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1. Int-——-*~tion.

o]

Let ©° = {continuous functions from [0,=) to R}, 1let Xt 0+ R

be the mapping w # w(t), let 7 U({XS ; 0<s<t}) with 7°= OC{XS; s=20

o
t
and let Mt(m) = max{XS(w) ; 0ssstl.

Let P be Wiener measure on (QO,?O); then P(XO = 0) =1, and there

exists £ e 7 with P(Q) = 1 and such that for all w € @, for all t=20,

the limicxt

1
(1) lim (3 med® N(t,c,w) = L, (w)
e+0
exists, defining a continuous function Lt(m) of t,. Here, N(t,e,w) is

the number of Ik(m) contained in (0,t) and of length at least e, where

(=]
K¢w) = {t; w(t) $ 0} = u I (w
k
k=1
is a representation of the set K(w) as a disjoint countable union of open
intervals (for the existence of such an Q, and other properties of 1L see,
o

for example, Williams [8] ). Henceforth we restrict our g-fields’ 30, Qt

to § , writing the restrictions as 7, 3t.

The normalisation of local time we have made here has been chosen o that

the remarkable distributional identity:

D
(2) (x hirp = o -x ,m)

is valid.

}

),




In recent years, a number of papers have appeared dealing with the

distributions of T, MT and XT, where T is ap (Rt)-optinnal time of the fo3

T = inf{t ; (Bt, M) e A}
2
for some (closed) subset A of R°. (See Azéma-Yor [1], Jeulin-Yor £33,
Enight [4], Lehoczky [5], Taylor (7], and Williams [9ly. Various approache

have been adopted by thesé authors; the aim of this paper is to show that Itg's
excursion theory provides a natural setting for these problems, and that the
explicit characterisation of the Brownian excursion law due to Williaems [10]
turns this natural way of cénsidering the problems into a powerful method for
solving them. No proof of this characterisation of the Brownian excursion law
has yet appeared, so we devote section 3 of this paper to a proof using the path
decompositions of Williams. In section 2 we see how the Azéma-Yor proof of the
Skorokhod embedding theorem can be quickly established usinpg ideas from excursior
theory, and finally in section 4 we use the result of section 3 to solve the

problem-dealt with by Jeulin and Yor of finding a method of calculating

G
S S
E exp{-a(X_,L.) - b(X_, L )dt - c{X,, L )dt},
S’ 78 t' ot t' Tt
] G
5
where a, b, ¢ are any measurable functions from Bz to :m+,
(D) G, = sup{s<t; X_ = 0},
and
+ . —
4 = i f - = - - L3
(4) [ inf{t ; h(Lt)Xt + R(Lt)Xt 1}

. + -
here, h, k: R + R are measurable, and Xt = (Xt)V()E Xt + Xt'
We conclude this section by setting up the notation to be used for the rest

of the paper.

+ v

Let U ={fc0”;3 0<f<w with £(t)>0 on (0,2), f(t) = 0 otherwic
U= {tea®; -fecuty
v=vutuu

For f € U, let r(f) = supit; f£(t) + 0},

max{f(t) ; t>0) if f ey’
m{f) = v
min{f(t) ; t20} if f ¢ gy~ .




Equipping U with the topology of uniform convergence on conpact sets makes U
into & Polish space; let U denote its Borel o-field, .

A
Now it 15 & central ides of the historic paper by Ito [2] that there exists

a o-finite measure n on U, satisfying

(5) J n(df)[1 - exp(- £(f))] <=,
U

+ -
such that, from s Poisson process on R XU with measure dtxdn one can
synthesize the original process X, and, conversely, by bresking the set

E{(w) into its components Ik(m} and considering the excursions of X during

. +
these intervals, one can construct a Poisson process on R x 1. In more detail,
if we §i, define for eack 1>0
(6) Ut(w) = infl{u; Lu(m) >t},

and use J(w) to denote the (countable) set of discontinuities of t b Gt(w).

For t e J(uw), 1let ft denote the element of U defined by

ft(s) = X(g., +8) 0 <s <g -g

t- t t-
=0 otherwise.
Then {(t,f1) ;T o€ J(w)} is a realisation of a Poisson point process om E{Fx U
with measure dt ¥ dn; in particular, defining for each measurable subset A
of the Polish space Bf5<U, the randem variable:

N(A) = pumber of t € J(w) Zfor which (t,ft) € A,

then if Al,.-.,Ak are disjoint,N(AlL...,N(Ak) are independent Poisson random

LY

R

variables with parameters:

E N(A) = J dt x dn.,
1 A

i
In what follows, we will freely switch from considering the process X &8s =&

continuous function of real time to considering it &as a point process in local

time.

