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Abstract

The theory of risk measurement has been extensively developed over the past ten years
or so, but there has been comparatively little effort devoted to using this theory to inform
portfolio choice. One theme of this paper is to study how an investor in a conventional log-
Brownian market would invest to optimize expected utility of terminal wealth, when subjected
to a bound on his risk, as measured by a coherent law-invariant risk measure. Results of
Kusuoka lead to remarkably complete expressions for the solution to this problem.

The second theme of the paper is to discuss how one would actually manage (not just
measure) risk. We study a principal/agent problem, where the principal is required to satisfy
some risk constraint. The principal proposes a compensation package to the agent, who then
optimises selfishly ignoring the risk constraint. The principal can pick a compensation package
that induces the agent to select the principal’s optimal choice.
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AMS Subject Classifications:

1 Introduction

The study of risk measurement in the mathematical finance literature can be said to date
from the seminal paper [2], and has since grown into one of the biggest branches of the
subject. While a lot of effort has been expended on framing axioms for risk measures and
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their consequences, less attention has focused on how one might apply these notions to more
practical matters. A particularly interesting question is how one might optimally invest if
constrained by a bound on some risk measure. Early contributions to this literature were [8],
[6], [3], which dealt with the problem of optimizing subject to a VaR constraint, among other
questions. The use of VaR as a risk measure remains commonplace in the industry, though
it has been comprehensively and justly discredited in the academic literature. Coherent or
convex risk measures are generally preferred as ways of expressing the riskiness of a position,
and we shall discuss only these. A further natural restriction to be placed on a risk measure
is law invariance, which is to say that two contingent claims with the same law are considered
equally risky1. Law-invariant risk measures have been characterised by [12] and [9]. In Section
3, we shall work with a standard complete log-Brownian market, and solve the problem of
investing to optimize the expected utility of terminal wealth, subject to a constraint on risk
expressed as a bound on the value of a general law-invariant coherent risk measure. The key
observation is that the optimal terminal wealth must be a decreasing function of the state-
price density2. Casting the problem in Lagrangian form leads to the form of the solution,
which can in some cases be made reasonably explicit.

But beyond the characterisation of the optimal policy, we are interested in the contracting
problem which would arise between a trader and an investment bank which employs him.
The investment bank will have its own utility, which will typically be much more risk averse
than that of the trader, and will in addition be subject to regulatory constraints on risk.
The question we next investigate is what contract the bank might offer the trader so that the
trader acting in his own self-interest implements the bank’s preferred solution. The theory
of contracts is a difficult area of economic theory; see the excellent survey of Stole [11]. We
shall obviate many of the difficulties, which can arise in a situation where the agent may
misreport effort or outcomes, or where the level of effort of the agent is not verifiable by the
principal; the paper of Palomino & Prat [10], and further papers cited there, provide examples
of the kinds of problems that are tackled in this literature. In the context of a trader in an
investment bank, his every action is recorded electronically and subject to daily inspection,
so misreporting is virtually impossible. Likewise, the trader has no opportunity to slack; he
sits in an open-plan workspace with his boss within a few feet most of the day. Moreover,
competitive pressure from other traders means that it is reasonable to assume that the trader
will give maximum effort regardless. And in any case, in the story we are telling, there is no
scope for cleverness or innovation on the part of the trader; whatever he may believe about
his god-like insights, he is working in a complete market, and the only thing he has to do
is to implement the trades that replicate his desired terminal wealth. By abstracting from
issues of effort or misreporting, the construction of the contract to be offered to the agent is
immediate, at least in the first case we consider in Section 2 where there are no risk constraints

1While initially appealing, there are reasons why this may not be desirable; a trader would not necessarily be
indifferent between two contingent claims with the same law, one of which was the market portfolio, the other
being negatively correlated with the market portfolio. In a similar spirit, Cherny & Grigoriev [4] point out that
law invariance would not be a natural assumption when an agent has an existing position to be offset against the
proposed contingent claim.

2This is a result of Dybvig [5].
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imposed. We find that in realistic situations the overall value of the package can be quite small
compared to the amounts of money in the portfolio. These ideas come together in Section 4
where we identify a contract which the principal can offer the agent under which the agent’s
selfish actions implement the principal’s risk-responsible optimum.

2 Contracting to align objectives.

A principal employs the agent to invest on his behalf, starting with wealth w0. The agent
invests in various assets, and at some fixed horizon T , the agent is paid some fee ϕ(wT )
depending on the final value of the portfolio; bearing in mind that the agent’s preferences
may differ from the principal’s, how should the principal set ϕ to achieve his own objective?
The principal aims to obtain

supE UP (wT − ϕ(wT )),

whereas the agent aims to obtain

supE UA(ϕ(wT )).

