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Abstract

The modelling of credit events is in effect the modelling of the times to de-
fault of various names. The distribution of individual times to default can be
calibrated from CDS quotes, but for more complicated instruments, such as
CDOs, the joint law is needed. Industry practice is to model this correlation
using a copula or base correlation approach, both of which suffer significant de-
ficiencies. We present a new approach to default correlation modelling, where
defaults of different names are driven by a common continuous-time Markov pro-
cess. Individual default probabilities and default correlations can be calculated in
closed form. As illustrations, CDO tranches with name-dependent random losses
are computed using Laplace transform techniques. The model is calibrated to
standard tranche spreads with encouraging results.
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1 Introduction

The current industry approach to the pricing of multi-name credit derivatives makes
use of copula functions to model the dependence between issuers in a given portfolio
of defaultable securities. This approach is problematic for two main reasons: there is
no dynamic consistency, and there is no theoretical basis for the choice of any par-
ticular dependence structure. The root cause of the problems is bad modelling - the
dependence is forced into the model at the very last stage, rather than growing organ-
ically from the modelling assumptions. An alternative industry based method is the
so called base correlation approach. Again the main problem with the latter approach
is the lack of dynamics which does not allow us to price, for example, forward starting
credit products or options on tranches.

In order to overcome the deficiencies of the copula and base correlation approach a num-
ber of models have recently emerged in the credit literature. Duffie and Garleanu [DG]
propose a reduced form approach based on affine processes. In particular, the default
intensity of each individual obligor is assumed to be the sum of two affine processes,
one common to all the names in the portfolio and the other credit specific. Individual
default probabilities can be calculated explicitly, however CDO prices have to be recov-
ered by resorting to Monte Carlo simulation. Chapovsky, Rennie and Tavares [CRT]
introduce a model which is similar in spirit to [DG]. The authors however suggest a
different specification of the names’ stochastic intensity in order to improve tractabil-
ity. In particular, default intensities are modeled as the the sum of a compensated
common random intensity driver with tractable dynamics (e.g. CIR with jumps) and
a deterministic name depended function which allows calibration to single name de-
fault curves. The model is calibrated to CDO tranche prices one maturity at the time
(although only a subset of the parameter space is allowed to vary across maturities).
Baxter [BX] models the value of the firm Xt as a sum of two Levy processes (based on
the gamma process), representing idiosyncratic and systemic risk respectively. Joshi
and Stacey [JS] introduce co-dependence between default times of different credit enti-
ties within the reduced form framework by time changing the intensity of default of each
reference entity using a gamma process. The model calibrates to tranche spreads, how-
ever tranche pricing requires Monte Carlo simulation and no analytic or semi-analytic
formulas are available. Moreover, as noted by the authors the model does not allow
for dynamic credit spreads and cannot be used to price more exotic products. Hurd
and Kuznetsov [HK] model the credit migration process of each obligor by a Markov
chain with an absorbing state representing default. Correlation among creditors is in-
troduced via a common time change of affine type. Albanese et al [ACDV] propose a
rating transition model within the structural framework where the distance to default
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of each single obligor is represented by a Markov Chain. Correlation is introduced
using non recombining trees. As far as data fitting is concerned, the model needs to be
calibrated to both historical rating transition data and market prices of CDS and CDO.
Brigo et al [BPT], Schoenbucher [S] and Sidenius et al [SPA] take a very different route
from the approaches so far described and model directly the cumulative portfolio loss
process. In particular, [BPT] assume the cumulative loss process to be the weighted
sum of independent (time inhomogeneous) Poisson processes with (possibly) stochastic
intensities. In Schoenbucher [S] the loss distribution of the portfolio is derived from
the transition rates of an auxiliary time-inhomogeneous Markov chain which repro-
duces the desired transition probability distribution. Stochastic evolution of the loss
distribution is obtained by equipping the transition rates with stochastic dynamics.
Finally, Sidenius et al [SPA] model the dynamics of portfolio loss distributions in the
absence of information about default times. This background process can be in princi-
ple be calibrated to liquid tranche price. They then proceed modeling the loss process
itself as a Markov process conditioned on the path taken by the background process.
The top-down approach followed by the latter authors is fairly different from ours as it
does not contemplate the modeling of individual creditor default probabilities. How-
ever, we shall show that the dynamics of the loss process arising from our model can
be approximated by a compound Poisson with stochastic, name dependent intensities.
This allows us to recover a simple analytic expression for the loss distribution while
retaining the ability to calibrate to single name default curves.

