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Abstract

The aim of this study is to devise numerical methods for deal-
ing with very high-dimensional Bermudan-style derivatives. For such
problems, we quickly see that we can at best hope for price bounds,
and we can only use a simulation approach. We use the approach of
Barraquand & Martineau [2] which proposes that the reward process
should be treated as if it were Markovian, and then uses this to gen-
erate a stopping rule and hence a lower bound on the price. Using the
dual approach introduced by Rogers [13] and Haugh & Kogan [7], this
approximate Markov process leads us to hedging strategies, and upper
bounds on the price. The methodology is generic, and is illustrated
on eight examples of varying levels of difficulty. Run times are largely
insensitive to dimension.

1 Introduction.

A general optimal stopping problem can be formulated as finding

sup
0≤τ≤T

E[Zτ ] (1.1)

where the termination time T is a fixed positive real, the process Z is a given
process adapted to some filtration (Ft)t≥0, and τ is constrained to be an
(Ft)-stopping time. We shall in this paper assume that the reward process
Z has the form

Zt = g(t,Xt), (1.2)

where X is some Markov process, and g is some measurable function of time
and Xt. For what mainly concerns this paper - the analysis of Bermudan
options - this formulation is already sufficiently general. Much of what follows
is valid more widely, but at times we shall refer to properties that relate to a
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typical financial context; the aim is to provide bounds, and we need context
in order to assess the effectiveness of these bounds.

Of course, it is well known how to solve an optimal stopping problem of
the form given by (1.1), (1.2); we define the value function

V ∗(t, x) = sup
t≤τ≤T

E[ g(τ,Xτ ) |Xt = x ] (1.3)

and find V ∗ by dynamic programming1. When this can be done, this is ev-
erything we could ask for. However, explicitly-soluble examples are rare, and
we soon have to reach beyond them. For example, the standard Bermudan
put option, where

g(t, x) = e−rt(K − exp(x))+ (1.4)

and the process X is a Brownian motion, is a celebrated example where no
closed-form solution is known. This has launched many studies in the last
25 years, and very efficient numerical schemes have been devised. But what
if we have some vector Xt = (X1

t , . . . , X
d
t ) of correlated Brownian motions,

and the reward function is

g(t, x) = e−rt(K − exp( min
i
xi ) )+ , (1.5)

a so-called min put? If we look for the value function, we have to determine
numerically2 some function of d variables. The standard Bellman equation
approach requires us to calculate recursively V ∗t (·) ≡ V ∗(t, ·) as

V ∗t (x) = max{ g(t, x), E[V ∗t+1(Xt+1)|Xt = x] } ; (1.6)

but if d is large (fifty, say), how is V ∗t+1 to be stored? How is the expectation
on the right-hand side of (1.6) to be calculated or approximated? The more
one thinks about these issues, the clearer it becomes that calculating an
approximation to the value function can only work in dimensions that are
not too high, and will most likely rely heavily on the structure of the problem
under study. In other words, any methodology that attempts to identify the
value function will be of restricted applicability.

So we must be content with less; but less may be enough. If we had
calculated the value function, what use would we make of it? We would use
it to determine the optimal control: at each time t, we would see the state

1For a Bermudan option, which has only finitely many possible times of exercise, the
optimization is over a discrete set of times, though we generally think that the time of the
underlying process runs continuously.

2If we can only solve the one-asset problem numerically, we can certainly only solve
the d-asset problem numerically.
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Xt = x of the system, and if V ∗t (x) > g(t, x) we would continue, otherwise
we would stop. We would use it to determine a fair price to pay or ask
for the derivative at time 0. We would use it to delta-hedge the derivative
once it had been sold. The view taken in this paper is that the analysis of a
Bermudan option requires just these:

• At each time, whatever the state, we are able to decide whether or not
to stop;

• At each time, we are able to propose a hedge for the next period;

• We are able to provide reasonably close bounds for the price of the
derivative at all times.

Exact knowledge of the value function would achieve all of these objectives,
but can we attain them without knowing the value function or an approxi-
mation to the value function? The message of this paper is that this can be
done. We present an approach to Bermudan options with the properties:

• The only information required about the Markov process is the ability
to simulate a step of the process;

• The methodology is generic - the same code is used to do the calcu-
lations for all examples, changing only the specification of the Markov
process X and the stopping reward g;

• Computational cost is largely insensitive to dimension, so a derivative
written on hundreds of underlyings can be solved simply by changing
the dimension parameter in the code, and takes only a little longer to
run;

• Upper and lower bounds on the price differ by typically 5-10 percent
(sometimes more, sometimes less);

• The stopping rules and hedging rules obtained are very simple to cal-
culate and implement.

• Computational times depend on the problem, but a few tens of seconds
usually suffices.