2. The Skorokhod embedding theorem.

We begin this section with & simple lemma, which can be deduced from Williams’

oy -
-



characterisation of n, the Brownian excursion law, but which we here prove

directly. : .

Lemma 2.1.

n({f ¢ U; |m(£)]|>x}H =x"1 for each x> 0.

Proof.

)
Bearing in mind that (|Xt[,Lt) = (M_-X_,M), and fixing x>0, ve see

that if
p = inf{s ; M -X >x},
s s
then Mn is exponentially distributed with rate n({f ;|m(f)b>x}). An

A
application of Ito's formula tells us that for each 8 > 0,

6 ~oM, -1
Zt e (Mt--Bt + 0 ) dis & local martingale.

But és. ie bheunded on [0,p], and using the optional sampling theorem at p

proves that Mp is exponential, rate x
¥-— ot u he a prohability measure on R satisfying

J [t] u(dt) <=, J t p(dt) = 0.
i3} R

Azéma and Yor define a left continuous non-negative increasing function

¥: R-R' by

v
o
-

7 ¥(x) = ﬁ(x)_l [ t p(dt) if p(x)
fx,=) .o

Il
o

= x if  p(x)

where p(x) = u(ix,=)); they remark that W(x) > x V¥x,

Y(x) = x = ¥Y(y) ¥y ¥y = x, and lim Y¥(x) = 0.

I 0O
Now define

(8 T = inf{t; Mt = W(Xt)}.

Theorem (Skorokhod; Azéma-Yor).

The optional time T is finite a.s., and the law of X is u. Moreover,




2
if Y possesses a finite second moment, themn ET = J‘t pHedt).

Proof.

We leave the proof of the last assertion aside until Section 4.
Define the right continuous inverse ¢ to Y by
®(x) = inf{y; ¥(y) »x},
and notice that, with this definition,

= 4 N o
T \ inf{t ; @(Mt) > Xt}.

Since XT = ¢(MT) when T <lm, it is enough to find the law of MT. We make
the convention that MT =o if T = o,

Now look at Fig. 1 and think in terms of excursions. A sample path of-
(Xt’Mt) in IR2 consists of a (countable) family of horizontal "spikes"
(corresponding to excursions of X below its maximum) with their right-hand

end~points on the line x = y, The time T occurs when one of these spikes

goes far enough to the left to enter the shaded set, {(x,y); y 2 &(x)}. it




we fix ®m > O, then MT 2 m < DO excursion of M- X during the local time
interval [0,m) has maximum greater than or equal to u- ¢(u), where u is
the local time at which the excursion occurs. But this letter event occurs

iff the Poisson process of excursions puts no point into the set

Hi

D={(#; 0<u<m [n£)] > u-odu)}.

Now the number of excursions in D is a Poisson random variable with mean
m 1
J dtxdn=J dt (t- o(t)) ~,
D 0
by Lemma 2.1, So

P(;ﬂT >m) = P (no excursions in D)

(9}

h
expl - J Ldt (t-a(t)) 1.
0

If we make the simplifying assumption that V¥ is continuous and strictly

increasing, then, as XT = @(MT) when T < «, for x < sup{t; u(t) > 0},

PfT = =, or XT2>x) = P(MT > 0(x))

1]

)
(10) expl~ [ —ES!E&L—] }

e Y(s) - s
But, by the definition (7) of ¥, for s < sup{t; u(t) >0},

- u{ds) _
(11) ) ¥(ds) = 7(s) (¥(s) -s),

which we put into (10) and deduce that for x < sup{t; j(t) >0},

P(T = =, or XT3>x) = u(x). . X s

Now let x+4sup{t: p¢t) >0} to learn that P(T = @) = 0, and P(éT:>x) = uix).

To handle general ¥, the jumps of ¥ must be accounted for separately
from the continuous part. The details are not difficult, and are left to the
reader.

Pierre [6] gives a proof of this point in the spirit of the original paper

by Azéma and Yor.
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3. Williams' characterisation of the Brownian excursion law.