What we propose here is a new approach to the problem based on the use of a Markov
process within the reduced-form framework. This completely deals with the main
problems of the copula-based and base correlation approach. Default correlation is
determined from market data by fitting the model to CDS and CDO data. Also the
model is fully dynamic and it is suitable to price products such forward starting tranches
and option on tranches.

We start by assuming there exists a process (ξt)t≥0 which drives the common dynamics
of the credits in the portfolio. We then model the survival probabilities up to time t

of a given obligor, say i, conditional on the filtration generated by the process F
ξ
t as

P
(

τ i ≥ t|F ξ
t

)

= exp
(

−Ci
t

)

, (1)

where τ i indicates the default time of the ith reference entity, and C i is an additive
functional of the process. The simplest thing1 for this is to take

Ci
t =

∫ t

0

λi(ξu)du

1... but as we shall see, not the only thing ...
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where λi(ξ) is a deterministic function of the chain, which we will refer to as the
(default) intensity (function) of entity i. For simplicity, we shall limit our discussion to
the case where (ξt)t≥0 is a continuous-time finite-state Markov chain. This framework
is already sufficiently flexible for practical purposes, and is simple enough to allow
explicit computation using fast linear algebra routines.

Taking (1) as a starting point, it is easy to derive the individual conditional default
probabilities in closed form. It is also straightforward to compute default correlations.
Moreover, we show how to obtain a fast and reasonably accurate approximation to
the price of CDO tranches based on a Poisson approximation. Exact solutions can
be obtained by computing the Laplace transform of the portfolio loss distribution and
related quantities and then resorting to numerical inversion techniques. The model
calibrates closely to liquid tranche data, thus explaining the skew effect observed in
CDO markets. Results of the calibration are presented in the last section.

2 Model specification and basic results.

In this section we introduce the main modelling ideas of the paper which will form the
basic building blocks for the pricing of multi-name credit derivatives.

Consider a portfolio of N defaultable securities and assume that there exist a continuous-
time finite-state irreducible Markov chain (ξt)t≥0 with Q-matrix Q, generating a filtra-
tion F

ξ
t . Assume that conditional on the path of the chain, defaults of the N names

will be independent, the survival probability of the ith reference entity being given by

qi
t = P

(

τ i ≥ t|F ξ
t

)

= exp
(

−Ci
t

)

, (2)

where C i
t is some additive functional of the chain of the form

Ci
t =

∫ t

0

λi(ξu)du +
∑

j 6=k

wi
jkJjk(t). (3)

Here, τ i is the default time of the ith name in the portfolio, λi is a deterministic function
of the chain, Jjk(t) denotes the number of jumps by time t from state j to state k, and
the wi

jk are non-negative weights.

In order to gain some intuition, one could think of the chain as representing the state
of health of the economy. If the chain jumps from a state of economic growth to a state
of recession, this may cause the conditional default intensity of some of the reference
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entities to go up, increasing the chances of observing a larger number of defaults in the
portfolio. The jump itself may also trigger defaults. Note that the information about
how the various credits in the portfolio are correlated is contained in the λi, the wi

jk,
and Q. An expression for the dynamic default correlation will be derived in section 3.

Throughout this paper we will also assume that the money market account takes the
following form

Bt = exp

(
∫ t

0

r(ξu)du

)

, (4)

where again r is a deterministic function of the chain.

Remarks (i) Since our Markov-chain can only take a finite number of values, we shall
assume without loss of generality, that ξt ∈ Im, where Im ≡ {1, . . . , m} for any t ≥ 0.
It follows that a function of the chain, say g(·), can be thought of as a N -dimensional

vector whose ith component is given by gi ≡ g(i). In this paper, we shall use the
notation g(i) or gi to indicate component i of the vector and g without subscripts to
denote the whole vector.

