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WIENER-HOPF FACTORIZATION FOR MATRICES
by

M.T. Barlow, L.C.G. Rogers, and David Williama

1. The main results. Let E be a finite set. Let Q(E) denote the

set of (real) E X E matrices Q such that, for 1, j ¢ E,

Qi,3) 20 @#P, ] Qi,k) so0.
keE

Let Q now denote some fixed element of (gﬁE) . Let v be a function

from E to R\ {0}, and let V be the diagonal E X E matrix

diag{v(i) : 1 € E} . Let E+={i€E:v(i)>O}, and E = {1€E;:v(i)<0}.
Let I denote the jdentity E x E matrix, I+ the identity E+ X E+ matrix,

and I  the identity E X E  matrix.

Let ¢ be a strictly positive real number.

+ - —
THEOREM 1. There exists a unique pair (Hc, HC), where HZ is an E x E+
matrix and H; is an E+ X E matrix, such that, 12
It )
(1) § = + 1.
I I
c
then S 18 invertible and
e G o
(2) _ § lv T@Q-~-cI)ls = ~ | s =
0 ~Qc
h Qe QEY ana ET) M 1" and I° trictly
where Qc € fQ an Qc efQS . oreover, c an c are stric

: - +
substochastic : thus, for 1 ¢ E , je E ,

A,y 20, ]t <1,
[+ : + C
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Theorem 1 will be said to yleld the 'Wiener-Hopf factorization' of the

matrix Vql(Q-cI).

ot
Now let X be a Markov chain on Eu {3} (9 1is the cemetery state)

with Q-matrix g. Thus the transition matrix function of X 1is
P(t) = exp(tQ) . * For t 2 0, define:

t +

G(t) = J v(xs)ds , T (t) = inf{s: ¢$(8) >t} .
0
+ : +

As usual, we shall (for example) write Tt for T (t) when more convenient.

Note that -x(r:) c Y u{a}.

THEOREM II. For 1 ¢ E  and j € B,

i + +. _ +
(3 Blexp(-c1) i X(t) = il = I3 .
For 1 €eE, jecE , and t =20,
i + +. _ ~+
(4) E&Eexp(-cTt) poX() = il = [eXP(tQC)](i,J)-

The corresponding 'minus' results follow, on replacing ¢ by (—¢) .

-+
The problem of finding the jeint distribution of T, and X(T:) is of
course solved by Theorems I and II. The way in which H: and H; may be

calculated will be clear from the proofs.

Comment. The reader may feel that the martingale techniques used in this paper
are more sophisticated than those required for this Markov chain problem, The
following two siatements are therefore apposite. First, we do not know how to
prove the purely algebralc Theorem I without appealing to probability theory
(and ulfimately to martingale theory). Second, the martingale technique
genef&lises to other (more interesting) cases, though the problem of obtaining
explicit answers provés to be very difficult. Work on the 'continuous' state-

space case will be published later.

2, Basic martingales. It is important to regard the strictly positive
)

number ¢ as fixed throughout the remainder of the paper, except in section 7,




Let f be a function on (Eu {3}) x Rx [0,») such that £(3,.,+) =0,
A natural extension of Dynkin's formula shows that (for every initial

distribution)

t
£(X04,0t) - J;¢¥f(xs.¢5.s)ds

"is & local martingale, where

#Lf(x,¢,t) = Qf + V%% + %% .

Here, of course,

Ii

QE(x,¢,t) Y oQUx,y)£(y,b,t) .

y¢E

In particular, if g is any vector on E, and

' -1
(5) £(x,$,t) = {expl ~ctlI-¢V "(Q-cI)lgl(x) on E,
then f(Xt,¢t,t) is a local martingale (in fact, a martingale, because it is

.- bounded on every finlite interval).

3. Definition of j\{. Before recalling part of the theory of the Jordan

form, we recall the proof of the well-known fact that V_l(Q-cI) cannot
have an eigenvalue on the imaginary axig. For suppose that ¢ 1lies on the

imaginary axis and that

(6) - (Q-cl)g = uvg
for some non-zero vector g. Choose 1 in E with |g){ 2 |g(J)| Zfor
all j in E. The i-th coordinate of (6) reads :
fQui,ty -e-uv(i)lgd) = ~ [ @, e .
JF i

But the left-hand side has modulus at least equal to (|Q(i,1)]| +e)lg(idl,
while the right-hand side has modulus at most equal te |Q{i,1)}|eg(d)] . The

contradiction establishes the 'well-known fact'.

