 1, . . . , n of independent random variables whose failure rates at any time

add to 1, the order statistics are stochastically larger than the order statistics of a sample

of n independent exponential random variables of mean n, but that the strong monotone

coupling referred to above is impossible in general.
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Stochastic ordering of order statistics

1. Introduction.

A model describing the spread of an epidemic among a population of size N can be con-

structed as follows [Sellke (1983), Ball (1985)]. Each individual i independently samples

the length of his infectious period Ti from a distribution F and his resistance Ui to the

disease from a distribution G. Initially, one or more members of the population are deemed

to be infective. Anyone who becomes infected transmits infection at a fixed rate α to every

other member of the population for as long as his infectious period lasts, and an individ-

ual becomes infected when the total amount of infection that he has received exceeds his

resistance. Thus the course of the epidemic is determined by the order statistics of the T ’s

and U ’s, the permutation of {1, 2, ..., N} which associates the correct U -value with each

T -value, and the ranks of the T -values belonging to the initial infectives.

Detailed analysis of the model is difficult, though a number of asymptotic results are

known. However, if the model is further generalized, allowing the Ui’s, for instance, to

be drawn from different distributions Fi, corresponding to the realistic assumption of the

existence of groups of individuals of differing susceptibility, even the asymptotic analysis

becomes intractable. This led Ball (1985), who was working with exponential distributions,

to compare the behaviour of the heterogeneous model with a suitably chosen homogeneous

model. The remarkable result that he was able to prove is as follows: if Z1, . . . , ZN

are independent negative exponential random variables with means λ−1
1 , . . . , λ−1

N , and

if Ẑ1, . . . , ẐN are independent and identically distributed negative exponential random

variables with mean λ̂−1, where λ̂ = n−1
∑

i λi, then the vector of the order statistics of the

Ẑ’s is stochastically smaller than that of the Z’s. Thus the epidemic is stochastically more

severe than the homogeneous counterpart defined in this way, if the T ’s are heterogeneous,

but less severe if the U ’s are heterogeneous.
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The purpose of this paper is to examine the comparison between the order statistics of a

set of independent random variables and those of a homogenized set, in greater generality.

Two types of result are proved. In the first, Ball’s result for negative exponential random

variables is extended to a much wider class of scale families.

Let V1, . . . , Vn be independent identically-distributed non-negative random variables with

common distribution function F . Define two samples Xi ≡ Vi/λi, Yi ≡ Vi/λ̂, i = 1, . . . , n,

where the λi are positive constants with average λ̂, and let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the

order-statistics of X1, . . . , Xn (with the corresponding notation for the Y -sample.) This we

refer to as Model 1. Then, under suitable conditions on F , we can prove the existence of a

monotone coupling of the X and Y order statistics showing that it is possible to construct

on some probability space random variables X ′
1, . . . , X

′
n and Y ′

1 , . . . Y
′
n such that

(1)

(X ′
1, . . . , X

′
n)

D
=(X1, . . . , Xn) :

(Y ′
1 , . . . , Y

′
n)

D
=(Y1, . . . , Yn) :

Y ′
(j) ≤X ′

(j) a.s. for j = 1, . . . , n.

This is a very strong statement, which trivially implies the stochastic ordering of (Y(j), X(j))

for each j. We prove this as Theorem 1, under the conditions that F has a decreasing

failure-rate function r, and that the function x 7→ xr(x) is increasing. The paradigm

example is the exponential distribution, considered by Ball, for which r is constant.

Of course, if random variables {Xi} are related by scale change as in Model 1, so are

their α-th powers {Xα
i }, being constructed from the independent identically distributed

sequence {V α
i } using the constants {λα

i }. Now, for this new set of constants, there is a

new parameter λ̂α = n−1
∑

i λ
α
i , which is in general different from λ̂α. Hence, for any

α > 0 for which Theorem 1 holds for the Xα
i , the stochastic ordering between the order

statistics of the X ’s and Y ’s holds true, with the Y ’s defined using (λ̂α)
1/α in place of