(ii) The vectors λi(·), r, the matrix w and the infinitesimal generator Q should be seen
as parameters of the problem and calibrated to market data, such as CDO tranche
spreads, CDS quotes and risk-free bonds. One of the nice features of the model is that
the number of parameters can be adjusted, by modifying the number of chain states,
to best reflect the availability of market data. As CDO markets become more liquid,
a higher number of quotes are likely to become available. By increasing the number of
parameters we are more likely to capture the extra information available in the market.

(iii) We shall assume that the process ξ is not observable.

In order to price derivatives on a portfolio of N defaultable securities, we need to be
able to find the distributions of some non trivial random variable. For example, if
`i ≡ Ai(1 − Ri) denotes the loss on the ith name, in terms of the notional Ai and the
(possibly random) recovery rate Ri, then the portfolio cumulative loss process

Lt ≡
N
∑

i=1

`iI{τi≤t} (5)

is an object of interest. Apart from Monte Carlo, the only tools available to find the
law of Lt are based on transforms. By conditioning firstly on the path of the chain, it
is easy to see that the (discounted) Laplace transform of Lt is given by

E exp(−

∫ t

0

r(ξs)ds − αLt) = E

[

exp(−

∫ t

0

r(ξs)ds)

N
∏

i=1

(

(1 − qi
t)ζi(α) + qi

t

)

]

, (6)
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where qi
t is given by (2) and ζi(α) = E[e−α`i ]. This is the key relation linking our

modelling approach at an abstract level to the kinds of calculation needed to price
credit derivatives of various sorts. The (numerical) inversion of the Laplace transform
(6) is the common first step; the method of Hosono [Ho], popularised by Abate &
Whitt [AW], [AW1], is a fast and accurate solution. We discuss numerical approaches
in Section 4, but before that we record the form of default correlation given by this
approach.

3 Default correlation

Default and survival correlation can be easily calculated in our framework in closed
form. We shall derive the expression for survival correlation; default correlation can
be calculated, mutatis mutandis, in a similar fashion.

Routine calculations (see Appendix A), allow us to recover the survival probability of
the ith reference entity. In particular, we have that

q̃i
t(ξ0) ≡ E

[

1{τ i≥t} | ξ0

]

= E

[

exp

(

−

∫ t

0

λi(ξu)du −
∑

j 6=k

wi
jkJjk(t)

)]

= exp(tQ̃i)1(ξ0), (7)

where

Q̃i
jk = Qjj − λi

j (j = k); (8)

= exp(−wi
jk)Qjk (j 6= k). (9)

Note that survival probabilities depend on the current (unobservable) state of the chain
ξ0.

Assume for example we want to compute the joint survival probability of obligors i

and j. Using the independence of default times given ξ, we obtain

q̃
ij
t (ξ0) ≡ P (τ i ≥ t, τ j ≥ t | ξ0)

= exp(tQ̃ij)1(ξ0),

where

Q̃
ij
kl = Qkk − λi

k − λ
j
k (k = l);

= exp(−wi
kl − w

j
kl)Qkl (k 6= l).
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Elementary algebraic calculations allow us to recover the survival correlation ρT (ξt)
of i and j from the joint survival probability function and the individual survival
probabilities:

ρt(ξ0) =
q̃

ij
t (ξ0) − q̃i

t(ξ0)q̃
j
t (ξ0)

√

q̃i
t(ξ0)(1 − q̃i

t(ξ0))
√

q̃
j
t (ξ0)(1 − q̃

j
t (ξ0))

(10)

where
q̃i
t(ξ0) = exp(tQ̃i)1(ξ0) (11)

as at (7).

Note that the survival correlation is obtained endogenously from the model, rather
than being exogenously imposed as in the copula-based industry approach to default
correlation. Also in our set-up the survival correlation becomes a stochastic process
driven by ξ, making the model dynamically consistent.

4 Computational approaches

Our attention now focuses on the exact expression (6) for the discounted Laplace
transform of the cumulative loss at time t. We have good techniques for inverting the
transform, but first we have to be able to calculate it (or some approximation), and in
this Section we discuss three possible approaches.