The claim is that the method offered here is an effective general method
for dealing with any Bermudan option. In truth, the components used are
already known in one form or another, and what is added here is the judicious
combination of them, and a redefinition of the questions to be answered. The
waypoints are the following:

3



• Any numerical scheme has to be a finite calculation, so the Markov
process has to be coerced to a finite set of values;

• The finite coercion of the underlying Markov process X has to be tai-
lored to the stopping reward - using the approach of Barraquand &
Martineau [2];

• The finite coercion generates a stopping rule, and a hedging rule, us-
ing the dual approach of [13], [7], [1] which can then be evaluated by
simulation.

The particular structure of a problem may suggest variants that improve on
the performance, but in the examples studied any improvement from simple
variants is not large.

2 The general methodology.

The general situation concerns a Markov process X taking values in a states-
pace X , a stopping reward function g, and a finite set T ⊆ [0, T ] of size
NT of possible times to stop3. The aim is to associate this problem with an
optimal stopping problem for a (discrete-time) Markov process with a finite
statespace, and the way this is done is simply a paraphrase of the method of
Barraquand & Martineau [2].

Definition 2.1. A (real-valued) Markovian coercion of X is specified by a
measurable function g : T×X 7→ R, an NT ×N matrix η of bin values , an
NT × (N − 1) matrix y of bin edges, and an (NT − 1)×N ×N array P with
the properties:

1. for each t ∈ T,

η
(1)
t < y

(1)
t < η

(2)
t < y

(2)
t < . . . < y

(N−1)
t < η

(N)
t ;

2. for each t ∈ T\{T}, P (t, ·, ·) is an N ×N transition matrix.

We can approximate the real-valued process g(t,Xt), t ∈ T, by using the
matrix y of bin edges to define a partition of R for each t ∈ T:

J
(1)
t = (−∞, y(1)t ] , . . . , J

(N)
t = (y

(N−1)
t ,∞) (2.1)

3We will always assume that 0 and T are in T.
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and then the matrix η of bin values to define the approximating process

Yt =
N∑
k=1

η
(k)
t I{g(t,Xt)∈J(k)

t }
. (2.2)

For the current purpose, we shall take g to be the function appearing in the
definition (1.2) of the stopping reward.

The process Y takes only finitely many values, but will not in general be
Markov. Nevertheless, the essential idea of the Barraquand-Martineau ap-
proach is that we pretend that it is, with transition probabilities given by
the array P . We then solve the optimal stopping problem for this Markov co-
ercion, and use the solution found to propose exercise and hedging strategies
for X.

2.1 Implementation.

For the implementation, we shall assume that the state process X takes
values in some (subset of) euclidean space Rd. The dimension d of this
space is unrestricted, and can be quite large. The numerical implementation
consists of four stages:

1. use simulation to initialize, calculating the transition matrix array P ,
and the bin edges and values;

2. calculate the value and optimal stopping rule for the (presumed Marko-
vian) process Y ;

3. find a lower bound by evaluating the performance of the stopping rule
from step 2 when applied to stopping the process X;

4. find an upper bound by evaluating the hedging rule derived from step
2 when applied to the actual process X.

We now give some more detail on each of these stages in turn.

Initialization. First choose some number Nbins of bins, and some number b
of points in each ‘half bin’, so that in total we will simulate Nsim = 2bNbins

sample paths. The simulation will fill up a NT ×d×Nsim array, though since
the process is Markovian, we can economize on space by just carrying along
the current values, in effect a d × Nsim array, which gets overwritten with
newly-calculated values.
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So suppose that we have the d×Nsim array x of the values4 at time ti ∈ T.
We now use the simulation of the Markov process to step these values forward
to the next time ti+1, creating a d×Nsim array x′. Next apply the function
g to give

yj ≡ g(ti, x[:, j]), y′j ≡ g(ti+1, x[:, j]) (j = 1, . . . , Nsim).

If we define y(1) < y(2) < . . . y(Nsim) to be the sample (yj) in increasing order,
we define the bin edges at time ti to be the values y(2kb), k = 1, . . . , Nbins− 1,
and the bin values at time ti to be the values y(2kb−b), k = 1, . . . , Nbins. We
similarly calculate5 the bin values and edges at time ti+1. Now for each
simulated path j we can see which bin that path was in at time ti, and which
bin that path moved into at time ti+1; counting the number of paths which
moved from bin ` at time ti into bin m at time ti+1 gives us an estimate of
the transition probability P [i, `,m].

It is worth remarking that this step differs slightly from what Barraquand
& Martineau do; we let the data tell us where the bin edges should be, and
Barraquand & Martineau set the bin edges before any simulation takes place,
as an a priori modelling choice.

Calculating the value function and optimal stopping rule. Now that
we have made a Markov chain proxy which jumps at discrete times from one
bin to another according to the transition probabilities stored in P , the calcu-
lation of the value V and stopping rule S is done by dynamic programming.
The arrays V and S are both NT × Nbins ; the values in S are either 0 or
1, where S[i, k] = 1 signifies that we should stop if at time ti the Y -value is
in bin k. The time taken to compute V and S is negligible. As a notational
convenience, for y ∈ R we shall write

V (t, y) = V [i, k], S(t, y) = S[i, k] (2.3)

when t = ti ∈ T and y ∈ J (k)
t , the kth bin at time ti.