One of the main steps in Jordan-form theory shows that the space of complex

vectors on E has a basis,{} such that every g in {} solves an equation




%)) vi@-ecr) - y1l¥g = 0,

where WY 18 an eigenvalue of 'V_l(Q-cI) and k 1s a positive integer,

Fix g,, and let N {respectively,tp] denote the set of those vectors g

in {3/ for which the associated py-value has (strictly) negative [respectively,

positivel] real part.

4, The structure of ﬁf. Let g € ﬂf, 80 that g satiasfies (7) for some k

and some yu with negative real part. Then the function £ at (5) may be
written

£(«,$,t) = exp(-ct-u¢)exp{~ ¢[v_1(Q -cl) -pIllg,

and the second exponential may be expanded in a power series in which all terms

after the (k-1)-th annihilate g. Hence, since it has negative real part,

{(8) for g E_ﬂ[ and f as at (5), f(XS,¢S,s) is bounded omn [O,T:]

for evexy t.

+
In particular, on applylng the optional stopping theorem at time TO ; wo

find that (for all 1 ¢ E)
Ei[exp(— cT+)g° K(T+)] = g(i) .
PN 0 G

+
Now define Hc via the probabllistic formula (3). We have just shown that

r* + +
(9) 1if g ¢ n{, then g = " g where g denotes the restriction of
Il
c
T+
g to E

» + ,
Hence IU' has at most |E | elements, and, by a similar argument, 33 has at

most |E | elements. The only explanation is that

. + +
{10) J\( hag precilsely |E | elements and the elements g where g € j\f

=
form a basis for the space of vectors on E .

5. Proof of the uniqueness of Wieﬁer—Hon factorization. Suppose that for

+ + + - - T+ +
some E X E matrix KC ' gsome E X E matrix Kc’ some Qc in EQ(E )

»




+ -
. 1"k
and some Q. in Q(7), we have that °1] is invertible, and
k' 1”7
<
o\t ,1 A 3 Q. o
. V Q-el)( = n .
KV 1 K1 0 -Q
C c C

Then the elgenvalues of VFI(Q-CI) with negative real part must coincide

-

+
with the eigenvalues of Qc. Moreover, if
: o 4+ k
(11) Q- ut =0
for some positive integer k, some H{with negative real part) and some vector
+
uw’ on E , then
~1 k r +
{v "(@=-cI)-u1} u =0,
+
K
c
so that, from the argument leading to (8),
I+ + I+ +
(12) . u = A
' Kc Hc

~

+
By the theory of the Jordan canonical form for Qc , equation (11) holds for

+
a set of vectors u spanning the vectors on E+ ' and 80 therefore does
/
eguation (12). Hence
+
KW = 1
C c

a
i
and the required uniqueness follows from this fact and its 'minus' analogue.

G. Existence of the Wiener-Hopf factorization, For the moment, regard

t 2 0 as fixed. Let g ¢ ﬁ(} define £ as at (5), and recall that
£(X ,¢ ,s) 1s a martiopgale. Using (8) as justification, apply the opticnal
5" '8

+
stopping theorem at time Tt to obtain

E [exp( —cT:)hO‘X(T:)j = g = exp[tv_l(Q-cI)]h,

where h = exp[}—tan(Q-cI)]g . Note that h will automatically satisfy
the same version of (7) as does g, so that b, like g, has property (9).

+ +
Hence, since X(Tt) € E , we have




+ I.|.

-1
(13) E'fexp(- cT OB oX(t))] = expltv (@-eDI| _ |n".
H+ o t t

I
c c

+
We have obtained (13) for a class of vectors h which clearly spans the

+ +
space of all vectors on E+ , B0 that (13) holds for all vectors h on E .

It is almost immediate from the strong Markov property of X that
I~ i + + +
BY(t;4,3) = E'lexp(~cT,); X(1,) =31 (1,J€E)
C Aty t t
+
defines a subMarkovian trensition function on E ,, so that
e ~4
= t
Pc(t) exp ( Qc)
for some 6+ in fi§E+). (One can alternatively deduce this from (13).)
i c

On differentiating (13) with respect to t and setting t =0, we obtain

+ +
1\ L 1 I
(14) Q = V (Q-cI)
nt}) ¢ i
Cc C

Theorems I and II now follow from (14) and its 'minus' analogue,
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