The answer to the question is almost trivial; the principal selects constants k > 0 and a, and
defines the wage schedule ϕ by

UP (x− ϕ(x)) = kUA(ϕ(x)) − a. (1)

While this is the obvious recipe for the principal’s choice of wage schedule, and ensures that
the agent’s objective is perfectly aligned with the principal’s, there are various questions which
need to be answered; how should a and k be chosen? Is ϕ increasing? Is ϕ concave? For
realistic examples, what does ϕ look like?

It is likely that the principal is much more risk-averse than the agent; if the agent loses
all the money, he walks away with nothing, but then can go on to another job - he has lost
only some of his time. The principal on the other hand has lost a huge amount of capital that
might have taken decades to acquire, and may result in the destruction of the business which
generated the capital. For this reason, we shall suppose that there is some lower bound x that
the principal will tolerate for wealth. If ever the value of the portfolio falls to x, then the
agent is fired immediately, no further investment takes place, and the agent is paid nothing.
This gives us one condition for determining a and k, namely,

UP (x) = kUA(0) − a. (2)

Subject to this, there is only the choice of k, a parameter which reflects the bargaining power
of the agent, the smaller k, the more the agent’s bargaining power.

The properties of ϕ are summarised in the following result.

Proposition 1 Assuming that UP and UA are strictly increasing, the function ϕ : [x,∞) →
R

+ is well defined by (1) and (2). It is increasing, and UA ◦ ϕ is concave.

3



Proof. For any x > x, the function

y 7→ UP (x− y) − kUA(y) + a

is continuous and strictly decreasing on [0, x− x], from a positive value at y = 0 to a negative
value at y = x− x. Thus there is a unique y = ϕ(x) ∈ (0, x− x) at which the function is zero.
The monotonicity of ϕ is obvious.

Turning to the concavity of u(x) ≡ UA(ϕ(x)), suppose that concavity fails. Thus there
exist x1, x2 ≥ x, and p ≡ 1 − q ∈ (0, 1) such that (with x = px1 + qx2)

u(x) = UA(ϕ(x))

< pu(x1) + qu(x2)

= pUA(ϕ(x1)) + qUA(ϕ(x2)) (3)

≤ UA(pϕ(x1) + qϕ(x2)),

and so ϕ(x) < pϕ(x1) + qϕ(x2). Hence

u(x) = UA(ϕ(x)) = UP (x− ϕ(x))

> UP (x− pϕ(x1) − qϕ(x2))

≥ pUP (x1 − ϕ(x1)) + qUP (x2 − ϕ(x2))

= pUA(ϕ(x1)) + qUA(ϕ(x2)),

contradicting (3).
�

The message of this simple result is that once the lower bound x and the bargaining power
k of the agent have been fixed, the original utility UP is replaced by the modified utility UA ◦ϕ.

How does this modified utility look for some realistic values of the parameters? We show
in Figure 1 some plots for a typical example, where the principal is a CRRA investor with
coefficient of relative risk aversion R = 2, employing a much less risk-averse agent, again
CRRA with coefficient of relative risk aversion R = 0.005, in effect, a risk-neutral agent. The
principal has a lower bound x = 0.6 for the portfolio value, and the agent’s bargaining power
is determined by the value k = 20. Notice how the wage schedule ϕ offered to the agent
induces risk aversion; there is pronounced concavity in the wage schedule. At best, the agent
receives about 3.3% of the total wealth generated, and the effect on the principal’s utility is
very small.

Different choices can be made, but the qualitative picture usually looks quite similar. One
point to note is that if the agent’s reward is never more than a few percent of the total wealth,
then the principal’s utility is affected very little.
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3 From optimal wealth to optimal contract.

In this section, we make the common assumption of a complete market with a single risky
asset3, so that wealth dynamics take the familiar form

dwt = rwtdt+ θt(σdWt + (µ− r)dt), (4)

for some given initial value w0 of wealth. The market price of risk

κ ≡ σ−1(µ− r) (5)

and the state-price density process ζ defined by

dζt = ζt(−rdt− κ · dWt), ζ0 = 1, (6)

play a key rôle in the solution of optimal investment problems in this context.
The objective is to generate a terminal wealth wT which maximises the expected utility4

EU(wT ), subject to the initial wealth constraint, and subject to further constraints which
may be expressed solely in terms of the law of the terminal wealth5. Such further constraints
may typically be interpreted as some form of risk-management constraint. The optimization
problem is therefore to select a distribution for the terminal wealth, subject to the budget
constraint, so as to maximize the expected utility of terminal wealth. As Dybvig [5] proves, if
the law of the terminal wealth is specified, then the cheapest way to achieve a terminal wealth
with that law is to take wT = ψ(ζT ) for some decreasing function ψ defined by the property
that wT has the desired distribution. Thus the problem is to select a decreasing function ψ

to maximise the objective EU(ψ(ζT )) subject to the budget constraint EζTψ(ζT ) = w0, and
whatever further constraints on the law of wT have been imposed.