Lower bound. The computed stopping rule S is now used to provide a
lower bound for the value of the option. We simply simulate a large number
of paths of the process X, and for each path we stop the first time ti for

4In accordance with Python notation, we denote the (i, j) element of an array z by
z[i, j], and the jth column of z by z[:, j].

5We implicitly assume that the y-values are distinct. This is clearly not going to happen
for (say) a put option, but we make this happen by replacing the reward max{0,K − S}
by the reward max{ε(K − S), (K − S)} for some small ε. The error committed will be
small compared to other errors. Likewise, we do not bother to locate the bin edges in
between values of y(j) as perhaps we ought.

6



which S(ti, g(ti, Xti)) = 1. For each path, this gives a stopping value, and
the lower bound is just the average over all paths.

Upper bound. To derive an upper bound, we need to recall some results
about the dual approach from [13], [7], where it is shown that the value (1.1)
of the optimal stopping problem has the alternative characterization

sup
0≤τ≤T

E[Zτ ] = min
M∈M0

E[ sup
0≤t≤T

(Zt −Mt) ], (2.4)

as a minimum over the space M0 of martingales vanishing at 0. The mini-
mum on the right-hand side is attained when M is the martingale part of the
Snell envelope process: see [13]. In this setting, the Snell envelope process is
simply the value function V ∗(t,Xt) evaluated along the path, so the optimal
martingale difference sequence would be

M∗
ti+1
−M∗

ti
= V ∗(ti+1, Xti+1

)− E[V ∗(ti+1, Xti+1
) | Fti ]. (2.5)

Of course, we do not know V ∗, but we have calculated and stored in the
array V some approximation to V ∗, so a natural approximation to M∗ would
be found by taking the martingale difference sequence

Mti+1
−Mti = V (ti+1, Yti+1

)− E[V (ti+1, Yti+1
) | Fti ], (2.6)

where Y is as defined at (2.2). The only issue with this is how we are to
evaluate the conditional expectation on the right-hand side of (2.6). The
function V (ti+1, ·) is a simple function, taking only Nbins values, but if we
have simulated a sample path and we see Xti = x, how are we to calculate
(or approximate) E[V (ti+1, Yti+1

) | Xti = x ]? The approach adopted is to
perform a subsimulation of some Nsub values of Xti+1

starting from Xti = x.
It is generally considered a bad idea to perform subsimulations, because this
will usually take a lot of time, and may not be very accurate, but in this
application the approach is effective because Yti+1

is scalar. The importance
of this is that our subsimulations do not need to search out some high-
dimensional space, they only need to search out the real line; in practice, if
the payoff g is continuous, and the time-step not too large, most values of
g(ti+1, Xti+1

) will be fairly close to g(ti, Xti), so a relatively small number of
subsimulations will suffice. In the examples reported later, we mainly used
Nsub = 25, on 4000 simulated paths.

This explains how we construct candidate hedging martingales from the
array V . In a financial context, we would want to be able to express such
martingales in terms of traded assets; this could be done by calculating delta-
hedges for the martingale differences arising from the approximation, but
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since this would be application-specific, we prefer not to go into the detail
of how this would be done. The approach offered merely indicates a martin-
gale to be used for hedging, not how exactly this is to be synthesised from
marketed assets.

3 Examples.

Here we present a range of examples to illustrate the methodology, some
familiar from the literature, others not. In the following examples, we will
be considering a d-vector of log-Brownian assets whose prices Sit at time t
evolve as

dSit = Sit

( d∑
j=1

σij dW
j
t + µi dt

)
, (3.1)

where W is a d-dimensional Brownian motion, the σij and µi are previsible
processes which are assumed constant, except in Example (3.8). We write

Σ| ≡ σσT , (3.2)

a positive-definite symmetric matrix. Since the focus is on derivative pric-
ing, we shall assume that we are working in the risk-neutral measure, which
amounts to the condition

µi = r − 1
2

Σ| ii, (3.3)

where r is the riskless rate of interest, assumed constant, except in Example
(3.8).

It proves convenient in most of the examples to simulate the discounted
log prices

xit ≡ −
∫ t

0

rs ds+ logSit =
∑
j

σijW
j
t − 1

2
Σii t+ logSi0. (3.4)

Variants. If N is a positive martingale, N0 = 1, then

sup
0≤τ≤T

E

[
g(τ,Xτ )

]
= sup

0≤τ≤T
E

[
Nτ

g(τ,Xτ )

Nτ

]
= sup

0≤τ≤T
E

[
NT

g(τ,Xτ )

Nτ

]
= sup

0≤τ≤T
Ẽ

[
g(τ,Xτ )

Nτ

]
,
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where
dP̃

dP
= NT . (3.5)

If the martingale N can be expressed as Nt = ψ(t,Xt), then we can work
in the new measure P̃ with the new reward g̃(t, x) = g(t, x)/ψ(t, x), and
it may be convenient sometimes to do this. This change of numeraire ap-
proach is reminiscent of Jamshidian’s [8] version of dual American option
valuation. We could similarly transform the stopping reward g(t,Xt) to
g(t,Xt)− ϕ(t,Xt) + ϕ(0, X0), where ϕ is some function for which ϕ(t,Xt) is
a martingale, for example, the value of the European option.