λ̂. The sharpest comparison is thus obtained by choosing α to make (λ̂)1/α as small as

possible: that is, by taking α as small as possible. Now, if the Vi have failure rate function
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r, the V α
i have failure rate function t → rα(t) ∝ t1/α−1r(t1/α). Hence the conditions to be

satisfied if Theorem 1 is to be applied to the V α
i are that s1−αr(s) should be decreasing,

and that sr(s) should be increasing. In particular, if the V ’s are exponential, r is constant,

and thus α = 1 is the best choice: Ball’s result cannot be sharpened in this way. However,

if the V ’s have decreasing failure rate r(t) ∝ t−1/β for 0 < β < 1, α can be taken to be

1− β, giving a sharper comparison than that obtained directly with α = 1. Note that the

case β = 1 is not included, because then r(t) is not finitely integrable at 0.

The second type of result which we consider is motivated by the following observation. Let

X1, . . . , XN be independent random variables with distributions

P (Xj > t) = exp{−Rj(t)},

so that Rj denotes the integrated failure rate for the variable Xj. In Model 1 above,

Rj(t) = R(λjt), where R(·) =
∫ ·

0
r(s)ds, and, if r is decreasing, the concavity of R implies

that

(∗∗)
∑

i

Ri(t) ≤ nR(λ̂t)

for all t. Now, in view of the formulae

P (min
i

Xi > t) = exp{−
∑

i

Ri(t)}; P (min
i

Yi > t) = exp{−nR(λ̂t)},

it is clear that (**) is necessary for the minimum Y(1) of the Y ’s to be stochastically smaller

than X(1). However, except in the case of exponential random variables, there are values

of t for which
∑

i

Ri(t) =
∑

i

R(λit) < nR(λ̂t),

and, if r is strictly decreasing, strict inequality holds for all t. Thus, requiring r to be

decreasing is rather too strong, if only the stochastic ordering of Y(1) and X(1) is of interest.

This suggests the following question. Suppose, in Model 2, that the Rj ’s are now allowed
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to be arbitrary, and that the independent and identically distributed random variables Yi

are defined to have distribution given by

P (Yi > t) = exp{−n−1
∑

j

Rj(t)} :

are all the order statistics of the Y ’s still stochastically smaller than those of the X ’s? The

answer turns out to be that Y(j) is indeed stochastically smaller than X(j) for each j, but

that the strong monotone coupling result (1) is in general impossible. Although this result

is not strong enough to be useful in the epidemic context above, it has obvious application

in reliability theory, where, for instance, component failure determined by the failure of k

out of n elements is a property of the k-th order statistic alone. Note that, once again,

Ball’s setting is recovered in the case of exponential random variables.

2. Monotone Coupling

LEMMA 1. Let ξ1, ξ2, η1, η2 be independent non-negative random variables with distribu-

tions

P (ξi > t) = F (λit), P (ηi > t) = F (λ̂t) , i = 1, 2,

where λ1, λ2 are positive constants and λ̂ = 1
2 (λ1+λ2). Assume that

F (t) = exp{−
∫ t

0
r(s)ds}, where x 7→ r(x) is decreasing, and x 7→ xr(x) is increasing.

Then on some probability space there exist random variables ξ′1, ξ
′
2, η

′
1, η

′
2 such that

(ξ′1, ξ
′
2)

D
=(ξ1, ξ2), (η

′
1, η

′
2)

D
=(η1, η2) and

η′(1) ≤ ξ′(1) , η
′
(2) ≤ ξ′(2) a.s.

Proof. Firstly, we compute

(2)

P (ξ(1) > t) = F (λ1t)F (λ2t)

= exp{−R(λ1t)−R(λ2t)}

≥ exp{−2R(λ̂t)}

= P (η(1) > t),
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exploiting the concavity of R(·) ≡
∫ ·

0
r(s)ds.

Next, we take any 0 ≤ υ ≤ u such that

2R(λ̂υ) = R(λ1u) +R(λ2u)

(so that P (η(1) > υ) = P (ξ(1) > u)), and show that for t ≥ u,

(3) P (ξ(2) ≥ t|ξ(1) = u) ≥ P (η(2) ≥ t|η(1) = υ).