Informally, Williams' [10]} characterisation of the Brownian excursion law

' -2
says this; pick the maximum of the excursion according to the "density" x  dx,
o
and then make up the excursion by running an independent BES (3) process
o
‘until it reaches the maximum, and then run a second (independent) BES (3)
process down from the maximum until it hits zero. We shall here treat the

excursion measure of (Xt) which is only trivially different from the case -

120’

treated by Williams, that of the excursion measure of (|Xt‘)t>0'

In more detail, set up .on a suitable prohability triple (02',7',P') the
indcpeom st processes
o
(i) (Rt)tZO’ a BES (3) process,
i1y (R ther BES®(3) process
(iiy «( t)t20’ another P .
N a,
Define for each x>0 TX(R) = inf{s ; RS:>x}, TX(R) = inf{s ; RS >x7}. Now
for e?ch x >0 define the process (Zi )t20 by
R 0<¢=
(’ " ; t<tT _(R),
2 =dx-Rer-1_R)) (RY<t<t _(R) + T_(R
t x * Tx = _TX TX( 3,
0 (R) + 1_(R) <t
. y Ty Tx( £t.
For x<0, set 2 = —th (t20), and define the kernel (n|m)(-,-) from
®B\{0} to U by : . "
X
(nfm)(x,4) = P'(Z] ¢ A) (x ¢ R\{0}, & ¢ ).

(It is plain that for each x, (n|m)(x,-) is a probability measure on (U, LD

@
and to prove the measurability of (n;m)(-,A), notice that (Zzt()t>0 = (x Zl 2)
_ = tx ot

s0 if ¢: U -+ R is bounded contimnuous, the map X b J(nim)(x,df)‘Q(f) is
continuous, and measurability of (n}m)(-,A) follows by a standard monotone

class argument). . The kernel (n]m) provides a regular conditional n-distribution

for the excursion given its maximum,



Theorem 3.1. (Williams)

The Brownian excursion law is the o-finite measure n on (U,1) defined

by
-2
n(A) = 3 x “(nm)(x,A) dx
RA\{0}
(12}
-1
= nem - (dx)(n|m)(x,A).
RA\{0}
The rest of this section is devoted to the proof.
We begin by reviewing briefly some results on random measures which we
shall use. Let M demote the set of g-finite measures v on (EHZXU; %(m+)>~ux

with values in Z' U {=} satisfying the condition
(13) v{{t}xU) £1 yt=zo0.

Ve equip M with the smallest pg-field @{M) for which all the maps

+
v b w(E) (E ¢ (IR ) x1)
are measurable. There is a natural 1-1 correspondence between M and the
‘ A
space of point functions considered by Ito f27. We shall if need be phrase

statements in point function language, but generally the statements in terms

of M are cleaner. For each t =0 define the map Bt: R'x U + R xuU by
Bt(s,f) =(t+s,f). A random measure is a random element K of M; we say

N is renewal if for all t20, N oezl is independent of the restriction

of N to [0,t)xU and has the same law as N. Ith proved that -every

. =

renewal random measure for which the measure A B EN(A) is o-finite is a
Poizsson random measure, and conversely (a random measure N is 2 Poisson

random measure if there exists a g-finite measure ) - the characteristic

4

measure - on  (U,l) such that

(i} N(A) 1is Poisson with mean j dt x dx, A ¢ %(m+)x U;
A

(ii) if A_,...,A are disjoint measurable subsets of R x U, then

1’ k

N(Al),..., N(Ak) are independent. ).

We now give a careful construction of the map  $: (R, =+ (M ECHD)

- -



which was outlined in the Introduction. Fix nr ¢ W, and consider the

(?t)-optional times

1)
1t
I
=
—

0, inf{t >0 Ix

po pk+1 k ’ tf
(14) (k = 0,1,2,...)

= . X = 0}.
1nf{t>pk+1 : Xt }

(o]
It
[aw]
Q
11

The map ¢ : (8,3 - (M #(M)) takes « to the measure which puts mass 1
n

on each of the points (ﬂk,fk), k= 1,2,..., where

£k = ka
(15) fk(t) = w(t-+nk) 051:Sok ~ Ny
=0 tEaUk-nk,
using nk to denote Sup{t-<pk ; Xt = 0},
The measure ¢(w) is defined by
(16) (W) (A) = 1im & (w)(A), A e B(R) x .

Proposition 3.2.

The map &: (2,7 > (¥, 8(M)) is measurable.

Proof.