Suppose that this optimization problem is solved, and that the optimal decreasing function
ψ has been found. If we define a new utility function u by

u′(x) = ψ(x), (7)

then an agent with utility u freely optimizing Eu(wT ) subject to the budget constraint will
choose terminal wealth ψ(ζT ). In terms of the agent, if the principal offers the agent a contract
ϕ which satisfies6 for some k > 0 and a ∈ R

kUA(ϕ(x)) − a = u(x), (8)

3There would be no difficulty in extending the formulation to multiple risky assets, with suitably bounded
processes for volatility and growth rate; the key assumption is that the market is complete. We take the unvariate
constant coefficient case only to allow us to do explicit calculations for a number of examples.

4For simplicity, we shall assume that U is C2, strictly increasing and satisfies the Inada conditions.
5This is quite restrictive, in that it rules out all path-dependent constraints, such as drawdown constraints, or

constraints that the portfolio lie always in some convex set. Nevertheless, for some important interesting situations,
this assumption applies.

6It may be that (8) cannot be satisfied, if u takes values not in the range of the left-hand side.
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then the (unconstrained) agent will optimally choose the terminal wealth that the (constrained)
principal considers optimal.

The message which comes from this is clear and simple: under the complete-markets
assumption, the principal can take all responsibility for satisfying the risk-management con-
straint, by offering the agent a suitably-constructed contract, and then letting the agent act in
his own best interests.

4 Law-invariant coherent risk measure constraints.

We illustrate the principles of Section 3 by solving the problem of maximizing the expected
utility of terminal wealth, subject to the initial wealth constraint, and the further constraint
that some coherent law-invariant risk measure does not exceed some required threshold. Sim-
ilar problems with other constraints of a risk-management flavour have been solved by [8], [6],
[3]; what we do here tackles a general class of problems (which does not, however, include
those cited which deal with VaR constraints).

Law-invariant coherent risk measures have been characterised by [9], [1], [12], who show
that any coherent risk measure takes the form

ρ(X) = sup{ρµ(X) : µ ∈ M} (9)

where M is a collection of probability measures on [0, 1], and

ρµ(X) ≡

∫

ρa(X) µ(da), (10)

where

ρa(X) ≡ −a−1E[X : X ≤ F−1
X (a)] = −E[X|X ≤ F−1

X (a)] = −a−1

∫ a

0
F−1
X (x) dx (11)

for a > 0, and ρ0(X) ≡ −essinf(X).
In the assumed complete market setting, it is well known that it is possible to generate

any FT -measurable terminal wealth X which satisfies the budget constraint

w0 = E[ζTX]; (12)

see, for example, [7]. The task therefore is to maximise EU(X) subject to this constraint, and
the risk-measure constraint

ρ(X) ≤ −b (13)

for some constant b. Since our objective only depends on the law of wT , as does the risk-
measure constraint, by the arguments of the previous Section it is enough to look only at
terminal wealths of the form X = ψ(ζT ) for decreasing functions ψ. However, in this case the
quantiles of X are simply related to the quantiles of ζT ;

F−1
X (a) = ψ(F−1

ζ (1 − a)). (14)
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where we write Fζ ≡ FζT as an obvious abbreviation. Hence the shortfall risk measure

ρa = −a−1

∫ a

0
F−1
X (x) dx

= −a−1

∫ 1

1−a
ψ(F−1

ζ (y)) dy

= −a−1

∫ ∞

F−1

ζ
(1−a)

ψ(z) Fζ(dz) (15)

is expressed in terms of the quantiles of ζT , and then the risk measure ρµ can be expressed in
terms of the distribution of ζT also;

ρµ(X) = −

∫ 1

0

{

a−1

∫ ∞

F−1

ζ
(1−a)

ψ(z) Fζ(dz)

}

µ(da)

= −

∫

ψ(z)

{
∫ 1

1−Fζ(z)
a−1 µ(da)

}

Fζ(dz)