3.1 Min put.

In this example, the state variable is Xt ≡ xt, the vector of discounted log
prices, and the reward function for stopping at time t will be

g(t,Xt) =
(
Ke−rt − exp( min

1≤i≤d
X i
t)
)+
. (3.6)

This example was studied in [13], and the figures in the column MC price
of Table 1 were taken from that paper; for d = 30, 60 no values are given
in [13]. The columns headed low and high are sample means obtained from
a simulation method, so there is simulation error in the values reported, but
this error is quite small in relation to the gap.

d low MC price high gap(%) time
2 24.77 25.16 26.63 6.98 5.00
3 31.26 31.76 33.00 5.40 5.74
4 35.57 36.28 37.48 5.08 6.82
5 39.11 39.47 40.22 2.74 7.66
10 47.95 48.33 49.06 2.26 12.42
15 51.97 52.14 52.86 1.68 17.34
30 57.66 - 58.23 0.98 35.86
60 62.10 - 62.62 0.82 68.32

Table 1: Min put prices. The d assets are independent, Si(0) = 100. Other
parameters are K = 100, r = 0.06, T = 0.5, σii = 0.6.
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3.2 Max call.

As with the min put, the state variable is Xt ≡ xt, the vector of discounted
log prices, but this time the reward function for stopping at time t will be

g(t,Xt) =
(

exp(max
1≤i≤d

X i
t) −Ke−rt

)+
. (3.7)

In order to make the problem interesting, the assets will be assumed to
pay dividends at a constant rate. This example was studied by Broadie
& Glasserman6 [5], and has been used as a test example in a number of
other studies, including [6], [7], [1], [9]. The results shown in Table 2 are
calculated using the average of the discounted assets as a numeraire, and
took Nsub = 125. If we did not use the change of measure, the gaps between
the lower and upper bounds are a little higher.

m S0 low BG price high gap(%) time
90 15.29 16.006 16.11 5.08 4.21

3 100 24.41 25.284 25.35 3.71 4.20
110 34.74 35.695 35.84 3.07 4.20
90 15.52 16.474 16.79 7.59 8.47

6 100 24.63 25.92 26.50 7.04 8.57
110 34.81 36.497 37.23 6.48 8.57
90 15.81 16.659 16.95 6.71 12.67

9 100 24.78 26.158 26.75 7.35 12.82
110 35.25 36.782 37.63 6.30 12.66

Table 2: Max call prices on 5 independent assets with common volatility
σ = 0.2% and expiry T = 3. There are m = 3, 6, 9 exercise opportunities at
times iT/m, i = 0, . . . ,m. Other parameters are K = 100, r = 0.05, δ = 0.1.

3.3 Basket put.

This is an example studied in Kovalov, Linetsky & Marcozzi [10], and subse-
quently in Jin et al [9]. The state variable is again the vector of d discounted

6In the preprint version, the example presented in Table 2 is said to give results for
common expiry T = 3 with 3, 6, 9 equally-spaced exercise opportunities, but the published
version gives the same numerical values purportedly for end-of-year exercise opportunities
with expiries 3, 6, 9 years. Our numerics show that in fact the problem solved is correctly
stated in the preprint, and mis-stated in the published version.
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log prices, and this time the stopping reward function is

g(t,Xt) =
(
Ke−rt − d−1

d∑
i=1

exp(X i
t)
)+
. (3.8)

All the stocks start at 100, the strike is K = 100, the riskless rate is 0.05, the
expiry is T = 0.25, and the individual asset volatilities are all 0.2, but this
time the assets are not supposed independent; there is constant correlation
ρ = 0.5 between all the assets7. Kovalov et al use a numerical PDE approach,
Jin et al use a simulation methodology, and both approaches appear to give
better precision than the method we have used here. Nevertheless, as we
shall soon see, the difference in precision is not practically relevant. We used
Nsub = 125 in this calculation, and report the results in Table 3

d low KLM high gap(%) time
2 3.05 3.14 3.14 6.11 27.20
3 2.74 2.94 2.94 6.80 36.66
4 2.64 2.84 2.84 7.03 45.56
5 2.57 2.77 2.77 7.24 53.85
6 2.54 2.72 2.72 6.73 63.01
12 2.43 - 2.61 7.07 131.8

Table 3: Basket put. All assets start at 100, K = 100, T = 0.25, r = 0.05.
All assets have volatility 20%, and the correlation between assets is 0.5.