4.1 Exact method

The approach here is to multiply out the product on the right-hand side of (6). The
individual terms are all quite easy to deal with, because each is the exponential of some
additive functional of the Markov chain, and we are able to compute these expectations
using fast linear algebra routines. The problem with this approach comes when the
number N of names gets too big; with N names there are 2N terms in the product
when multiplied out, and each of these needs to be evaluated and inverted separately.
When N = 10 there are 1024 such calculations, and typically we need to be able to
handle values of N that are an order of magnitude bigger. Thus the ‘exact’ calculation
method will be too cumbersome for general use.
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4.2 Poisson approximation

The expression (2) for the survival probability of name i can be understood in terms
of a standard Poisson process ν independent of the chain ξ. If the jump times of ν are
denoted S1 < S2 < . . ., then we may set

τ i ≡ inf{t : C i
t > S1},

and then the relation (2) holds. The Poisson approximation we propose here is to allow
name i to default more than once, at times

τ i
m ≡ inf{t : C i

t > Sm}, m = 0, 1, . . . .

By doing this, we arrive at an expression L̄t for the portfolio cumulative loss which
overestimates Lt, because it includes (non-existent) second and subsequent losses of
each of the names. The error we are committing by this is of the same order as the
default probabilities themselves; typically this would be of the order of a few percent,
which would be comparable to the error we could expect from a Monte Carlo approach.
However, there is some simple trick we can employ to improve the approximation. The
expected (discounted) number of losses for name i by time t using the Poisson method

is given by E
[

B−1
t Ci

]

compared with a true value of E
[

B−1
t (1 − e−Ci

)
]

. So if we

define

βi
t ≡

E
[

B−1
t (1 − e−Ci

)
]

E
[

B−1
t Ci

] (12)

we can get a fairly good approximation for the Laplace transform of the cumulative
loss by letting

L̄t:

E exp(−

∫ t

0

r(ξs)ds − αL̄t) = E

[

exp(−

∫ t

0

r(ξs)ds +
N
∑

i=1

βi
t(ζi(α) − 1)C i

t)

]

. (13)

For each α, we are computing the mean of the exponential of an additive functional
of the chain, and this is a simple and rapid calculation which can be carried out using
formula (31) in Appendix A by setting
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ν ≡ r +

N
∑

i=1

βi
t(1 − ζi(α))λi

wjk ≡
N
∑

i=1

wi
jk βi

t(1 − ζi(α))

g ≡ 1

4.3 Monte Carlo

Another approach to calculating (6) is to use Monte Carlo simulation to evaluate the
right-hand side, and then invert the transform. The simulation algorithm is quite
standard, however we highlight here a few pitfalls to be avoided.

Firstly, we do not generate paths by discretising the time interval into a large number
of subintervals and then simulating the (many) individual steps of the chain; rather,
we use the jump-hold construction of the Markov chain, starting from the embedded
discrete-time jump chain with exponentially-distributed residence times in the states
passed through. This is far more efficient, and makes the calculation of additive func-
tionals of the path a triviality.

Secondly, inversion of the Laplace transform will require evaluation of the transform
at many different values of α; we do not of course simulate a different chain for each
value of α, but keep the same chain for all evaluations.

Finally although the Monte Carlo approach is relatively fast for pricing purposes we find
it more efficient to use the Poisson approximation for calibrating to tranche spreads,
given the higher speed of the latter method (roughly by a factor of 20).

5 Example: CDSs

In order to calibrate the model to market prices, we need to be able to compute, among
other things, spreads of simple and liquid securities such CDS. This can be done in
closed form in our model. For simplicity of exposition, we shall consider a CDS that
pays continuously a spread S to the protection seller. We would like to stress however,
allowing for discrete payments on the premium leg amounts to a simple modification
of the following calculation, and can also be done in closed form.
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If we set S = 1, the CDS premium leg is given by

PLT ≡ E

[
∫ T

0

I{τ>u}B
−1

u du

]

=

∫ T

0

exp(uQ̃)1du

= Q̂−1(exp(Q̂T ) − I)1(ξ0)

where

Q̂i
jk = Qjj − rj − λi

j (j = k); (14)

= exp(−wi
jk)Qjk (j 6= k). (15)

Similarly we can derive the value of the default leg. Define θij ≡ 1 − exp(−wij); we
have that,

DLT ≡ E
[

B−1

τ ; τ ≤ T
]

(16)

= E

[

∫ T

0

{λ(ξu) +
∑

k

Qξukθξuk}B
−1

u exp(−Cu)du

]

(17)

= Q̂−1(exp(Q̂T ) − I)λ̃(ξ0) (18)

where λ̃i = λi +
∑

k Qikθik.