It is plainly enough to establish measurability of each @n’ and to prove
that each @n maps into M. The latter follows from the fact that the set of
r - Ty

points of increase of L (w) is the zero set of X (w) for all e {1, and to

prove the former, it is enough to prove that the probability measure putting

+
mass 1 at the point (ﬂk,fk) is measurable. The g-field on R %X U is the
product o-field, so it is enough to pProve measurability of Ek’ fk -separately.
Measurability of ﬂk is immediate; as for fk’ if we fix a>0 and t>0

and note that
[==] oo oo =]
{f(ty»>al= v v uv v a A ,
K m=1 r=1 j=1 s=1 pel mrisp

where

R



r

=0 1t pd 3277 +¢t, (J+12 T4t

A .
mrjsp

-1

1

-1 . o-T . -r . -r.
fw)>a+m ~, n_e [3277,G+127), suplux) ;32 $x<(j+1)2 7 }<n

~r R -r -1
and inf{w(x) ; (j+1)2 ~ <x =< (j+1)2  +t}>s ~} otherwise,
is in 7, then this proves fk to be measurable.

Remarks.

(a) By the properties of L, it is easy to see that &(w) € M always

satisfies the condition

(17) Ot = J ®{w)(ds,df) £(f) 1is a strictly increasing finite-valued
(0,t]xU -

function of t.

Later in this section we shall give a sort of converse to Proposition 3.2
which did not appear in Itg's paper, though it is cbviously very close to what
Itg did prove; we shall prove that there is a subset MO of M and a measurable
functiQn Yo Mn + 0 such that ©&{(Q) c MO, and Yo ¢®(w) = w for all w e G.

In other words, not only is it true (as Itg proved) that the Brownian path can

of excursions with measure n, one c¢an synthesize a Brownian motion from them.
{b) By the strong Markov property of X and the fact that the points of increas:
of L form the zero set of X, rthe random measure &(X) 1is renewal, and the
g-finiteness of A & E ®(X)(A) is immediate, so &(X) is a Poisson random
measure. Thus the existence of the Brownian excursion lgw n ié‘pot in
guestion - nor is its unigueness!

As stated in the Introduction, we are going to use the path decompositions
of Williams [8] te prove the characterisation of R, which will fpllow from

Theorem 3.4 and Proposition 3.3. Firstly, we give an obvious characterisation

of n which we shall prove equivalent to the result stated.
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Proposition 3.3.

Fix a>0, and set up on & suitable probability triple the independent

processes
i B a Brownian motion startéd at O;
D B, ;
(ii) (ﬁt)t>0, a Brownian motionm started at a and stopped when it hits 0.
Let 1 = inf{u; Bu = a}, n = sup{t<rt; Bt = 0} and define the process Z by
Z =B 0<t<T1-
t n+t ™0
= B <t
t-1T+n ™n

The process 2 1is a random element of U, whose law is the restrictiomn of n tc¢
UaE{f € U; m(f)za}l,

normalised to be a probability measure.

Proof.

i +
If we restrict ¢(X) to R x Ua, we observe a discrete Poisson process

whose points come at rate n(Ua) and are i.i.d. with law n(U )_l.n. The
a

law of Z 1is nothing other than the law of the first excursion of X with
maximum greater than or equal to a,.
We now turn to the path decompositions of Williams [8]. The following

result is a slight extension of Theorem 2.4 in that paper.

Theorem 3.4 (Williams).

Let {xt; 0<t<r} be a regpular diffusion on {(A,B) with infinitesimal
generator ¢ satisfying the conditions ;

(i) XO = b e (A,B);

(ii) the scale function s of X satisfies

5(A) = —=, s(B) <w=;

inf{t ; X = B} a.s.

il

(1ii) ¢




Then, defining

(18) y E inf{Xt; o<t<zgl},
there exists a.s. a2 unique p such that Xp =y, The law of vy 1is
s(B) - s(b)
< = Sa7h s d <
(19) Py <x) S(B) - s(x) {x £b)
and conditional on 7y, the processes {Xt ; 0<ts=p} and {Xt+ s 0<t<z-p}
o)

are independent; the law of the pre-p process is that of a diffusiom in . (A,B)
with generator
-1
(20) [s(B)-s] " gls(B) -s]
started at b and stopped at 7Y, and the law of the post -p process is that

of a diffusion in [v,B) started at <y and killed at B, with generator

-1
(21) [s-s(y)] "¢gls-s(y)l.
Finally, if o Z supis; X_ = b}, +then the process {X ; 0<t<r-o0)