Indeed, writing αi = λir(λiu), θi = αi/(α1 + α2) for i = 1, 2, we have that

(4)
logP (ξ(2) ≥ t|ξ(1) = u) = log

{

θ1e
−R(λ2t)+R(λ2u) + θ2e

−R(λ1t)+R(λ1u)
}

≥ −
{

θ1(R(λ2t)−R(λ2u)) + θ2(R(λ1t)−R(λ1u))
}

,

and also

(5)
logP (η(2) ≥ t|η(1) = υ) = −R(λ̂t) +R(λ̂υ)

= −R(λ̂t) + 1
2 (R(λ1u)+R(λ2u)).

Subtracting (4) and (5) yields

logP (ξ(2) ≥ t|ξ(1) = u)− logP (η(2) ≥ t|η(1) = υ)

≥ R(λ̂t)− 1
2R(λ1t)−

1
2R(λ2t)−δ{R(λ1t)−R(λ2t)}

+ δ{R(λ1u)−R(λ2u)},

where δ ≡ θ2 − 1
2

≥ δ{R(λ2t)−R(λ1t)} − δ{R(λ2u)R(λ1u)}

≥ 0,

because, under the hypothesis that xr(x) is increasing, we have δ ≥ 0 and R(λ2t)−R(λ1t) ≥

R(λ2u)−R(λ1u).

Inequality (3) follows. �

We now construct ξ′(i), η
′
(i) from four independent U [0, 1] random variables U1, U2, U3,

U4 in the obvious manner: obtain ξ′(1), η
′
(1) by applying the inverse distribution functions
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of ξ(1), η(1) to U1, and then obtain ξ′(2), η
′
(2) by applying the inverse conditonal distribution

functions of ξ(2)|ξ(1), η(2)|η(1) to U2. Inequalities (2) and (3) guarantee η′(1) ≤ ξ′(1), η
′
(2) ≤

ξ′(2). Now to get ξ1, ξ2, we set

ξ1 = ξ′(1)I{U3≤P (ξ1<ξ2|ξ(1),ξ(2))}

+ ξ′(2)I{U3>P (ξ1<ξ2|ξ(1),ξ(2))},

disposing of the ηi in analogous fashion.

THEOREM 1. Let X1, . . . , Xn, Y1, . . . , Yn be independent non-negative random variables

with distributions

(6) P (Xj > t) = F (λjt) ≡ exp(−

∫ λjt

0

r(s)ds),

(7) P (Yj > t) = F (λ̂t),

where λ1, . . . , λn are positive constants with average λ̂ and F is the tail of the distribution

function F ≡ 1− F , with failure-rate function r. Assume

(8.i) x 7→ r(x) is decreasing;

(8.ii) x 7→ xr(x) is increasing.

Then it is possible to construct on some probability space random variables (X ′
1, . . .X

′
n)

D
= (X1, . . . , Xn) and (Y ′

1 , . . . , Y
′
n)

D
=(Y1, . . . , Yn) such that

Y ′
(j) ≤ X ′

(j) for j = 1, . . . , n a.s.

Proof. The proof proceeds by repeated application of Lemma 1. Start with an independent

sequence X1, . . . , Xn with distributions given by (6), and assume that the probability space

supports an infinite sequence of independent U [0, 1] random variables. We now describe
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the first step of the procedure, which ‘consolidates’ X1 and X2. Make two independent

U [0, 1] random variables W1,W2 by the recipe

W1 = F(1)(X̃1) ,W2 = F(2)(X̃2|X̃1)

where F(1) is the distribution function of X̃1 ≡ min(X1, X2) and F(2)(·|x) is the con-

ditional distribution function of X̃2 ≡ max(X1, X2) given X̃1. Now apply the corre-

sponding inverse distribution functions calculated using λ1 = λ2 = 1
2 (λ1+λ2)≡c to gen-

erate two new random variables X̃ ′
1, X̃

′
2 such that X̃ ′

1 ≤ X̃1, X̃
′
2 ≤ X̃2, and such that

P (X̃ ′
1 > t) = F (ct)2, P (X̃ ′

2 ≤ t) = F (ct)2, as in the proof of the Lemma 1. Using one of

the available U [0, 1] random variables, we can pick one of X̃ ′
1, X̃

′
2 to be ξ1 and the other

to be ξ2, each of ξ1, ξ2 having distribution function t 7→ F (ct). Because of Lemma 1, we

have min{ξ1, ξ2} ≤ X̃1,max{ξ1, ξ2} ≤ X̃2. Thus we have changed X1, X2, X3, . . . , Xn into