The above calculations allow us to calibrate to CDS prices and index levels.

6 Example: synthetic CDOs

We turn now our attention to the problem of pricing a CDO tranche, and find the
techniques developed so far will again serve. As before, we derive first the value of the
premium leg and then the value of default leg.

6.1 Premium leg

Let L+ and L− be the upper and lower attachment points of the tranche respectively.
At each payment date, investors receive a coupon which is proportional to the notional
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of the tranche, net of the losses suffered by the credit portfolio up to that point. The
tranche PV01 is equal to

PV 01 =

M
∑

j=1

∆iE

[

exp

(

−

∫ t

0

r(ξu)du

)

Φ(LTj
)

]

, (19)

where

Φ(x) =
1

L+ − L−

[

(

L+ − x
)+

−
(

L− − x
)+
]

, (20)

and M is the number of total payments occurring at dates T1, . . . , TM . In order to
evaluate the PV01, we need to calculate the price of a portfolio of put options on
the portfolio cumulative losses at each payment date Tj. In particular, Φ(x) is the
difference of two put options of the form

Pt(K) ≡ E
[

B−1

t (K − Lt)
+
]

(21)

with strike K equal to L+ and L− respectively.

In principle we could calculate the discounted density of Lt at a set of points I =
{x1, . . . , xm} by inverting its Laplace transform (6) m-times and then compute (21)
resorting to a one dimensional numerical integration over the set I. However, there
is a more accurate and significantly faster approach to the problem. We can in fact
derive explicitly the Laplace transform, say P̂t(·) of (21) and then recover Pt(K) by
a single inversion. This will save us the time consuming numerical integration step.
More precisely, note that

P̂t(α) ≡

∫ ∞

0

e−αxPt(x)dx

= E

∫ ∞

Lt

e−αxB−1

t (x − Lt) dx

=
1

α2
E exp(−

∫ t

0

r(ξu)du − αLt).

All that remains to do is to compute PTi
(L+) and PTi

(L−) for 1 ≤ j ≤ M by inverting
the corresponding Laplace transforms P̂Tj

.
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6.2 Default leg

The value of the default leg of a CDO tranche is the expected present value of the
tranche’s losses. More precisely, define

Ξ(x) =
1

L+ − L−

[

(

x − L−
)+

−
(

x − L+
)+
]

.

The value of the default leg of the tranche, is then given by

DL = E

[
∫ T

0

exp

(

−

∫ t

0

r(ξu)du

)

dΞ(Lu)

]

.

Integrating by parts and noting that Ξ(x) = 1 − Φ(x), we can simplify the previous
expression to

DL = 1−E

[

exp

(

−

∫ T

0

r(ξu)du

)

Φ(LT )

]

−E

[
∫ T

0

r(ξu) exp

(

−

∫ t

0

r(ξu)du

)

Φ(Lu)du

]

.

(22)

Again all the quantities in (22) can be calculated explicitly. Note that the basic ele-
ments needed to calculate the default leg are the same as the ones we derived when
calculating the premium leg, with some minor modification to account for the term
r(ξ) appearing in the second expectation of (22). The time integral appearing in the
last term of (22) can be approximated by standard quadrature methods.

The tranche spread is recovered as usual by dividing the default leg by the PV01 of
the premium leg.

Remark. All calculations simplify if we assume interest rates the Markov chain ξ are
independent. Then all we need to do is substitute the relevant discount factor B−1

t ,
with the corresponding risk-less zero-coupon bond B(0, t) which we can observe in the
market. This assumption, albeit crude, can be useful to simplify the calibration.

7 Calibration

In this section we shall present in some detail the methodology used to fit the model
to market data and present the main results. We calibrated the model to tranches on
the CDX (series 7) index (mid levels) for 4 consecutive business days from November
1st to November 6th 2006.
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As previously mentioned, the parameters of the model are the N conditional intensity
vectors λi, the jump weights wi

jk, where j, k ∈ {1, . . . , M, j 6= k}, the infinitesimal
generator of the chain Q and the initial distribution of the chain π, which is an N -
dimensional vector. Given the high dimensionality of the problem, some care has to
be exercised in defining the calibration strategy.

