L.C.G. ROGERS
Coupling and the tail o-field of a one-
dimensional diffusion

1. INTRODUCTION

The question of the triviality of the tail o-field of a one-dimensional diffusion has been
completely decided by work of Résler, Fristedt and Orey, and Kiichler and Lunze; the
purpose of this note is essentially pedagogical, in that we shall show how the ideas of
these earlier papers can be drawn together, illuminated and simplified using a little sto-
chastic calculus.

We shall work throughout with a regular one-dimensional diffusion X with the inter-
val I < R as statespace. Our diffusion will always be assumed to be in natural scale,
with speed measure m; we refer the reader to Breiman [1], Freedman [2], Mandl {7],
Rogers and Williams [8] for definitions and properties. The sample space is the canoni-
cal space Q = C(IR*,1) and we define for ¢ =0

G = o({X;:s521}),

where X is the canonical process. The tail G-field is defined to be
= M )
g 120 g[

Informally, an event is in G 1f 1t is determined by the ultimate behaviour of the path. In
view of the Kolmogorov 0-1 law, it seems reasonable (and is true, as we shall see) that
if X is recurrent, the tail o-field is trivial. If X is transient, is it possible that the tail o-
field is non-trivial, and if so, how? The most illuminating explanation of the fact that §
can be non-trivial appears in the paper of Fristedt and Orey {3]. Consider the stochastic
differential equation

Y, = J;)[‘G(YS)dBS y (1)

where o € CJ. Then the solution ¥ will diffuse for a while, and will ultimately leave
the support of ¢ for ever, and follow the trajectory Y, = M + ¢, where the random vari-
able m is tail measurable. One expects that if ¢ were everywhere positive but tended to
zero sufficiently rapidly at infinity, then the qualitative behaviour of ¥ would not change
much, and G would be non-trivial. This is exactly what happens; and, as Fristedt and
Orey prove, this 1s a/l that happens.
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Let us now explain the principal results. It turns out that the only interesting case is
(reducible to} the case where I = (0,1], and 1 is not absorbing. In this case, the diffusion
tends to zero as f — oo, Defining forx € I

c(x) = E'(H,)

(where H, = inf{r > 0:X, =x}, and IE” denotes expectation with respect to IP?, the
law of the diffusion started at y), the function c is finite-valued, and

M, =t —cXy)

is a local martingale. Here is the main result.

THEOREM 3. The following are equivalent:
(1) Gisnottrivial,
(i) E*<M >, < oo for some (all} x € (0,1];
(ii1) for some (all) x € (0,1],

lim var, (fH,) < oo
Jim, «(f1y)

@) ['yonly, 1Py < o
(v) (M;);>p is boundedin L2(PX) for some (all) x e (0,1];

(vi) (M), >q is convergent a.s. P* for some (all) x € (0,1].

Remarks. Raosler [1] proved (1) < (111). Fristedt and Orey added (iv) and (vi). By
var, we mean the variance under IP*. The third condition is illuminating; E*(H,) — oo
asy l 0, yet the variances of Hy remain bounded. Compare this with (I).

The key to the proof of Theorem 3 is the following. If X and X" are independent dif-
fusions in I, the first with law IP*, the second with law P¥: x #x’, and if
T =inf{t >0:X, =X}, then |

G istivial <> T < e as. (2)

This coupling characterisation of the triviality of G is due to Kiichler and Lunze [5]; we

prove it below.

In §2, we set out briefly some notation and basic ideas, and go on to prove (2). Then
in §3 we prove Theorem 3. The final section, §4, deals with the remarkable result of
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Fristedt and Orey that G = o6(M ..) in the case where G is non-trivial. We shall make use
in what follows of some standard facts about one-dimensional diffusions: '

(3) the semigroup {P, : ¢ 20} is strong Feller;

(4) there is a strictly positive continuous p : (0,e) X int(I) X int(I) — IR such that
for f supported in int(I)

Pif @) = [pey)f 0)mdy)

(see Ito-McKean [4], §4.11);

(5) the IP*-distribution of Hy has a uniformly continuous density (which is even
unimodal - see Rosler [10]).

2. COUPLING AND TRIVIALITY OF THE TAIL c-field G

Any bounded function f:R* xI-— IR which is non-constant and such that for all
,s20

f&-) = Poft +5,) (6)

will be called a fail function. Here, (P,) is the transition semigroup of the diffusion X;
since it 1s strong Feller, it can easily be deduced that any tail function must be jointly
continuous. The terminology is explained by the following result.

Proposition. The following are equivalent:
(1) There exists a tail function;
(1) Gis non-trivial under IP* for each x € int(l);
(111) Gis non-trivial under P* for somex € 1.