These values were computed assuming that the volatility parameter σ is
equal to 20%. But are we sure of that? In any application, the volatility
(assumed constant) would have to be estimated; are we really sure that the
volatility is not 19%? Or 21%? Are we really sure that the volatility will
remain constant at 20% until expiry of the option? Suppose we repeat the
calculations of Table 3 for those values of the volatility parameter and see
what ranges for the price result. The outcomes are recorded in Table 4, and
what we see is that there is virtually no overlap between the computed inter-
vals for the price for the three values of σ. In other words, the uncertainty
in the price arising from our simulation bounds is comparable to the uncer-
tainty in price which would arise from the uncertainty in the input parameter
values.

7The specification of the various parameters in [10] is internally inconsistent, and not
in agreement with the parameters quoted in [9]. For the reported prices to be correct, we
find that the parameter values used must be those we have stated.
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d low (19%) high (19%) low (20%) high (20%) low (21%) high (21%)
2 2.77 2.97 3.05 3.14 3.10 3.32
3 2.58 2.75 2.74 2.94 2.90 3.10
4 2.49 2.66 2.64 2.84 2.79 3.01
5 2.43 2.62 2.57 2.77 2.73 2.92
6 2.39 2.54 2.54 2.72 2.70 2.88

Table 4: Basket put. Parameters as for Table 3, except the volatility param-
eter which takes values 19%, 20%, 21%.

3.4 Fixed strike Bermudan-Asian call.

In this example, there is a single asset S, and the reward for stopping at time
τ is

g(τ,Xτ ) = e−rτ (Aτ −K)+, (3.9)

where we define the average price

At =

∫ t
−δ Su du

t+ δ
. (3.10)

Here, δ > 0 is some initial window required to prevent wild oscillations.
There is also some initial lock-out time t∗ ≥ 0 during which exercise of the
option is forbidden. The state variable of the problem is Xt = [St, At, t]. The
numerical results are reported in Table 5. The price gaps are generally in the
range 4-9%, though some rows of the table required more work than others,
and sometimes the gaps between the bounds were quite large. Any row where
the reported time is 20s (an approximate figure) required runs with several
different stories; in fact we used three different numeraires (the bank account,
the stock, and the martingale Et[AT ]), and used the given stopping reward, or
adjusted the stopping reward by adding the martingale of the European put.
The results are usable, but not particularly good, and this is really because
this example is intrinsically two-dimensional, so any attempt to coerce it to
one dimension is missing something essential. We cannot expect a stopping
rule which only looks at At to do very well, because the current value of St
has to be considered as well; if St is high enough, the value g(t,Xt) is actually
increasing, so we would certainly not stop at such a time. But a rule that
only considers At would not understand that.
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A0 S0 low FD price high gap(%) time
80 0.919 0.949 0.991 7.33 4.12
90 3.20 3.267 3.35 4.46 4.15

90 100 7.49 7.889 8.03 6.71 4.15
110 13.68 14.538 14.89 8.16 4.12
120 21.01 22.423 22.99 8.61 4.10
80 1.052 1.108 1.147 8.28 4.13
90 3.53 3.710 3.82 7.52 4.14

100 100 8.07 8.658 8.83 8.61 20
110 14.95 15.717 16.22 7.83 20
120 23.33 23.811 24.42 4.46 20
80 1.21 1.288 1.33 9.02 20
90 3.87 4.136 4.35 11.03 11.21

110 100 8.7 9.821 10.66 18.4 20
110 15.76 17.399 18.34 14.1 20
120 24.50 25.453 26.32 6.91 20

Table 5: Fixed strike Bermudan Asian call. Parameters are σ = 0.2, K =
100, t∗ = 0.25, δ = 0.25, T = 2.

3.5 Floating strike Bermudan Asian call

The story is very similar to Section 3.4, except that the reward is

g(τ,Xτ ) = e−rτ (Aτ − Sτ )+ (3.11)

for stopping at time τ . This example is in fact much easier than the fixed
strike, because the process At/St is a Markov process already. Scaling says
we need only vary S0 while keeping A0 fixed, which is what we do. The
results obtained when we fix A0 = 100 are given in Table 6.

3.6 Fixed window lookback option.

This example illustrates the capacity of the methodology to handle high-
dimensional problems. Here we suppose that the stock price is recorded at
times which are multiples of some h > 0, and stopping at time τ = kh
delivers reward

g(τ,Xτ ) = sup
k−a≤j≤k

Sjh, (3.12)

where a is some positive integer. This time, the state variable X has to
record the last a values of the price, since the sup and inf are taken over
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S0 low high gap(%) time
80 10.60 10.86 2.50 8.5
90 8.33 8.67 3.98 8.40
100 7.14 7.50 4.88 8.51
110 6.51 6.85 5.00 8.81
120 6.16 6.57 6.26 8.32

Table 6: Floating strike Bermudan Asian call. Parameters are σ = 0.2,
A0 = 100, t∗ = 0.25, δ = 0.25, T = 2.

a fixed window. The results are presented in Table 7. Notice that for this
example the bounds are very close, getting slightly less good as the lookback
parameter a rises. Equally noteworthy is the fact that the run times are
essentially unchanged as we increase the lookback parameter; so in the final
row of the table, the state variable is 25-dimensional. It should not be a
surprise that there is so little variation in run times, because increasing a
makes no difference to the simulation load; each period, we simulate one new
value, all that is different is that we are storing more or fewer values from
the past.

a low high gap(%) time
5 116.07 116.74 0.57 115
10 121.8 123.2 1.18 109
15 125.2 127.2 1.57 110
20 127.7 130.1 1.84 114
25 129.6 132.4 2.17 115

Table 7: Fixed window lookback option. Parameters were T = 1, σ = 0.5,
r = 0.05, S0 = 100, and the time interval was divided into 250 equal time
steps. The calculations were done in the numeraire of the discounted asset
price.

