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1. Introduction
- k . , . :
a) For each K e N, let (Zn)n>0 be a critical discrete-time branching process,

with Zz = k. The offspring distribution is the same for each k, and has

finite variance ¢%, with mean 1.

Define the random elements zk(-) of D[O,@)lby

20y = Kkt

.
Z ([xt]),
where [x] denotes the integer part of x. Let'zt denote the solution of

the.stochastic differential equation

+

1 .
2
S) d B .

(1). | : ' z, = 1+ g fg (z

The solution exists, is pathwise unique (Yamada-Watanabe [161) and is the
square of a zerov-dimensional Bessel process (see Pitman-Yor [113, {12]

for more information on these diffusions. All the facts we shall need about

Bessel processes can be found in these two papers.)

In [9], Lamperti established the convergence of the finite dimensional

distributions of the zk, and in [10], Lindvall also proved the tightness
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of the laws of the zk, from which one obtains the fDllowing result.

Theorem A (Lamperti, Lindvall).

As raadom elements of D[O,=), -

Z = z.

Remark. The intuitive interpretation of Theorem A is very appealing; if
oy k . . '
-one deflues:}i = 0({Zn; nskt}), then, since the branching processes are

e

critical,

-1
K K k “[kt] 1 K
z, and (zt)2 - o2 f 'zS ds are”y -martingales.

Thus one .expects that if a 1imit process z exists, it should have the

property

i t .
z_and 2?2 - g2 f z ds are martingales,

t t o S
Together with continuity of paths, these requirements uniquely characterise
the law of the solution of (1). Much recent work has gone into making this

intuitive notion precise (see, for example, Durrett-Resnick [4], Jacod-

Memin-Metivier [71).

Now equation (1) will not have escaped the notice of Brownian motion

enthusiasts; it has the following striking interpretation.

Theorem B (Ray[13], Knight[81)

Let Bt be Brownian motion on IR, B,=0, and let 2(x,t) be (a jointly

continuous version of) its local time. If T = inf{t;0(0,t)>1}, then

(sz,(x,'.r)]xaD SRR

- where z 1s defined by (1) with o=2.

The fact that the same process is appearing as a limit of branching

processes and as the local time process of Brownian motion is largely




explained by the next vesult, which says that there is a branching process

hidden in random walk!

Let (Sn) be.symmetric simple random walk on 7, with §,=0. Define : |

nzo

the "local time" of |s| as follows: ' | .

- _
LEsm = B oI ey (j7nsmﬂ
.=l ¥ -
1f
7 2 inf{n;L(0,n)=1},
théﬁ '
(Ej } (L(j,T);jle-= {zj+zj—1;j21}’

where (Zj)j*o is a critical branching process whose offspring distribution

has the probability generating funetion

(z_t)_l >

¢,<t)

and ZO=1.

The proof of Theorem 1 is given in the next sectiin. The idea of
the proof is essentially that of Dwass [5]; the method of proof is only a

little different.

To make the connec¢tion between Theorems A and B more explicit, define
s(+) and A(-) to be the piecewise linear interpolations of LSn' and L(0,n)

respectively;

Hi

Cs(e)

+ (n+t-t) |s | (n<tsn+l) }

138

(t—n?‘|5n+kl

(t-n) L{O,n+1) +(n+l-t) L{O,n) ‘ (ns55n+1).

|

rk(t)

Define for cach NeN

Ty z inf{n;L(O,n)kN},

.1
SN(t) = N S(NztATN),

1

-1 2
S EA
AN(t)_ N ANt TN),



b)

where L%(x,t)

and finally define

r G0 E N LD, 7). - (Nxz1)

=2 , (0sNx<1).

We shall, prove the Following:

Theorem 2.

. . .
As random elements of C(]R+,IR)2 x DLO,w=), -

(s Ag 0y 2] = (B, |, 200,100), 23 (-, 1)),

Co(x,t) + 2(=x,t) forx, t20.

Remarks (i) While it is easy to belidve that the first compornents of

these triples (and even the first two components) should converge weakly
to the stated 1limit, this provides little help with the weak convergence of

the third; one cannot use the continuous function theorem since local time

is not a continuous function of the Brownian path, and we are forced to

use Theorem 1 in an essential way.

(ii) For those whose courage fails them when a lengthy technical proof of
tightness drifts into view, it is worth emphasising that all the tightness

we need follows from Donsker's theorem and the Lamperti-Lindvall result,

t

so the proof of Theorem 2 is not as grim as might be feared!

