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Abstract

IfY = (Y1,...,Yn) are the log-returns of an asset on succeed-
ing days, then under the assumptions of the Black-Scholes option
pricing formula, these are independent normal random variables
with common mean and variance in the risk-neutral measure. If
we can show empirically that Y does not have these properties
in the real-world measure, does this mean that the Black-Scholes
option pricing formula fails? It does not; as we show in this note,
so long as the joint distribution of Y in the real-world measure
has a strictly positive density, then the Black-Scholes option price
formula may still be correct. We conclude that attempts to ar-
gue that the Black-Scholes formula must fail because observed log
returns appear to be fat-tailed, or appear to have non-constant

volatility, or appear to have serial correlation are fallacious.



1. Introduction Ever since the original Black-Scholes option-pricing for-
mula was published (Black & Scholes, [1973]), there have been many variants
offered, based on different assumptions concerning the distribution (in a/the
risk-neutral measure) of the asset returns; models with continuous paths and
non-constant volatility (for example, Merton [1973]), models with continuous
paths and stochastic volatility (for example, Hull & White [1987], Hobson &
Rogers [1996]), models with discontinuous paths and various specifications
of the jump process (usually in terms of an added Lévy process - see, for
example, Merton [1976], - or in terms of a continuous process subordinated
by some increasing process - see, for example, Madan and Seneta [1990],),
discrete-time models such as the ARCHipelago of stationary conditionally-
heteroskedastic processes (for example, Duan [1995]) and even various "frac-
tal’ processes which are not semimartingales (for example, Peters [1991],
Bouchaud, lori & Sornette [1996] - see also Maheswaran & Sims [1993] and
Rogers [1996] for a critique of such models). Indeed much of the above work
has followed similar developments in the modelling of asset returns; for ex-
ample, different specifications of the stochastic volatility were used involving
either discrete or continuous processes by Merton [1976], Agkiray & Booth
[1987,1988], amongst many others. These led to a vast literature on stochastic
volatility options,including Wiggins [1987], Johnson & Shanno [1987], Hull &
White [1987], Melino & Turnbull [1990]. An important subgroup of discrete
time stochastic volatility models is the GARCH class of models; see Engle
[1982], Bollerslev et al. [1992] and many hundreds of other authors. These in
turn led to GARCH option pricing models such as Engle & Mustafa [1992],
Duan [1995] and Satchell & Timmermann [1995a,1995b] among others. An
exhaustive list of all the developments and the empirical papers which have
motivated them would involve a bibliography with hundreds of entries.

It is sometimes argued that because the empirically-observed returns do



not have the independent lognormal distributions assumed for the Black-
Scholes formula, it is therefore necessary to consider such extensions in order
to price options accurately. The purpose of this note is to show that this
is a fallacious conclusion; so long as the distribution of the log returns ¥ =
(Yi,...,Yn) has a strictly positive density, the Black-Scholes formula may be
correct. The fallacy lies in linking distributional properties of the returns in
the risk-neutral and objective worlds, which can be very different.

This is not to say that all studies of different models for asset returns
are redundant. Firstly, the frequently-reported presence of volatility smiles
and skews in option prices shows that in practice the Black-Scholes option-
pricing formula is violated; this is conclusive evidence of a failure of the
Black-Scholes assumptions, even if distributional properties of returns cannot
provide such evidence. Thus we have to study different models of the (risk-
neutral) distribution of returns. Secondly, even if the Black-Scholes pricing
formula is correct, the estimate of volatility which we obtain from data may
need to be reinterpreted in the light of the specific model assumed (in the
real-world measure) for the asset returns; Lo and Wang [1995] study one
particular modelling framework where this happens and where, although the
Black-Scholes formula is identical, the o involved is no longer the sample
volatility of daily log returns but involves an autocorrelation term as well.

Section 2 gives the main result; the proof is very simple but somewhat
abstract. In Section 3, we discuss the special case of N = 1 in a more concrete

way, which may shed light on the result of Section 2.