= −E[ψ(ζT )gµ(ζT )], (16)

where we see that gµ is non-negative increasing. The optimisation problem therefore becomes

max
ψ

EU(ψ(ζT )) subject to w0 = E[ζTψ(ζT )], E[ψ(ζT )gµ(ζT )] ≥ b ∀µ ∈ M (17)

where the function ψ is understood to be decreasing, and bounded below by x.
We shall explore this problem under the simplifying assumption that

M = {µ1, . . . , µn} (18)

is a finite set. Writing gi ≡ gµi
, we could (and shall) allow a slightly more general form of

the problem (17), by taking E[ψ(ζT )gi(ζT )] ≥ bi for each i, where the bi may be different. We
shall also assume the (Inada) condition limx→∞U ′(x) = 0, and that

gi(−∞) = 0 ∀i. (19)

This is a natural restriction. Indeed, the only way we could have gi(−∞) > 0 would be
if µi charges 1, so the risk measure ρµi is a convex combination of ρ1(X) and some other
coherent law-invariant risk measure. But the risk measure ρ1 is special: ρ1(X) = −EX, so
the condition E[ψ(ζT )gi(ζT )] ≥ bi will be satisfied if the mean of terminal wealth ψ(ζT ) is
large enough. This can easily be achieved, by taking ψ(ζT ) very large on the set where ζT is
very small; the objective is affected very little, and the budget constraint is also affected very
little. So any constraint for which gµ(−∞) > 0 will in fact not be a constraint at all.
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The Lagrangian form of the optimisation problem is to maximise over non-increasing ψ

and non-negative slack variables zi the Lagrangian7

L(ψ, z) ≡ E

[

U(ψ(ζ)) + λ(w0 − ζψ(ζ)) +

n
∑

i=1

αi{ψ(ζ)gi(ζ) − bi − zi}

]

= E

[

U(ψ(ζ)) − ψ(ζ)
{

λζ −

n
∑

i=1

αi gi(ζ)
}

− α · (z + b)

]

+ λw0. (20)

Dual-feasibility requires that α ≥ 0, and complementary slackness gives α ·z = 0 at optimality.
Moreover, dual-feasibility also requires that

λ ≥ sup
x>0

∑n
i=1 αi gi(x)

x
, (21)

otherwise for some x > 0 we could make the objective unbounded by taking ψ(x) very large.
The optimisation of L over non-increasing ψ is straightforward if the function

h(z) ≡ λz −

n
∑

i=1

αi gi(z)

is monotone increasing, for then we simply use the pointwise maximisation U ′(ψ(z)) = h(z),
which defines the value ψ(z) uniquely. However, if h is not monotone increasing, the story is
more subtle. To explain what happens, define

h̃(x) ≡ h(F−1
ζ (x))

= λF−1
ζ (x) −

n
∑

i=1

αi

∫ 1

1−x
a−1 µi(da),

ψ̃(x) ≡ ψ(F−1
ζ (x)),

mapping [0, 1] to R, where we require that ψ̃ is non-increasing. The interesting part of the
Lagrangian can be expressed as

E
[

U(ψ(ζ)) − ψ(ζ)h(ζ)
]

=

∫ 1

0
{U(ψ̃(x)) − ψ̃(x)h̃(x)} dx, (22)

to be optimised over non-increasing ψ̃ which decrease to x. Now set

H(x) ≡

∫ x

0
h̃(y) dy,

and let H be the greatest convex minorant of H, which we may express as

H(x) = H(x) + η(x)

7We abbreviate ζT to ζ for this part of the discussion.
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for a non-positive function η which is differentiable almost everywhere, and is equal to the
integral of its derivative. In addition, η(0) = η(1) = 0. Since H is convex, its derivative
h̃(x) + η′(x) is non-decreasing, and so we may estimate (22)

∫ 1

0
{U(ψ̃(x)) − ψ̃(x)h̃(x)} dx =

∫ 1

0
{U(ψ̃(x)) − ψ̃(x)(h̃(x) + η′(x))} dx+

∫ 1

0
ψ̃(x)η′(x) dx

≤

∫ 1

0
Ũ(h̃(x) + η′(x)) dx+ [ψ̃(x)η(x)]10 −

∫ 1

0
η(x) dψ̃(x)(23)

≤

∫ 1

0
Ũ(h̃(x) + η′(x)) dx, (24)

where in (23) we have integrated by parts, and used the notation Ũ for the convex dual of U ,
and to reach (24) we have used the fact that η is non-positive and ψ̃ is decreasing. Moreover,
the bound (24) is achieved when we use8

ψ̃(x) = I(h̃(x) + η′(x)), (25)

because at any x where η(x) < 0, the greatest convex minorant H is strictly less than H, and
so its slope is not changing; thus dψ̃ does not charge the set {x : η(x) < 0}, and the second
integral in (23) vanishes.