In this second half of the Intreduction, we shall bepgin by explaining

why two halves were needed,

In the first half, we took a macfoscopi& view of the convergence of
. o L. - '
the local time processes iN(-) to the BESQ ™ limit, £{:,T). DBul we can

also take a microscopic view. Indeed, the local time process

can be written as a sum of n i.i.d. processes, each with the law of

L(°,T1), by the strong Markov property of S5 at the times'Tr., Theorem 1



tells us that each of these processes is closely related to a branching

process, and the decomposition of L(',TN)'jUSt describad is exactly analogous

‘to the decomposition

k
=y )

r=]
(r) {r) (r)

of Zk into k i.i.d. branching processes Z. with Zo =15z

has the

.o . . . th . .. . .
interpretation of the number of offspring of the r individual at time O

-

which survive at time n.

lNow thelBESQO limit'can also be decompqsed; tﬁe local timé 2{x,T) is
the suﬁ of the local times at level x of evefy excursion of B before T.
There are,‘QE course, infinitely many such excursions but they are "i.i.d."
in the sense &hat they make up a Poisson point process in excursion space
with a o-finite law. The (excursion) law of the local time process £(-,C),
where 4 is the lifetime of a Brownian excursion, has been characﬁerised

by Pitman and Yor {see Theorems 4.1 and 4.2 of [12]). This suggests the

conjecture that the law of L(-,Tl),'when suitably scaled and normalised,

converges to the excursion law of 2(-,5). Of course, we have to-be very

careful about the meaning of convergence in such a setting, since the limit
measure is o-finite, but in sectiom 3 we shall show that, suitably
interpreted, the conjecture is true, which gives a lovely way of thinking

of the macroscopic results; the local time processes RN(X) are converging to

+1

BESQ® because each of the i.i.d.‘constituents‘Nfl{L([Nx], T y - L([Nx},Tr)}

is converging to the local time process of a Brownian excursiom.

Acknowledgements. I am very grateful to K.A. Borovkov, who told me about

Theorem A, and to N.il. Bingham, who Ltold me about Dwass[5].

Branching processes in random walk,

The first task is to prove Theorem 1. To see why it must be true, define

for each‘jZO_

Tr—1
Z, = .1 . .
] r=0 {!Srl =1 s- |Sr+l IfJ+1}.’




the numSef éf éEeps up from the level j.madé by the randeom walk before the first
returm to zero, t©. EBach step up from level j must eventually be foliowed by a
step down from lgvél i+l, but before this happens, the random waik will make a
random number of steps up from.level j+1§ the distributioﬁ éf this random
ndmﬁer of upward steps 1s geometric with parameter i, since each time the

fandom walk is at j+1, it dec1des w1th equal probablllty to step up or down.

Thus each upward step from level j gives rise to a random number of upward
steps from 1eve?‘q+1, the number hav1ng generatlng function ¢. Hence (Zj)jko

is a branching process, and L{j,t) = Zj+2j_l is evident.

Though it is very plausible, it is not entirely obvious from this argument
that the numbers of offsprlng of dlfferent individuals ip the branchlng process
should be independent. To deal with this point, we present an entirely

computational proof of Theorem 1.

Proof of Theorem 1. Pick non;negative reals ao,ul,... such rhat ur=0 for -

r>N,.uO=O and sct x = exp(—ar). Suppose (f )k>1 solves

fo =1
3) fe =il fray * Koy Ty VCkz}),
fk - fk+1 | : (k>N) .

Then defining

Moo=z f(lSnA%J) egp{- L o L(r,nat)},

b r=1
(Mn)nZI 1s a bounded mart%ngale relative to the filtration (Bh) of ]Sn],
and
M= £ ox, = h[Mm!;ﬁjl
N - N v :
(4) = EEH x L(r’Ti'.
r :‘I r

Wé-can solve (3) by setting 2h = fk+l/fk’ so that Ok=l for k>N, -and

S L (k=1)



or uvquivalently

n

D=1 7 xk—l'¢(xk+l k)' ' - Gzl

Thus if 8, .= %, we obtain for k=0

Kk K Fk+1?

pk

= x (04, ?(ek+z("'(GN—1¢(8N))"')))‘

© Hence

5 AR CR YNGR NI TCIP DRSS D) I .

and, by (4),

(6) ' E[-T {0
=1 ©

On the other hand, if (Zn)n>0 is a branching process with Zg=1,rand of fspring

=

= X fl'

—

generating function ¢, then
‘ N
(?) . E E 0 =8, ¢(el¢(82(...(oN_1¢(sN))...))),

A simple calculation based on (5), (6) and (7) yields (2}, completing the

.proof of Theorem 1.

Proof of Theorem 2.