2. The main result. To state the main result of this paper, we shall need
some notation. We have already introduced the vector ¥ = (Vi,...,Yy) of
log returns, which we shall suppose has a strictly positive density f with

respect to Lebesgue measure on RY. Now let = C([0, N]) be the space of



continuous functions from [0, N] to R, starting at 0; we shall let the canonical
process ' X be the log price process of the asset we are considering. Now
fix some positive volatility parameter o. The aim is to construct measures
P* (the risk-neutral measure) and P (the real-world measure) on  such that
under P, (X1,..., Xy) has density f, while under P*, X has the same dis-
tribution as (oW, + /Lt)OStSNa where W is a standard Brownian motion, and
p=r—(c?/2). We assume that the spot-rate r is constant, but this is only
for convenience of exposition. It is clear that if we can construct the two
measures for ¢ = 1, we can achieve it in general (just multiply the returns Y
by o=!), so henceforth we assume that o = 1.

Let P be Wiener measure on €, and let ¢ be the density of (Xi,..., Xx)
under P (so that ¢ is a zero-mean Gaussian density). We are going to define

P on ) by the recipe
(X1,..., Xn).

It is easy to see that under P, (X;,..., Xy) has density f.

Now consider the (Girsanov change-of-measure) martingale

Since Z is positive and integrates to 1, it is clear that this does define a
martingale. As is well known (see, for example, Rogers & Williams [1987],

Theorem TV.38.5) under P the process X is a Brownian motion with a drift:
dXt = th + atdt,

for some predictable process «, where W is a P-Brownian motion. We define
P* by
dp* 7 (uX 1, )
=7Z"=ex - —
P P\HAN 2# )

'defined by X;(w) = w(t) forall 0 <t < N and w € Q




so that under P*, X is a Brownian motion with drift z. We have immediately

the following result.

THEOREM. Under the real-world measure B, (X,..., Xy) has density f,

and under the risk-neutral measure P*, X is a Brownian motion with drift

r—(1/2).

Remarks. (i) The density of P* with respect to P is 7*/ 7, which requires f

to be strictly positive in order to be well defined.

(ii) In the risk-neutral world, Black-Scholes prices apply, since the discounted

asset price process is a log Brownian motion with constant volatility.

(iii) The diversity of possible (real-world) distributions of returns is limitless;
we could have fat-tailed returns, non-independent returns, returns with dif-
ferent second moments each day, returns generated by a GARCH process, or
by a stationary Gaussian time series, we could even have independent returns
with a common Gaussian distribution with variance x! One class of return
distributions which we could not capture would be where the returns were a
compound Poisson process, but for more general Lévy processes, the law is

often absolutely continuous.

3. Construction in the case N = 1. In the case N = 1, the change-of-

measure martingale (Zt) has the simple representation

Zt = E[ZN|F15]

I

=
—~
\‘L\F
s
~—

say, where py(z) = (271)~"/? exp(—22/2t) is the Brownian transition density.
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Applying It6’s formula to this martingale, we obtain

dZt - hz(t,Xt)dXt
ha(t, X;)

2V 7dX,.
h(taxt) ' '

A familiar consequence of Girsanov’s Theorem (Rogers & Williams [1987],

Theorem TV.38.5 again) is that under P the process X can be expressed as
(1) dX, = dW, + Vlog h(t, X,)dt.

This tells us that in the real-world probability P, the log-price process X must
solve the stochastic differential equation (1). Thus by imposing a suitable
drift on the constant-volatility log-price process, we can make the return at
time 1 any law with a strictly positive density! The recipe detailed above
shows how to determine the drift required to achieve any given law. Now
we could in fact extend the above argument by induction to the case of
general N, using the step just given to show how to construct the required
conditional distribution of the return Yy given Fy; this would then tell us
how we should make the log-price process drift during all the time intervals.
However, such a proof seems clumsy in comparison with the one we gave in

Section 2.
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