There is a 1-1 correspondence between tail functions f and bounded tail-measurable
random variables Y given by

fX) = BXlg), Y = Ilim FX) . (7)
Progf. () =>(1). The process ¥, = f(£,X,) is, from (6), a bounded martingale, so

that IP*-a.s. the limit ¥ exists. If ¥ were constant, so would f (£,X,) be, which contrad-
icts the existe{lce of a strictly positive transition density (4).
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(iiiy => (1). Let Y € L™(§) be non-constant. Define f by f(6,X,)=E*Y 1 4,); the
right-hand side is a function only of X, since ¥ € L™(G) < L™(§G,). Since Y is non-

constant, and ¥ = lim f(z,X,), f cannot be constant. The fact that (7) holds 1s immedi-
f — oo

ate from the Markov property. Y

Now let X¢ =x, and let X’ be an independent copy of X but with starting point x’.
Define Gy =o({X'y :s =¢t})and let 4, =G v G}‘ We define 4= n4,. Because X and
{

X' are independent, we have that
A=GvG;

with Lemma 2 of Lindvall and Rogers [6]. Without independence, this result is false in
general, Let P denote the law of the bivariate process (X,X).

Here is the key result of Kiichler and Lunze.

THEOREM 1. The following are equivalent:
(@) forallxx e L PYNT <o) = 1,
(i) forallx € L, Gtrivial under IP*.

Proof. (i) => (ii). Recall the definition of the coupling time T given in the first scc-
tion. We use the fundamental coupling inequality for the total-variation norm of

Pix,) = P(X,),
HP,(x, ) — P )l < 2P T > 1)
see, for example, Rogers and Williams [8], V.54.2. Suppose then that f is some tail
function. Then for any 5, 20, x,x" € I
L f (s,x)—f (5,201 < UP, (e, ) =P, )10 U f(s +2,9)1
— 0 as 1 —eo

by hypothesis. Hence immediately fis constant, and so G is IP*-trivial for all x.

(i) => (). Since A= Gv §, it follows that Ais P**)-wrivial for all x,x". Now define
AT = [X,-X,>0 foralllarge enough ¢} ,

A~ {X,—~X, <0 forall large enough r} |

1l
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oty = PED@UE)

The events A* and A~ are tail events; indeed, they are even invariant events. By
hypothesis then, ¢* take only the values O and 1. We shall show that ¢* are both zero
throughout int(I} X int(I), leaving the extension to the boundary as an easy exercise.
Suppose that xg,x’ € int(I) and that $* (xg,x"g) = 1. Then by (4) it must be that ¢* is
equal to 1, m X m-a.e. in int{I) X int(I); and, since ¢* is invariant, it follows immedi-
ately that ¢* is 1 everywhere in int(I) X int(I). But % (x,x) = ¢~ (x',x), and so ¢~ is |
everywhere in int(I) X int(T) - which is a contradiction because the events A* and A~
are disjoint. Thus P®™*)(4%) =0 for all x,x’, and the two independent diffusions X and
X" keep on crossing over, so, in particular, the coupling time T must be finite. 0

Terminology. We say that coupling is certain if for all x,x’ € I, P¥*)(T < o) = 1, and
we say that G is trivial if G is IP*-trivial for all x.

Here is a simple consequence of Theorem 1:
If X is recurrent, then Gis trivial.

Proof. (i) If I=1R, then X and X’ are independent continuous local martingales, so
<X —X'>=<X>+ <X'>. Moreover, <X >., =+ as. since X does not converge.
Thus <X —X'>,, = +e= as., and (since X — X’ is a time change of Brownian motion)
sup(X, —X')) = sgp(X’, —X,) = +eo. Thus coupling is certain.

t

(1) If I=[0,00), say, with O reflecting, extend the speed measure m into (—<,0) by
reflection and make up independent diffusions Y,Y” on IR with this speed; by (i), ¥ and
Y’ are certain to couple and, since 1Y | has the same law as X, X and X’ are also certain

to couple.

(iii) The case of compact 1 is similar to (it). 0

3. CHARACTERISING THE CASES WHERE G IS NON-TRIVIAL

We now consider what happens when the diffusion X is transient. One of the following
cases must apply (after shifting and rescaling I if necessary).

(i) I=10,11,0 and 1 both absorbing. Then Gis not trivial.

(iiy 1 = [0,1], O absorbing, 1 not absorbing. In this case, if fis a tail function,
f(,0=f(0) V s,t >0 and so, since the diffusion is certain to be absorbed
i 0, f1s constant. Hence G1s trivial.
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(ini) I=(0,1], I is absorbing. Again, §is non-trivial.

(Gv) I=(0,1], 1 is not absorbing. This is the interesting case.

(v) I=10,00),01s absorbing. Asin (ii), Gis trivial.

(vi) 1=(0,00). We shall see later that this can be reduced to case (iv).

Thus we shall until further notice assume that
1=(0,11 and 1 is not absorbing. (8

In particular, this implies that for 0 <y <x <1, all moments of Hy are finite under
P* (see, for example, Rogers and Williams [8], V.46.1) and, with c(x) =IE1(Hx) as
before,

M, = t—c(X,;) is a continuous local martingale under each P*

Indeed, for y <x,
M AHy) = IE"{HyIT,] - cly) . (%)

It is well known that ¢ is strictly decreasing and convex.