In our application, we shall require that the terminal wealth is always at least some min-
imum tolerated value x, the level at which the agent is stopped and kicked out. While we
could view this constraint as another risk measure constraint ρ0(wT ) ≤ −x and incorporate
this into the Lagrangian, the simplest thing is just to work through the argument at steps
(23) and (24) again, replacing supψ [U(ψ) − ψ(h̃(x) + η′(x))] with

sup
ψ≥x

[U(ψ) − ψ(h̃(x) + η′(x))] = Ũ((h̃(x) + η′(x)) ∧ y),

where y = U ′(x). For ψ̃ which satisfy the lower bound, this provides an upper bound for the
value of (this part of) the Lagrangian, the bound being achieved when we take

ψ̃(x) = I(h̃(x) + η′(x)) ∨ x = I((h̃(x) + η′(x)) ∧ y). (26)

Finally we apply the results of Section 3. We assume that the principal’s objective is
expressed in terms of the gross wealth achieved at time T , rather than in terms of the wealth
wT −ϕ(wT ) achieved net of fees to the agent. To do otherwise would be far more complicated,
as then the optimum depends on the fees to be paid to the agent, which in turn depend on
the optimum. In any case, we have seen in Section 2 that the two are quite close in practical
situations; and we do not pretend that risk management is an exact science.

Given this, the risk-constrained principal will optimally choose a terminal wealth that is of
the form ψ(ζT ) for some decreasing function ψ; so the principal offers the agent a contract ϕ
which satisfies (8), where u satisfies(7), and the principal’s risk-constrained optimum becomes
the agent’s unconstrained optimum.

8The function I is the inverse marginal utility (U ′)−1.
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5 Some numerical examples.

We now consider two numerical examples, to give substance to the theoretical discussion of the
previous section, and to show the kinds of contracts that a risk-constrained principal would
offer to an agent. Throughout, we assume that the initial wealth is 1.

In the first example, there is just one constraint (n = 1 in (18)), which is of expected-
shortfall type:

ρ(X) = ρa(X),

where we take a = 0.05 and b = 0.5. Thus the expected shortfall below the 5-percentile, given
that the terminal wealth is below the 5-percentile, should not exceed 0.5. The lower bound x
is taken to be 0.5. The results are plotted in Figures 2 and 3. In the first of these, we see the
inverse marginal utility for the risk-constrained principal in the upper panel, with the utility
u ≡ Ua ◦ ϕ for the agent shown in the lower panel, superimposed over the original utility for
the agent. The top panel shows that the lower bound x = 0.5 for the wealth appearing as a
vertical wall in the inverse marginal utility, along with another vertical segment at xc ≃ 0.67,
where the utility has a discontinuity of gradient. The effect of this is that there will be a
positive probability that the final wealth will be equal to this critical value, even though the
optimally-controlled wealth process will not stop investing at any time t < T . The second
figure, Figure 3, shows the actual contract offered, and the payment made as a fraction of the
wealth generated. Again, the discontinuity at xc is visible.

In the second example, we have n = 3. The first two constraints are simple expected-
shortfall constraints,

ρai
≤ −bi (i = 1, 2),

with a1 = 0.65, b1 = 1.04, a2 = 0.05, b2 = 0.7. For the third risk measure, we take the
expression (16) using µ(da) = I{a<β}da, and ρµ ≤ −0.85. Once again, the results of the
calculation are displayed in Figures 4 and 5. This time, the inverse marginal utility shows
two steps, so there are two values for the terminal wealth which will be achieved with positive
probability. The derived utility and the contract show marked risk aversion.

6 Conclusions.

We have seen how the alignment of the objectives of principal and agent is possible by a very
simple construction of a payment schedule based on the wealth generated by the agent. This
leads on to a remarkably complete answer to the question of the construction of the optimal
principal-agent contract in the situation where the principal aims to maximize his expected
utility of terminal wealth subject to law-invariant coherent risk measure constraints.
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[6] S. Emmer, C. Klüppelberg, and R. Korn. Optimal portfolios with bounded capital at
risk. Mathematical Finance, 11:365–384, 2002.

[7] I. Karatzas and S.E. Shreve. Methods of Mathematical Finance. Springer, New York,
1998.
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Figure 4: Three risk measure constraints
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