There are two main strategies we can follow in order to fit the model to market data.
One can calibrate the general model as presented in the paper. It should be noted how-
ever that in its general form the dimensionality of the calibration problem is relatively
high and this can be expensive from a computational point of view. Alternatively
one can try to reduce the dimensionality of the problem imposing some simplifying
assumption. In particular, we can assume that the credit portfolio is homogenous, i.e.
the vectors λi, matrices wi and individual loss at default `i are the same for all the
names. We found the second strategy is comparable to the first strategy as far as the
quality of fit is concerned while being faster and easier to implement. For simplicity
we shall only present the results of the simplified homogeneous model.

Since the portfolio is homogeneous we do not need to match the individual CDS curves
but it is enough to fit the model to the aggregate CDX curve. Also the model needs
to be calibrated to tranche spreads. The parameters of the calibration routine are the
vector λ, the infinitesimal generator Q, the matrix w and the initial distribution of the
chain π. We also added the recovery rate R to the parameter list. We found that a
number of chain states equal to 4 is sufficient. The total number of parameters is this
simplified model is equal to 2M 2, here 32.

We fitted 5,7 and 10 year tranche and corresponding index spreads one at the time.
Note that it is crucial to calibrate simultaneously tranche and index prices across
maturities in order to be able to price tranches for non standard maturities and path
dependent products in a consistent, arbitrage-free fashion. Note also that super senior
tranche spreads (30%-100%) were included in the data set.

In calibrating the model we minimized a combination of the following objective func-
tions, representing the average absolute error and the average percentage error respec-
tively:

Da(θ) ≡
1

KT

T
∑

j=1

K
∑

k=1

|S̃market(tj, k)− S̃model(tj, k, θ)|+
1

T

T
∑

j=1

|S̄market(tj)− S̄model(tj, θ)|,

(23)
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and

Dp(θ) ≡
1

KT

T
∑

j=1

K
∑

k=1

|
S̃model(tj, k, θ)

S̃market(tj, k)
− 1| +

1

T

T
∑

j=1

|
S̄model(tj, θ)

S̄market(tj)
− 1|, (24)

where S̃(t, k) is the tranche spread relative to attachment point k and maturity t, θ

is a vector containing the elements of Q, ` and π and S̄(t, θ) is the CDX spread for
maturity t.

The results of the calibration where quite satisfactory. In particular, in all of the four
days under consideration, the absolute error was less than 4.81bp for tranches and
1.11bp for the index. Average Percentage errors were below 3.5% for both index and
tranches. Note that most of the calibration error is stemming from the 7 year equity
tranche, which is notoriously difficult to fit. Detailed results can be found in tables 1
to 8. Parameters stability across calibration dates was also not an issue. As Table 9
shows parameters were fairly stable over time in the horizon under consideration.

Finally figures 1, 2 and 3 show the calibrated portfolio cumulative (percentage) loss
distribution on November 1st for different initial states ξ0 of the chain and different
maturities. Note that the loss distributions do vary depending on ξ0. As one would
expect, as maturity extends, loss distributions tend to move to the right to reflect
higher potential losses. Also, losses in the [30% − 40%] interval have a non negligible
mass. The latter phenomenon is a consequence of positive spreads for senior and super-
senior tranches. In fact, in order for those tranches to suffer losses, a large number of
defaults is required.

8 Conclusion

We presented a simple dynamic model for the pricing of correlation credit derivatives.
We provide semi-analytic formulas for the pricing of CDOs tranches via Markov chain
and Laplace transform techniques which are both fast and easy to implement. The
model calibrates to quoted tranche prices with a high degree of precision and allows to
price non-standard tranches in a consistent and arbitrage free manner. The number of
parameters of the model is flexible and can be adjusted to adapt to the set of market
data one is calibrating to. More importantly, the model is dynamically consistent and
allows to price option on tranches and other exotic path dependent products.
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Volume 2 , Itô Calculus, Cambridge University Press, Cambridge, 2000.