[ t+o

has the same distribution as a diffusion im [b,B) with generator
-1
(22) [s-s8(b)] " gls-s(]

startea at p anad kiiled at B,

Let us apply this result to the case of interest where A = -=, B = 0,
b = -a< 0, and the diffusion X 1is Brownian motion started at b and killed
on reaching 0. The scale function of X is the identity map, and the
¢ - LY
d2 2 . -
generator is 3 3 on Ck(—w,O). We can now read off the decomposition at
dx

the minimum of X from (19), (20), and (21);

(23) P(inf‘Xt< -X) = a/x;
d2 1 d
(24) {X¥,; 0<t<pl has geperator 4% — + — —, so {-X 0<t<p}
t dxz X dx !

a
is 2 BES (3) process, stopped on reaching -v;




....13_

2

: 1 d
(25) {X 7 0<t<g-p} has gemerator 3-—— + —— — 0 the process
dx2 x-y dx

t+p

{Xt+ -y; O0<t< -p} is a BESO(3), stopped on reaching -vy.
p
Finally, we can read off from (22) what the law of

{X i 0<t<r-g}

t+o

will be; the same argument proves that

(26) {a+xt+6; 02t <g-g}

LS P . .
is a BES (3} process, stopped on first reaching a.

Now we can use these path déc;mpésitions and Proposition 3.3 to
finish off the proof of Theorem 3.1, From Proposition 3.3, the piece
of the path of Z up to the first hit on a is just a Brownian motion
Erom itf Iozt L1t 22 rmero before its first hit on a, and this, by (26},

is a BESO(S) run until it first hits a. The path of Z from its first

hit on a mnow splits, by (23), (24) and {25), dinto

(27) 2 BEST(3) run until it first hits vy, ‘ A

(28) a BES"(3) run down from Y until it hits zero,

independently of the path of Z up to the first hit on a. The law of v
is given by (23). The path of Z 1is now in three pieces; the last piece,

(28), is what we said it would be, and the first two pieces, the path up to
the first hit on a, together with (27), can now be assembled to make a

BESO(B) run until it hits Yy, since the two pieces are independent. This
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completes the proof of Theorem 3.1.

Notice that Williams deduced Thecrem 3.4 from his path decompoéition of
BESb(B) process by change of scale and speed, which transforms the diffusion
to the most general possible r?gular diffusion. We have taken this general
result and applied it to the particular example, though it is equally possible

to calculate the changes of scale and speed which transform BESb(B) into

BM“a. The result is the same; the diagram commutes!

.

As stated earlier, we return to the question of finding an inverse to the

mapping @&, The natural thing to do is to define for v ¢ M, t 20,
(28) o, = [ v(ds,df) r(f),
[0,t]xU
and
(30) ' L, = inf{u ; 0u>t},

and then define the function WY(v) : R R by

It

Y{v)(t) 0 if G(Lt) = U(Lt—)

It

{31) f(t-—o(Lt-)) it O(Lt) > o(Lt—),
where v((Lt,f)) = 1,

The problem is that the function ¥{v) thus defined may not be continuous;

the solution is to restrict the set on which V¥ 1is defined, but we must be
’ . A

sure to choose the restricted domain big enough to cateh ail (or almost all)

the ¢(w).

Define for k ¢ W

1
U =t eU; || 2]
= ith = .
Vk Uk\Uknl’ wit Uo I
By Theorem 3.1, we know the characteristic measure n of ¢(X), and it is

clear from this description of n, and the Laplace transform of the BESO(S)

first passage times that for 6>0, x % o,

2 .
n(e_éa L({f) lm(f) = x) = (ex'coseChf3X)2,-

-

(32)
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where this eguation is tc be understood in the sense of regular conditional

distributions. Taking 6 = x ~ , trivial estimation yields for each g >0

.

-2- - -—c. 2
n(c(f).[m(f)l 2-2¢ < 1 Ilm(f)l = x) £ e% (x €cosechx E) .
Now consider what happens to the process @(X)]V : since n(Vk) =1 for all k,
k
2+2
P(3(s,0) e[0,tIxV  with z(f) < [m¢e) |“74%) < l—exp(—teé(ks cosech k%) %)
< 2te%(k€cosechks)2

for k 1large encugh.
By Borel-Cantelli, we deduce that, for each 0 <t < o P-almost surely there

exists a constant K(t) sﬁch that

2+2E})

(X ({(s,£) ; 0<s<t, £{f) K(t) < |m(£)] = 0.