(i) We shall firstly prove that

(505 2y () = I3y, ] 20,120))

For this, it is enough to prove

8) o [s&(-) - 2 (), AN(5>) = (|8, |=200,12), 200,170},

Just as we defined A(t) to be the piecewise linear interpolation of L(0O,n), we

define A(t) to he the piecewise linear interpolation of the sequence

n-1 .
: "

T I[S —0} and we notice that |A(t)—h(t)|51 for all t (sce the picture},

r=0 ’

N |
Thus AN(F) = N.

N . . C o =1 : ' }
A(NztATN) is uniformly within N of AN(t) so to prove (8) it

is sufficient to prove

(s (=0 A () > (1B, 1-200,Ta%), 2(0,Ta)) -

But notice that A(t} = miun{s(u)-A{u); usr}, so it is sufficient to prove




‘ Vs(t) ‘

X ()

| s(E) =0 (1)

()




SN(-) = A IBTA.J'— 2(0,TA).

Thus by Lévy's identification of the laws of lBt|~2(O,t) and B, we must

equivalently prove
9 - sy (DA () = BTAY), | o | .

where T' é'iﬁf{t;IBt = -1}.

-~

But s-A is the piecewise linear interpolation of a symmetric simple ranodm
walk which is held still for one unit of time immediately after each strict

descending ladder epoch-(look at the picture!). More explicitly,

s(t) - a(e) = £(e=r(r))

- defines the piecewise linear interpolation £ of a symmetric simple random walk. .

-1

By Donsker's theorem, EN(-) = N £(N2) = B, and

s (6) = A (e) = gfl g[N2¢N<t)) = g (e (),

1l

oL -2 -2 7.
where @N(t} tA(N _TN) N © AN tATN). Now clearly

2 1

_ o e
A OStngN Ty T (E)=N

since A(-ATN)SN. Hence one shows easily

o .  (gN,¢N) :%-(BfT'A')

and from this one deduces, following Billingslef (23, p. 145, that

= L = TA.
EN0®N Sy AN = B(t ),

which is (9) as required.

(i1) Now we consider the full statement of Theorem 2. If ZE denotes the

number of steps up from level j made by the random walk before T

TN—l
)

N’

Zw =
]

D PR . (§20)
r=0 {lbrl_.]s |Sr+1|—.]+l}



f e - 0 SN L, . - . LN
Lthen 16 follows [rom Theovem 1 that Z7 is a byvanchiong process with Zy = N,

and offspring generating function ¢.

Define

7 () =N AN i) (x20).

1f we set Z§1 = N, then EN(X) = zN(x)'+ zN(x—NFl), so Theorem 2 will follow

if we can prove

(SN(-),AN(-S;Zzﬁ(-)]=a'[|3TA_|,g(o,TA-),g*(.,T))L .

-

Now, as we have seen, the. laws of (sN,AN) are tight, and so are the laws

of Zy» since these are transformed branching processes converging weakly,

by Theorém A. Hence the laws of (SN,A zN) are tight, and it is encugh to

'N’

prove that only one limit law is possible.

. : : ¥ . .
Now take any smooth h: R =~ [0,1] of compact support in (0,=) and notice

Ny . + o
that if we define for seC(Rf, R ), zeD[0O,=)

b (o) = [7 n(s(0)]ae

11

¥, (2) f; h(x)z (x)dx,

then
I claim this also holds in the limit. In more detail, if Hyg is the law on

c(}{b,:m+)2 x D[0,=) of (SN,A ), and y is the weak limit of (some sﬁbsequence

NN

of} the}JN, then

pu(r) = uN(F) =1,

where F = {(S,A,Z);‘$1(S) = wz(Zz)}. Indeed, given >0 there exists M so
large that for every N
uy (AP <5,

where AM = {(s,r,z); z(t)>M For some t, or s(t)>0 for some t>M}. Now AN is

. ; C ‘ o
open, and on the closed seat AM’ wl and wz are continuous.




r ‘1 {'!
Thus A

R

FnA§ 15 a closed set, and for each N

o .
iy ) = uy (A = 1-e

Thus U(FM) 2 lim sup HN(FM)‘E l-e, and letting £40 we deduce p(F)=1, as claimedﬂ

Thus if w is a possible limit of the My by passing to a subsequence if

necessary, we may take on some (2,5,P) réndom.elements (SN’AN ZN) with laws

by converging a.s. to (s,A,z) with law yu. By part (i) of the proof,

a : (s, 1) 2 (1B, 1.200,ma0)) . : .

By Theorem A, Zz has the law of a BESQO process started at 2 and by what we have

just proved, for any smooth h with compact support in (0,w)
[q h{s(e)}de = [, 2n ()2 (x)dx.

That 2z(x) = 2%(x,1) follows from the definition of local time as an occupation

density, completing the proof of Theorem 2.