[RZ] L.C.G. Rogers and O. Zane: Saddle-point approximations to option prices, An-

nals of Applied Probability 9, 493–503, 1999.

[S] P. Schoenbucher: Portfolio losses and the term structure of transition rates: a
new methodology for the pricing of portfolio credit derivatives. Working paper,
ETH Zurich, 2006.

[SPA] J. Sidenius, V. Piterbarg and A. Andersen: A new approach for dynamic credit
portfolio loss modelling. Working paper, 2005.

16



A Expectations of exponential linear functionals of

Markov-chains

In this section we provide the proof of some result concerning general linear functional
of the chain widely used in the main text of the paper. The material included in
this appendix is quite standard for people in the probability theory circle, but it is
frequently less well known to practitioners. A fuller treatment of the subject can be
found for example in Rogers and Williams [RW].

In order to compute survival probabilities, survival correlation and related quantities
we need to be able to evaluate expression of the form,

V (t, T ) ≡ E

[

exp

(

−

∫ T

t

ν(ξu)du −
∑

j 6=k

wjk [Jjk(T ) − Jjk(t)]

)

g(ξT ) | ξt = ξ

]

(25)

where t ≤ T and Jjk(t) is the number of jumps from state j to state k occurred up to
time t and wjk are real numbers. To this end define

Xt ≡ exp

(

−

∫ t

0

ν(ξu)du −
∑

j 6=k

wjkJjk(t)

)

(26)

and let Mt ≡ XtV (t, ξt). By Dynkin formula, it follows that

dVt
.
=

(

∂V

dt
+ QV

)

(t, ξt) (27)

where the sign
.
= indicates that the left-hand and the right-hand side differ by a local

martingale term. It can also be proved that for any previsible θt the following equality
holds

θtI{ξt−=j,ξt=k}
.
= θtQjkdt. (28)
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If we now apply integration by parts to Mt, we have that,

dMt
.
= Xt−

(

∂V

dt
+ QV

)

dt + Vt−dXt + ∆Vt∆Xt

= Xt

(

∂V

dt
+ QV

)

dt + Vt−Xt−{−ν(ξt)dt +
∑

j 6=k

I{ξt−=j,ξt=k}(e
−wjk − 1)}

+ Xt−

∑

j 6=k

I{ξt−=j,ξt=k}(e
−wjk − 1){V (t, k) − V (t, j)}

.
= Xt

(

∂V

dt
+ QV − νV

)

dt +
∑

j

I{ξt=j}Xt

∑

k 6=j

QjkV (t, k)(e−wjk − 1)dt

= Xt

(

∂V

dt
+ Q̃V

)

(t, ξt)dt

where where

Q̃i
jk = Qjj − νj (j = k);

= exp(−wjk)Qjk (j 6= k).

Since M is a martingale we must have that

∂V

dt
+ Q̃V = 0 (29)

V (T, ·) = g (30)

The above ODE system admits the simple solution

V (t, ·) = exp(Q̃(T − t))g. (31)
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Table 1: Market and model spreads - November 1st
Market Model

5Y 7Y 10Y 5Y 7Y 10Y
CDX 35 45 57 36.5 46.23 56.39

0 − 3% 2438 4044 5125 2438.4 4008.9 5125
3 − 7% 90 209 471 86 222.4 470.8
7 − 10% 19 46 112 19.1 45.8 99.7
10 − 15% 7 20 53 7 20.4 53.2
15 − 30% 3.5 5.75 14 3.5 5.0 14.0
30 − 100% 1.73 3.12 4 1.7 2.6 3.8

Table 2: Calibration error - November 1st
Index Traches

Absolute Error 1.11bp 3.77bp
Percentage Error 2.70% 3.47%

Table 3: Market and model spreads - November 2nd
Market Model

5Y 7Y 10Y 5Y 7Y 10Y
CDX 34 44 56 34.51 44 53.94

0 − 3% 2325 3938 5056 2325 3906 5056
3 − 7% 85.5 200 460 84.6 216.8 460
7 − 10% 18 45.5 107 18 45.5 101
10 − 15% 6.5 19.5 50.5 6.5 19 52.2
15 − 30% 3.25 5.25 13.5 3.3 5.3 13.5
30 − 100% 1.67 3.04 3.64 1.7 2.4 3.6