S0 we define ﬁk to be the set of Vv € M for which the following two comditions
hold:

(iy t H'Ut is finite and strictly increasing (Gt defined at (23));

(ii) for each t>0, JK(t) € (0,») with

2+2
E}) = 0, each ¢>0.

v({(s,£); Oss<t, L(£) K(t) < [m(D)]
With v restriczed to lie in ﬁ%, definition (31) makes sense; the function
¥{(v) 1is continuous, {Indeed, continuity in the open intervals where L is

. . . : : 2+2¢
constant is immediate, and, at the end points, the fact that |m(%)]

dominated by a multiple of ¢(f) for all f implies continuity). An argument

similar to that used in Proposition 3.2 proves that VY: Mo -+ QO is measurable;

the details are left to the reader. The final observation is that for
w € §, Yed(w) = w, since, by the comstruction of ¢, the function ¢ defined
at (29) is the right continucus inverse to Brownian local time, We conclude

that any Poisson process with characteristic measure n maps under V¥ to

Brownian motion, which is the converse to Theorem 3.1. .
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4. Functionals of the Brownian path

Recall the notation of the Imtroduction; a,b,c : BZ + Y and

+ +
h,k : R * R are fixed measurable functions, and for each
t 20, G, Z sup{s < t; xs=0} . Define the optiomal time

- . . + -
(33) T = inf {t; h(Lt)Xt + k(Lt)Xt =1} ,

the random wvariables

T
Yl z exp {- a(XT,LT) - JGTC(XS,LS)dS} s
Gp
{34) Y, = exp {-f p(X ,L )ds} ,
2 0 s’ 8

Y =YY
- 12
We impose the condiiion
t
(35) lim J {h(x) +x(x)}dx = =,
: t>x70

whose interpretation will become obvious shortly.

Let (Rt)t>0 be a BESO(S) process with first hitting times {TX(R); x>0},

=+
and define the measurable functiomns g,y + RXR -+ [0,1] by

TX(R)
E(x,2) = E exp [-f b(RS,g)ds] if 20
0
36
56 T_,(R)
= E exp [—J b{(-R ,g)ds] if x <0,
0 5

with v defined similarly, replacing b with c. s

In this section, we shall incline to the point function descrii:of:ion of
Poisson random measures (equivalently, Pcisson point processes), since this
accords more directly with intuition, though, as remarked before, the two are
equivalent,

+
Now let N = {N(F); Fe¢GB(R x U)} be the Poisson process of excursions
+ -

of X. For C e (R xU) we write:

N| . = {N(F); Fcc).

c
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+
For each x > 0 define the Borel subsets of R X U:

-1 -
Az {(t,0; 0stsx, -k <m(H) <h(n ],
= X
A (Lo,x] U)\Ax,
with A = U Ax,'; T U Kx' Now look at Fig.2 and think in terms of
x>0 x>0 +
excursions. If we map N to a Poisson process m ° N on E X R by

sending (t,f} to (t,m(f)), then the excursions lying in A go to the (open)
unshaded region of Fig.2, and the others go to the (closed) shaded region. it
is clear from the Poisson process description of N that

(i) NIA and N|3 are independent;

(i1) Ly = inf {x;N(A) >0} ; in particular, L, is independent of N[, ;
£
(iii)  P(L_€ df, xT> 0 /de = 3h() exp[-%J {h(x) +k(x)}tdx],
* 0
37
(37) 2
P(L, € d?, XT<0)/d£ = 3k(L) exp[—%f {h(x) +k{x)}dx];
0
i X—h(L)_l if X_ >0
(iv) T T T ’
cm oyl g X, < 0.
T
Lol us pow . L. 20w consequences of properties (37). From (iii) we see that
£
p(LT > L)y = exp [—%J {h(x) + k(x)ldx] ,
' 0
‘explaining condition (35) - it is tc ensure that T <= a.=.. The random

variable Y1 is measurable on the 0-field generated by N K so, conditional

on LT and the sign of XT, Yl and Y2 are independent, since Y2 . is
measurable on the o-field generated by NIA

L
T

From the characterisation {(Theorem 3.1) of the Browniam excursion law,
5

we have that, conditional on LT, and XT > Q,

. < < i i i - < <<
{XS, GT_.s_.LT} is distributed as {Rs, O_Ls._Th(L y-1
T

where R is a BESO(B) process. Thus

1

- -1
(38) E(Y1|LT, Xp > 0) = y(b(Ly) =, L) exp [-a(h(LT) ) LT)} a.s.,

T
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with & corresponding expression for E(YllLT’ xTezo)_

Turning to E(Y2|LT, xr> 0) , we have to think of the process in another
way. If the function b was equal everywhere to £ > 0, we could take a
Poisson process in I{P of rate E independent of the process X and
superimpose it or X to give a Brownian motion marked at the points of an

independent Poisson process, and then

(39) Y2 = P{(no mark in [O,GTJIXS; 0<s) a.s..