3.7 Fixed window range option.

This example is similar to the fixed window lookback option of Section 3.6,
except that the reward for stopping at time τ = kh is

g(τ,Xτ ) = sup
k−a≤j≤k

Sjh − inf
k−a≤j≤k

Sjh, (3.13)
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where a is some positive integer. The results are reported in Table 8. The
gaps between the upper and lower bounds are higher than for the lookback
example expressed as a percentage, but the arithmetic gaps are roughly com-
parable, with similar run times.

a low high gap(%) time
5 17.06 17.91 4.75 92
10 23.64 25.78 8.30 97
15 27.86 31.26 10.89 103
20 31.09 35.46 12.34 109
25 33.76 38.99 13.41 116

Table 8: Fixed window range option. Parameters were T = 1, σ = 0.5,
r = 0.05, S0 = 100, and the time interval was divided into 250 equal time
steps. The calculations were done in the numeraire of the discounted asset
price.

3.8 Min puts with stochastic volatility and interest.

In this example, we consider a situation where there are d > 1 assets, with
stochastic volatility and interest rates. There are examples of such models
in various places in the literature, for example, Medvedev & Scaillet [12],
Boyarchenko & Levendorskii [4], Jin et al. [9]. Heston dynamics for the asset
and the volatility are popular in theoretical work, but it is far from clear
that the dependence of the volatility of volatility on level takes the square-
root form postulated in the Heston model; and still less is it persuasive that
the Cox-Ingersoll-Ross interest-rate model correctly describes the volatility
of interest rates when those rates are low. As this is a simulation study, we
are freed from any need to choose models that are theoretically tractable8, so
we may make some modelling assumptions that match observed behaviour
better.

So our story supposes that there is some market Brownian motion WM ,
and that log prices xit ≡ logSit evolve as

dxit = σit{ ρS dWM
t + ρ′S dW

S,i
t }+ (rt − 1

2
(σit)

2) dt (3.14)

8Tractability is in any case illusory; we regard a model as tractable if there is a closed-
form solution for a small number of derivative prices, overlooking the fact that for the
majority of derivative prices there is no closed form solution.
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where r is the riskless rate process, and ρS ∈ (0, 1) is the correlation9 of
the log prices with the market Brownian motion. The process W S is a d-
dimensional Brownian motion independent of WM .

The volatility process σ appearing in (3.14) is represented as

σit = σ̄i exp( ξit ) (3.15)

in terms of constants σ̄i and a process ξ which is an OU process evolving as

dξt = −βξ ξt dt+ σξ (ρξ dW
M
t + ρ′ξ dW

ξ
t ). (3.16)

Finally, our model for the interest-rate process r is just a Black-Karasinski
model: we have rt = r̄ exp(zt), where

dzt = −βr dt+ σr (ρr dW
M
t + ρ′r dW

r
t ) (3.17)

for some constants βr > 0, σr > 0 and ρr, which would typically be assumed
positive since we expect that as the market rises the rate of interest should
also rise.

Altogether then, this is a simple but sprawling model; even assuming (as
we do here) that correlations are common across stocks, the parameter vector
is

θ = ( ρS, ρξ, ρr, (σ̄
i), r̄, βξ, σξ, βr, σr). (3.18)

What would be reasonable values for these parameters? For the interest rate
evolution, we shall be guided by Black & Karasinski [3] and take r̄ = 0.06,
σr = 0.12, βr = 0.02, and ρr = 0.3. Correlations between stocks are variable,
but typically in the range 0.25-0.60; we shall take ρS = 0.3. For simplicity we
assume all stocks have common volatility σ̄i = 0.6. Fluctuations in volatil-
ities are of the order of tens of percent, so by comparing with the standard
deviation of an OU process, we impose

σξ√
2βξ

= 0.1. (3.19)

We shall set βξ = 4.5, so that the mean reversion time for volatility is of the
order of three months, and this gives from (3.19) that σξ = 0.3. Finally, we
take ρξ = 0.3.

For the rest of our discussion, we shall focus on the case where d = 5, that
is: there are five assets. We will also restrict attention to min puts, taking
strike K = 100 and all assets starting at 100 throughout. This will allow us
to investigate the effects of varying initial values of r and σ, as well as various

9When ρ is a correlation coefficient, we use ρ′ to denote
√

1− ρ2.
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parameters. If we make ρS = 0 and make the mean reversion parameters βr,
βξ very large, we have in effect got back to the situation with independent
assets, constant volatilities and interest rate that was studied in Examples
3.1, 3.2. So we should see the same answer; and we do - the range from this
calculation came out to be [39.06, 40.65], which is the same as we found in
Table 1, to within sampling error.