Table 4: Calibration error - November 2nd
Index Traches

Absolute Error 0.86bp 3.26bp
Percentage Error 1.73% 2.68%
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Table 5: Market and model spreads - November 3th
Market Model

5Y 7Y 10Y 5Y 7Y 10Y
CDX 34 44 56 34.6 44.02 53.93

0 − 3% 2325 3931 5038 2325 3892.7 5038.5
3 − 7% 84.5 200 458.5 84.5 215.7 458
7 − 10% 18.5 45.00 107.5 18.4 45 98.7
10 − 15% 6.5 19.5 51 6.5 19.1 51.2
15 − 30% 3.25 5.25 13.5 3.2 5.2 13.5
30 − 100% 1.61 3.06 3.76 1.6 2.4 3.8

Table 6: Calibration error - November 3th
Index Traches

Absolute Error 0.90bp 3.63bp
Percentage Error 1.84% 2.55%

Table 7: Market and model spreads - November 6th
Market Model

5Y 7Y 10Y 5Y 7Y 10Y
CDX 33 43 54 34.61 43.88 53.97

0 − 3% 2256 3863 4963 2255.9 3794.3 4963.1
3 − 7% 77 192 438 77 201.3 438
7 − 10% 17 41 98 17 41 93.5
10 − 15% 6 18.5 46.5 6 17.1 47
15 − 30% 3.13 5.75 12 3.1 5.2 12.8
30 − 100% 1.27 2.55 3.23 1.3 2 3.2

Table 8: Calibration error - November 6th
Index Traches

Absolute Error 0.84bp 4.81bp
Percentage Error 2.33% 3.44%
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Table 9: Calibrated parameters
Parameters Nov 1st Nov 2nd Nov 3th Nov 6th

λ1 0.0545 0.0472 0.0482 0.0482
λ2 0.0134 0.0131 0.0131 0.0135
λ3 0.0000 0.0000 0.0001 0.0009
λ4 0.0007 0.0019 0.0022 0.0021
Q12 0.0000 0.0013 0.0035 0.0019
Q13 0.0004 0.0132 0.0104 0.0107
Q14 0.0065 0.0048 0.0035 0.0041
Q21 0.0179 0.0193 0.0184 0.0182
Q23 0.0001 0.0001 0.0001 0.0001
Q24 0.0000 0.0000 0.0001 0.0000
Q31 0.0000 0.0000 0.0000 0.0000
Q32 0.0000 0.0000 0.0000 0.0000
Q34 0.4291 0.4368 0.4233 0.3832
Q41 0.0000 0.0000 0.0000 0.0000
Q42 1.2835 1.1012 1.1198 0.9557
Q43 0.0014 0.0006 0.0007 0.0005
w12 9.3981 9.3980 9.3982 9.3980
w13 0.1277 0.3481 0.3650 0.4741
w14 14.8746 14.8746 14.8746 14.8746
w21 0.0000 0.0129 0.0145 0.0158
w23 10.0362 10.0362 10.0361 10.0361
w24 19.6856 19.6856 19.6856 19.6856
w31 9.1688 9.1688 9.1688 9.1688
w32 7.5897 7.5897 7.5897 7.5897
w34 0.0000 0.0000 0.0000 0.0000
w41 6.4959 6.4958 6.4958 6.4958
w42 0.0009 0.0000 0.0000 0.0000
w43 0.7407 0.9194 0.7570 0.6270
π1 0.0019 0.0019 0.0021 0.0026
π2 0.0000 0.0000 0.0000 0.0000
π3 0.9981 0.9975 0.9979 0.9970
π4 0.0000 0.0006 0.0000 0.0004
R 0.4701 0.4784 0.4776 0.4702
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Figure 1: Calibrated portfolio loss density. 5Y Maturity. X axis: Lt, Y axis: density
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Figure 2: Calibrated portfolio loss density. 7Y Maturity. X axis: Lt, Y axis: density
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Figure 3: Calibrated portfolio loss density. 10Y Maturity. X axis: Lt, Y axis: density
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