ξ1, ξ2, X3, . . . , Xn in such a way that

(9.i) ξ1, ξ2, X3, . . . , Xn are independent

(9.ii) ξ1, ξ2 have the common distribution P (ξi ≤ t) = F (ct);

(9.iii) min{ξ1, ξ2} ≤ min{X1, X2},max{ξ1, ξ2} ≤ max{X1, X2} a.s..

So the random variables with distributions parametrised by Λ ≡ {λ1, λ2, λ3, . . . , λn} have

been replaced by a sequence with distributions parametrised by Λ′ ≡ { 1
2 (λ1+λ2),

1
2 (λ1+

λ2),λ3,...,λn}, without increasing the order-statistics. We now just go on doing this, succes-

sively ‘consolidating’ pairs of terms in the sequence with the greatest and smallest λ-value,

always reducing the order-statistics, and bringing the λi closer to the average λ̂ in that
∑

i6=j |λi − λj | is reduced at least geometrically fast towards zero, with common ratio

cn ≡ [
(

n
2

)

− 1]/
(

n
2

)

. Thus the order-statistics decrease to some limits Z1 ≤ Z2 ≤ . . . ≤ Zn,

which have the same law as the order-statistics of a sample with distribution function

F (λ̂t). Re-ordering Z1, . . . , Zn at random gives a sample Y1, . . . , Yn with distribution

given by (7), whose order-statistics satisfy Y(j) ≤ X(j) a.s..
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3. Stochastic ordering of order-statistics.

We turn now to the second problem. By changing the time scale, it may be assumed with-

out loss of generality that
∑

i Ri(t) = t for all t, so that the Y ’s are negative exponentially

distributed.

THEOREM 2. Suppose that X1, . . . , Xn are independent, P (Xi > t) = exp{−Ri(t)},

where
n
∑

i=1

Ri(t) = t for all t.

If Y1, . . . , Yn are independent, with common exp(1/n), distribution, then for each k =

1, . . . , n

Y(k)

D
≤X(k).

(X(1) < X(2) < . . . < X(n) are the order statistics).

Proof. Whatever n, Y(1) and X(1) have an exp(1) distribution. Also,

P (X(2) ≥ t) =

n
∑

i=1

(

1− e−Ri(t)
)

e−(t−Ri(t)) + e−t

=

n
∑

i=1

(

eRi(t)−t − e−t
)

+ e−t

≥ ne−tet/n − (n− 1)e−t by AM-GM inequality

= P (Y(2) ≥ t).

Now suppose that Y(k)

D
≤X(k) for all k ≤ n, when n = 1, 2, . . . , N . We proceed inductively

to the case N + 1.

Let C(t) ≡
∑N

i=1 Ri(t). Then the variables X̃j ≡ C(Xj), j = 1, . . . , N , are N independent

r.v.s. whose rates sum to 1. Let X̃(1) < . . . < X̃(N) be the order-statistics of this sample,

X̃ ′
(1) < . . . < X̃ ′

(N+1) be the order-statistics of the sample enlarged by the inclusion of

X̃N+1 ≡ C(XN+1). Fixing t and temporarily abbreviating C(t) to C, we have that for

any 3 ≤ k ≤ N + 1,

P (X(k) ≤ t) = P (X̃ ′
(k) ≤ C)
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=

{

P (X̃(k) ≤ C)P (X̃N+1 > C) + P (X̃(k−1) ≤ C)P (X̃N+1 ≤ C), if k ≤ N ;

P (X̃(N) ≤ C)P (X̃N+1 ≤ C) if k = N + 1,

=

{

P (X̃(k) ≤ C)e−RN+1(t) + P (X̃(k−1) ≤ C)
(

1− e−RN+1(t)
)

if k ≤ N ;

P (X̃(N) ≤ C)
(

1− e−RN+1(t)
)

if k = N + 1.