Next, we can see what happens when we keep the volatility and interest
rate constant, but allow ρS to vary; the results are in Table 9. What we see
is that while the correlation is not too far from zero, there is no clear effect
on the price, but as the correlation between the assets rises, the price of the
min put falls. This is to be expected; the higher the correlation the more
alike the assets are, so there will be less dispersion in the prices at any time,
so the minimum will be higher.

ρS low high gap (%) time
-0.15 38.75 40.27 3.77 27
0.00 39.06 40.65 3.92 28
0.15 38.61 40.11 3.73 27
0.30 37.47 38.99 3.89 27
0.45 35.58 37.26 4.52 27
0.60 32.98 34.58 4.61 27

Table 9: Prices of min puts as ρS varies. Volatility is constant at σ̄ = 0.6,
interest is constant at r = 0.06. 40 timesteps are used, Nbins = 200, b = 50.
To establish the lower bound, 50000 paths are used, and for the upper bound,
4000 paths are used with Nsub = 25 representatives in each subsimulation.

Now we relax the assumption of constant interest rate, and let the interest
rate evolve as in the Black-Karasinski specification (3.17), fixing ρS at its
default value 0.3, and observing the effects of different initial values of the
riskless rate. We hold the volatility constant at the default value 0.6. The
results are reported in Table 10. As the initial interest rate rises10, the price
of the min put falls, as would be expected from the stronger discounting of
the stopping reward; even allowing for the fact that we can only obtain an
interval for the price, the effect of change of initial interest rate is discernible.

Having seen the effect of changing initial interest rate while volatility is
held constant, we next hold the interest rate constant at its default value
r̄ = 0.06, and allow the volatility to be stochastic. The impact of different

10The row of the table for r0 = 0 was obtained by taking log r0 = −15.6.
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r0 low high gap (%) time
0.00 40.31 41.74 3.43 27
0.025 39.10 40.59 3.66 27
0.06 37.47 39.17 4.35 27
0.10 35.63 37.52 5.01 27

Table 10: Prices of min puts as r0 varies. Volatility is constant at σ̄ = 0.6,
correlation between assets is ρS = 0.3. Parameters are ρr = 0.3, r̄ = 0.06,
βr = 0.02, σr = 0.12. 40 timesteps are used, Nbins = 200, b = 50. To
establish the lower bound, 50000 paths are used, and for the upper bound,
4000 paths are used with Nsub = 25 representatives in each subsimulation.

initial levels of volatility is shown in Table 11, where it is assumed that
the initial volatility is common across all the assets. Again, we see quite
pronounced effect of the initial volatility on the price of the min put option;
the price rises as the initial volatility increases, as one would expect.

σ0 low high gap (%) time
0.10 22.09 23.10 4.36 26
0.20 26.56 27.74 4.25 26
0.30 29.88 31.22 4.29 27
0.40 32.74 34.11 4.03 27
0.50 35.20 36.79 4.32 27
0.60 37.46 39.12 4.23 27

Table 11: Prices of min puts as σ0 varies. Interest is constant at r̄ = 0.06,
correlation between assets is ρS = 0.3. Parameters are ρξ = 0.3, σ̄i = 0.6
for all i, βξ = 4.5, σξ = 0.3, 40 timesteps are used, Nbins = 200, b = 50. To
establish the lower bound, 50000 paths are used, and for the upper bound,
4000 paths are used with Nsub = 25 representatives in each subsimulation.

The final study considers the full model where both volatility and interest
rate are stochastic. There are too many parameters to explore in a paper,
so we content ourselves with holding the parameters fixed at their default
values, and varying the initial riskless rate and initial volatility. We see
the results in Table 12. Again the comparative statics behave as one would
expect, with the magnitudes of the effects of changing initial values being big
enough to show up even allowing for the fact that we have only got bounds
on the prices.
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r0 σ0 low high gap (%) time
0.2 29.41 30.50 3.59 26

0.00 0.4 35.53 36.76 3.35 27
0.6 40.35 41.44 2.62 26
0.2 26.58 27.74 4.21 26

0.06 0.4 32.66 34.10 4.23 27
0.6 37.58 39.08 3.84 27

Table 12: Prices of min puts as σ0 and r0 vary. Parameters are ρS = ρξ =
ρr = 0.3, σ̄i = 0.6 for all i, r̄ = 0.06, βξ = 4.5, σξ = 0.3, βr = 0.02, σr = 0.12.
40 timesteps are used, Nbins = 200, b = 50. To establish the lower bound,
50000 paths are used, and for the upper bound, 4000 paths are used with
Nsub = 25 representatives in each subsimulation.