3. Convergence of the local time process for individual excursions.

) K . . + + oy .
For the present purposes, an excursion is a map p: R +R  which is right
continuous with left limits and such that for some e (0,«], called the lifetime
. . —_ 1 .
of the excursion p, p ((O,w)] = (0,3). Let U denote the space of all excursions;

under the Skorokhod topology, U is'a Polish space. Let U™ be the subspace of U

consisting' of continuous excursions.

&

. . ' . .. a . '
The Brownian excursion law n is a g-finite measure on U which can be
characterised in various ways (see, for example, Williams [157 II.66-67,
Tkeda-Watanabe [6] ITT.4.3, Rogers [141]). An important property is that
; . ) 4 +
n-a.e. excursion p has a local time process, a continuous map L: R xR -+ R

such that for bounded Borel f,

[, )ds = [} 2a,t)E(a)da.




~Abbreviating t(a,7) to' s, the process (Qq)q>0 takes values in UC,'and its

distribution under n is known (see, for example Pitwman-Yor [12] Theorems 4.1 and

4i?); exp11c1tly, for O<t1§t2<...<tn, with 8, = tk+1_tk’
: n-1 .
‘(10) VWn({Et edxi;1=1,...,n}] = 4, (xl)dxl n p(Si;Xi’xifl)dxi+l’ )

i 1 i=1

where qE(x) is the density of the-entrance law,

qt(xj = (Zt)uz‘exp("x/2t),

e

and p(-3+,+) is the transition density of a BESQ® process, characterised by

f: p(t;x,y) e 7 dy = exp{-xa/(1+2at)).

Let 1 denote the law of (Ra) under n; that is,

azp

u({pt.edxi;i=1,..,,n}] =‘n({£t-edxi;i=1,...,n})

i ‘ i
Now‘suppose:that‘(zn)ﬁ>0 is a branching process with offspring generating function

d(t) (Z—t)ﬁl-and Zy=1. Define the random elements ik of U by

k _ -1
- - Fe T ey
and let P be the law of Rk, a probability measure on U. Defining

1
M E 2 kP,

we have the foliowing result.

Theorem 3.

" As measures on u, My = u;
"Remarks (i) This statement must be understood in the following sense.

If U~
n

1]

{peU; ¢>1/n}, then uIU is a finite measure; by TP M we'mean
n ’
j = as k»» for each n.
Ly uly _
13 . T ' 1
(ii) This is a crude definition of weak convergence to a o-finite limit

which it would obviously be difficult to generdlise to an arbitrary Polish

- space U. One can very quickly write down at least five different possible’



dufinftions of ukﬁéu which agree with the qéuél definition 1if ] is.finite, and
one can almost as quickly find examples to show that the concepts are all
different- if p is allowed to be o-finite. Finding the correct definition (if
there is oue) is a problem well worth study; in some-sense; the law of symmetric
simple random Walk_étarted at 1 gnd‘killedfon first reaching 0 must, when )
' suitably‘transformed, converge to the Brownian excursion law, and one even
expects thé analoéue of Thedrem 2 to hold. ﬁowever,‘we restrictlourselveé

i

for the time being to more modest objectives.

-

- Proof, If_Zn is a critical Branéhing process with the variance of the offspring
distribution equal to o2, and such that Z,=1, then it is well known (see,
for example, Athreya-Ney [1] p.19) that as nwo,’
‘P(Z'.n>‘0)' N 2/n02,

Thus if we fix n, set ¢ E-lln and consider some bounded continucus f: Un+]R,
then asg ko,
an [ Edu o~ Ele(o'z }z >0,

Un Tk 2e [kt] [ke] ?
" bearing im mind that g2=2 in this example. Now Durrett [3], p. 813-815, has
obtained the limit law of k © z[k-] given Zk>0’ at least on the interval
£0,11. Modifying his results to the present context, we Find, combining with
the Lamperti~Lindvall result, that as ko, the law of P Z[R']‘given Z[ke]>0

converges weakly to the law of a continucus inhomogeneous Markov process

-
»

Xt’ governed by the entrance law

(12) - P(XtedX) = B _e—X/Zt hix,t) dx (O<t§g),r
. 22

where

hx,t) = l-exp{-x/2(e-t)},

and by the transition densities

(13) _FP(Xtedy Xs=x)/dy = p (t;s;x,y),h(y,t)/h(x,s) {O<s<t=e);
(14 '”Pthedy|Xs=x)/dy = plt-s;x,y) (g=s<t).



1

We leave it to the reader to check these calculations. The theorem follows

immediately on inspection of (10}, (i1), (12), (13) and (i&).

differential equations. J. Math. Kyoto Univ. 11, 155-167, 1971,
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