Notice that t = C(t) +RN+1(t) so, taking the easy case k = N +1 first, we have from the

inductive hypothesis that (with C(t) abbreviated to C)

P (X̃(N) ≤ C)(1− e−t+C) ≤ P (Ỹ(N) ≤ C)(1− e−t+C)

= (1− e−C/N )N (1− e−t+C),

where Ỹ(1) < . . . < Ỹ(N) are the order statistics of ( N
N+1 )Yj , j = 1, 2, ..., N , a sequence

of i.i.d. exp( 1
N ) random variables. Elementary calculus shows that this last expression,

considered as a function of C, attains its unique maximum when C = Nt/(N + 1) and

therefore RN+1(t) = t/(N + 1), showing that

P (X(N+1) ≤ t) ≤ (1− e−t/(N+1))N+1 = P (Y(N+1) ≤ t).

Now we turn to the case k ≤ N and once again estimate via the inductive hypothesis:

(10)

P (X(k) ≤ t) = P (X̃(k) ≤ C)e−t+C + P (X̃(k−1) ≤ C)
(

1− e−t+C
)

≤ P (Ỹ(k) ≤ C)e−t+C + P (Ỹ(k−1) ≤ C)
(

1− e−t+C
)

= P (Ỹ(k−1) ≤ C) − e−t+CP
(

Ỹ(k−1) ≤ C < Ỹ(k)

)

= P
[

B(N, p) ≥ k − 1
]

− e−t+CP
[

B(N, p) = k − 1
]

where p = 1− e−C/N is the probability that N
N+1Y1 is at most C. Now it is useful to note

that

∂

∂p
P
[

B(N, p) ≥ k − 1
]

= NP
[

B(N − 1, p) = k − 2
]

,

so if we differentiate (10) with respect to C we get

NP
[

B(N − 1, p) = k − 2
] ∂p

∂C
− e−t+CP

[

B(N, p) = k − 1
]

− e−t+C ·
∂p

∂C
·N

{

P
[

B(N − 1, p) = k − 2
]

− P
[

B(N − 1, p) = k − 1
]}
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= NP
[

B(N − 1, p) = k − 2
] 1

N
e−C/N

(

1− e−t+C
)

− e−t+CP
[

B(N, p) = k − 1
]

+ e−t+Ce−C/NP
[

B(N − 1, p) = k − 1
]

=
(

1− e−t+C)

(

N − 1

k − 2

)

pk−2qN−k+2 − e−t+C

(

N

k − 1

)

pk−1qN−k+1

+ e−t+C

(

N − 1

k − 1

)

pk−1qN−k+1

=
(N − 1)!

(k − 1)!(N − k + 1)!
pk−2qN−k+1

{

(1− e−t+C)q(k − 1)− e−t+CNp+ e−t+C(N − k + 1)p

}

=

(

N − 1

k − 2

)

pk−2qN−k+1

{

q(1− e−t+C)− pe−t+C

}

=

(

N − 1

k − 2

)

pk−2qN−k+1

{

q − e−t+C

}

.

Thus the derivative vanishes if and only if C = Nt/(N + 1), which is easily seen to yield

the unique maximum of the function.

The inductive hypothesis for N + 1 now follows, since for this choice of C,

P (Ỹ(k) ≤ C)e−t+C + P (Ỹ(k−1) ≤ C)(1− e−t+C) = P (Y(k) ≤ t).

�

To see that there can in general be no monotone coupling, consider the following example,

where n = 2, and the failure-rate functions are given by

r1(t) =

{

1 for t ≤ 1;
η for t > 1,

r2(t) ≡ 1 − r1(t), where η should be thought of as small. Suppose that there was a

monotone coupling. Since X(1)
D
=Y(1), this would imply that X(1) = Y(1) a.s.. But now for

τ < 1, t > 1

P (X(2) > t|X(1) = τ) = exp
(

−(t− 1)(1− η)
)

,

P (Y(2) > t|Y(1) = τ) = exp
(

− 1
2 (t−τ)

)

≤ P
(

X(2) > t|X(1) = τ
)
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for large enough t. Thus the conditional laws of X(2), Y(2) given X(1) are not stochastically

ordered, so no monotone coupling is possible. This makes Theorem 2 seem even more

surprising!
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