4 Conclusions and discussion.

The aim of this paper has been to see to what extent we are able to solve
the problem of pricing Bermudan options in very high dimensions. Once we
accept that for such problems it is impossible that we can know the value
function, we realize that in fact various approaches which have been devel-
oped in the last twenty or so years may be combined to provide a practical
solution in many instances. Working entirely with Markovian problems, the
key elements to the approach studied here are:

• pretend that the stopping reward process Z is itself Markovian, and by
discretizing Z onto a suitably-chosen finite set of values we estimate the
transition probabilities of this finite state Markov chain by simulation
( this is the approach of Barraquand & Martineau [2]);

• solve the optimal stopping problem for this finite state Markov chain
by dynamic programming;

• use the solution to generate a stopping rule whose performance is eval-
uated by simulation;

• use the dual characterization of the value of the problem (see [13], [7])
to find a hedging martingale.

This approach is a very general methodology that delivers upper and lower
bounds on the price that are generally reasonably close, but more importantly
it provides effective recipes for action. It is often said that the price a bank
charges for a derivative is more to do with the cost of hedging that derivative
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than with any number that comes out of some model; and the approach
we advocate here puts that into effect. Indeed, at each time the analysis
we propose tells the seller of the option what hedge he should use - all he
has to do is to hedge the approximate value at the next time step. That
approximate value is a simple function of the stopping reward at the next
time step. Similarly, the approach we use provides a compact solution for
the buyer of the option; at each time, he calculates the value of immediate
stopping, and stops if and only if this value is in some finite union of intervals.

This approach is remarkably successful in many of the examples we have
studied, providing bounds which are often within 5% of each other. Since
this sort of error is inherent in the estimates of input parameters, or in the
assumption that those parameters are constant over time, there is really little
benefit in getting the bounds very much tighter. We would ideally like to
have methods which (if they cannot get the derivative price exactly) can give
bounds which are apart by, say, 1 basis point. This is an industry-standard
criterion ... but where does it come from? Does a bank really care if their
calculation of the price of a derivative is out by 1 cent in $100? Of course
not! The 1bp criterion really comes from the desire to delta-hedge the option;
so we want to vary the prices of the underlyings by ±1% and then find the
change in the price in order to put on the delta hedge, and at this point
1bp accuracy is a relevant requirement. But the approach here gives us the
hedging strategy by a completely different route - there is no delta hedging,
only the hedge that comes from the dual approach! Moreover, getting 1bp
accuracy from a simulation method is already rather over-optimistic.

So what happens when the upper and lower bounds are further apart,
as in the fixed-strike Bermudan Asian option? This is not problematic con-
ceptually; the lower bound is what the buyer objectively thinks the option
on its own is worth, the upper bound is objectively what the seller expects
hedging this derivative on its own to cost him, but either side may move
beyond the bound if by taking on the contract they lay off risk elsewhere
in their portfolio - this is the most basic reason for a market in derivatives.
There is nothing difficult or contradictory in a market where the bid price is
below the ask price - this is normal! If we find a situation where the bounds
are far apart, and we feel it is important to bring the bounds closer together,
what can we do? There are four places where error enters into this approach:

1. the assumption that the reward process Z is a real-valued Markov pro-
cess;

2. the error from discretizing Z values into bins, and deriving the transi-
tions from simulation;
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3. simulation error in evaluating the stopping strategy;

4. simulation error in evaluating the hedging strategy.

We can reduce the last two by doing many more simulations, and the second
can also be addressed by taking more bins and doing more simulations, but
the first error is intrinsic - we can do nothing to reduce it other than change
the problem in some way. The fixed-strike Bermudan Asian option illustrates
this well, because as we discussed in Example 3.4, the state variable for this
particular problem really has to be the two-dimensional vector (St, At), and
the crude notion that we can get a good approximation just by looking at
At on its own is shown by our calculations to be wide of the mark. Now of
course we could work to exploit the specific features of this problem to devise
a problem-specific solution (and the finite-difference calculations in Longstaff
& Schwartz [11] and Rogers & Shi [14] are instances), but this is contrary to
the generic nature of the approach presented here. If we wanted to continue
to use this approach, we might try to bin the values of the bivariate process
(St, At), which is of course conceptually no different from the binning of the
scalar-valued reward process, but we may expect that the coarser binning we
can expect from a two-dimensional underlying process will raise the second
type of error.

To summarize, then, the approach explored in this paper:

• is completely generic - the same code gets used with only changes in
the Markov process and the reward function;

• always gives bounds, which are often within the range of error intro-
duced by estimation or questionable modelling assumptions - and al-
ways within the profit margin required for an OTC product;

• is largely insensitive to dimension;

• gives simple and explicit exercise strategies, and hedging strategies;

• requires only the ability to simulate a step of the underlying Markov
process.

The approach of this study puts together earlier discoveries from the last
twenty years. While it may be premature to declare that Bermudan options
in high dimensions are now a solved solved problem, what we have seen is
that there is a general approach which proves to be at very least a good
start on the problem, even if for a particular question we may want to dig
deeper. Once we set the question in the context of estimation error and
model uncertainty, it may indeed seem pointless to dig deeper in any case.
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