The case of general b is only a 1little more complicated; the rate of the
Poisson process of marks is no longer constant, but is egual to b(xt'Lt) . Y
still hase the interpretation (39). We now ikhink of building up the marked
Brownian motion from marked excursions, Informally, the Poisson process N*
of marked excursions is obtained from the Poisson process N of unmarked
excursions by taking each unmarked excursion and independently inserting marks
at rate b(X.,L.). In more detail, if, in the unmarked excursion process,

an excursion f € U appears at local time £, then the number of marks which

go into it is a Poisson random variable with mean

L{f)
J b(X ,L)ds
o 5

independently of all the other excursions.

In particular, the probability that the excursion receives no mark is

()
exXp [_J b(XSJ’Q’)dSJ ) 4 - LI
0 . -

and so0, by the characterisation of the Brownian excursion law (Theorem 3.1},
the probability that the excursion receives no mark conditional on m(f}) , its

extreme value, is

B(m(f),i)z.

[}

*
If we now project the marked excursion process N A into the marked Poisson

* +
process m ° N A on R X R as before (by identifying excursions with the
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-2
same extreme value), we observe a Poisson process with measure dt x ix “ax,
whose points (t,x) are independently marked with probability 1 - B(x,t)z,
' 2
and upmarked with probability gB(x,t) . Thus the number of marked excursions

before time £ is a Poisson random variable with mean

L h(t)
(40) 8(8) = f dtJ 5’% £1-px,t)2] .
0 oyl 2

Thus

Y2 = P{(no mark in [O’GTJIXS; 0<s) = EHB(LT) :

and finally we can, by the independence of Yl and Y2 conditional on LT

and sgn(XT), and the explicit expression (37)(iii) for the density of LT
put everything together and get

-1
1 e-—a(h(ﬁ) » L)

—p (&Y - B(LY, -
e P 8L vy 0y

ev = |
(41} JO

ol

af,
1

-1 _ _ -
R R Ty e BRGS0,

where

2
p (L) %J {h(x) +k(x)} dx .

0
This is really the whole story, though the functiouns vy and 6 which
appear in (41) are as yet in no very explicit form. Jeulin and Yor give a
characterigsation of y and © through solutions of certain differential
egquations. Our approach also leads naturally to a differential equations
characterisation of B and Y o indeed, referring back to the definition (36)

of B, we see that for each £ 2 0, B(.,L) is the reciprocal” of the solution to

dzx 1 d
z g * =T - px, )y =0 (x>0
dx X dx
{42)
y(0) = 1, y imcreasing,
with the analogous differential eguation in (- ,0) . It can be shown that

the differentlial equations obtained by Jeulin and Yor are equivalent to (423 ;
as in their work, we understand (42) in the distributional sense if b{(.,£) 1is

not continuous. The easy way to see that (42) is true, at least in the case



where ©b(.,L) 1is continuous, is to note from (36) that for each ¢

t

-1
(43) B(Rt:l) eXP["f b(Rs,ﬁ)dS] is 8 local martingale.

0
Itd's formula now gives (42) as a necessary and sufficient condition for (43).
Let us now apply this to the final assertion of the statement of Skorokhod's
embedding result, as promised. In facf, we shall do more; we shall obtain the

Laplace transform of (MT,T), as do Azéma and Yor.

Let us fix £, n > 0 and take the measurable functions a, b, and ¢ of
{34) to be defined by

b(x,2) = c(x,82) = %Ez yooa(x,2) = nk (xe R, 220).

The measurable functions h and k of (33) are defined by

-1
h(%) = k(1) = ¢$(2) (L20),
where (&) = 2 - &(L) . It is possible that ¢ may vanish; in this case,
we replace ¢ by ¢ V e, solve, and let € + O. Plainly, the optional times

' -1 -1 ‘
% defined by (33) with h and k replaced by h A€ *, k A ¢ will converge

almost surely to T, s0 we lose no generality by assuming that ¢ is bounded
away from zero.

These definitions of a, b, ¢, h and k c¢ast the problem of this Section
into the problem of Section 2Z; all that remains is a few trivial calculations,
From (36) or (42), we obtain

B{x,%) = v(x,8) = E£xcosech&x ’ - v ¥
so that, from (40),

[
B(L) = J dt {L cothEd(t) - ¢>(t)_l} )
o

and from (41)
£
-1
piL) :f dat ¢(t) .
0

Putting this all into {41} gives

X

(44 E exp {-n MT—%éz T = & J dx cosech Ed(x) eXp(-j (E coth £¢(t) +n)dt) ,
0 o
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which agrees with the result of Azéma and Yor in the case where H{x) > 0 for
ell x; the femaining case is. handled by the approximation argumen? outlined
above.

If we are interested in the expected value of T, we can differentiate

{44) with respect to E, divide by -~E and let {§ and n drop to zero, giving

X X

26 (1)dt] exp (-J st) Tat)

(45) ET = ;—f dx [¢(x) +¢(x)"1f
0 0

0
If we now suppose that ¥ is continuous and strictly increasing, we can

change variables in (45) and we obtain after a few calculations that

(46} ET = J p(dt) (¥(t) - t)z

By Schwarz' inequality, and the assumption that ¢ has a second moment,

(47) ﬁ(t)qf(t)z < f 2u(dx) + 0 as t + o,
t

s0 we can integrate by parts to give for each N ¢ N that

N 2 - 2 — 2 N
(48) J PADIY (B)7 = p(-MY(-N)" - WM YN)" + J 2¥ (L) (¥(t) - tHuldt) ,
-N -N
using (11). Rearranging (48) gives
N N o
(49) 2 I pldt)t¥(t) = J w(dt)¥(t) + o(1) ;
-N -N

applying Schwarz' inequality to the left-hand side of (49), we see from the
fact that u has a second moment that the right-hand side of (49) remains

bounded as N + =, and, taking the limit, we deduce from (46) and (48) that

ET :'f pldt) 1:2,

as required. The case where Y is not continuous and strictly imncreasing can
be handled directly, or by appeal to the results of Pierre [6] , as in
Section 2.

Using the results of this Section, we can provide alternative proofs of the

results of Enight [41 ; these are concerned with the case where
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]
o

h{%) = k(L) (08 <a)

= 4+ oo (ﬂ‘:l) s
aﬁd
(x) +vI (x) (xe£R,220)

b R, = R. = )\I I
GOl = e = Mig e (@ TV ie, ), g, 00 (g, (),

where g gz are given measurable functions, and A, y, v are positive.

1’



- 24 -

REFERENCES

[1] AZEMA, J., YOR, M. Une solution simple au probléme de Skorokhod.
Séminaire de Probabilités XIII, SLN 721, Springer (1979).\

A

(2] ITO, K. Poisson point processes attached to Markov processes.
Proc. 6th Berkeley Symposium Math. Statist. and Prob. Univ. of California
Press {1971).

{31 JEULIN, T., YOR, M. Lois de certaines fonctionelles du mouvement Brownien
et de son temps Local. Séninaire de Probabilités XV (1881).

[4] ENIGHT, F.B. On the sojourn times of killed Brownian motion. Séminaire de
Probabilités XII, SLK 649, Springer (1578).

(5] LEROCZKY, J. Formulas for stopped diffusion processes with stopping times
based on the maximum. Ann., Probability % pp.601-608 (1977).

[6] PIERRE, M. Le probléme de Skorokhod; Une remargue sur la démoanstration
d'Azéma-Yor. Séminaire de Probabilités XIV, SLN 784, Springer (1980).

£7] TAYLOR, H.M. A stopped Brownian motion formula. Ann. Probability a
pp.234-246 (1975).

[8}3 WILLIAMS, D. Path decomposition and continuity of local time for
one-dimensional diffusions. Proc. London Math. Soc. (3) %% pp.738-768 (1974).

{21 WILLIAMS, D. On a stopped Brownian motion formula of H.M. Taylor.

- Séminaire de Probabilités X, SLN 511, Springer (1978),.
A
tivs  wilkiAmd, . The Ito excursion law for Browniam motion, (unpublished -

but see BII.67 of Williams' book "Diffusions, Markov processes, and
martingales' (Wiley, 1979))