We are now in a position to prove the main result.

THEOREM 3. The following are equivalent:
(1) Gis not trivial,
(i) E*<M >., < e=forsome (all) x € (0,1];
(iii) for some (all) x € (0,1];

lim var, (H,) < oo
J x(y)

@) [' yom 1 dy < o=
(V) (M), >0 is bounded in L*(P¥) for some (all) x € (0,11;

(vi) (M));»q is P*-as. convergent for some {all) x € (0,1].
Proof. (i) <> (iii)). From (9),for0 <y <x <1
E*<M >y, = EXMA,) - M (0))?
= B, - B ()

= vare(fy) .
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Moreover, by the strong Markov property at H,,
vary(Hy) = varj(H,) + vary(fy) |

and var (H,) < <o since all moments of H, are finite under IP!.
(ii) < (v) is immediate, as is (v) => (vi).
To prove the other equivalences, we shall assume we have the diffusion X

represented as a time change of a Brownian motion, as we may. Thus if B is a
Brownian motion started at x € I, with local time process {I(¢,x) : t 20,x € R},

A, = [m@aig,a) ,
I

o, = influ:4,>t},
Xt = B(GI) .
Let Ty = inf{r: B, =y}, { = 19. Then H, =A(1,) for y <x. Hence, defining ¢ (x) =0
forx >1,
M(At/\‘cy) = At/\'t, - C(BIAT),)
= FAq | B] - c0)

18 a (B;)-martingale (where (‘) is the filtration of B ) and hence M o A is a (‘B,)-local
martingale on [0,). Since ¢ is convex, we may apply the generalised It formula (see
Rogers and Williams [8], IV.45.1) to deduce that for ¢ < {

MoA, = L‘ (BB, |

and that - =dm as measures. This tells us that for each x € I, ¢’(x) =—2m ([x, 1D,

and that
| 7
<M oA>, = foc(BS) ds = <M>g .

Now <M oA >, 1s an additive functional of B, and the criterion for this to converge as
t T ¢ is well known from the study of boundary behaviour of diffusions; we have

<M>p = <MoA>r < o0 & EY(<MoA>r) = BN <M>.) < (10)
o | yeoiay <,
+

and if this condition fails, <M >, = +eo, P*-as.. See, for example, Rogers and
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Williams [8], V.51.2. Equivalence of (it) and (iv) is now immediate, and, since
M, =W (<M >,) for some Brownian motion W, (vi) implies that IP*-a.s. <M >, < oo for
some x 50 that, from (10), IE* <M >, < o, which is (ii).

All that now remains is to prove that (i) is equivalent to all the other statements. If
(vi) holds, then M ., is a non-degenerate tail-measurable random variable (M cannot be
constant); thus & is not trivial. Conversely, if (iv) is false, <M >., = +oo, P*-a.s. for
each x, and so if X,X’ are independent copies of the diffusion with different starting
points then <M — M’>,, = +oo a.s., where M, =1 — ¢ (X';). Hence, as before, for some ¢

cX)—cX'y) =0,

and so X and X’ couple, since ¢ is strictly decreasing. ¢

Finally, to dispose of the case where I =(0,e), notice that if G is non-trivial there is
some tail function, which is a tail function for the diffusion obtained by time-changing
out the time spent in (1,°¢). Hence for this new diffusion we can apply Theorem 3 and
conclude that

Llyz(m'[y, 1)2dy < oo . (11)

Conversely, if this integral is finite, N, is a non-trivial G-measurable random variable,
where N is the martingale

N, = A - (X))

with 4, EL‘I(O,H(XS)ds, Z(x) = AH,)]. In summary then, when I=(0,c), non-
triviality of Gis equivalent to (11).

4. THE STRUCTURE OF G IN THE CASES OF NON-TRIVIALITY

We shall suppose still that we are dealing with the interesting case where I = (0,1] and 1
is reflecting; all others can be reduced to this.

If Gis non-trivial, and A € G, PL(A) € (0,1), we let f denote the corresponding tail
function, and note that for each x

A= {feX)> 1) = (fHyn™) > 1) Pras.

1l

Thus if Y, = H 14 — ¢ (1/k), we have that

AenA, = no({Yy:kzn}) .
n H as



Now since Z; =Y, — Y. defines a sequence of independent random variables, and

since Yy — Y = lim M, =M .., we have that
[ —> oo

A .

ili

Aend, = no({Y,Zy:k>n})

In view of Kolmogorov’s 0-1 law, we expect that A=o(Y); as an example below will
show, this is not correct. However, a special feature of the current situation saves us.

THEQREM 4. Let {Zy:k > 1) be independent random variables whose partial sums
Y, converge a.s. to Y. Suppose that for some k, Zy has a uniformly continuous density.
Then the tail o-field of {Y,} is o(¥).

Proof. (i) Without loss of generality, suppose that Z has a uniformly continuous den-
sity /. Notice that for any probability distribution F, the convolution of F* with the law
of Z1 has the density (F«f)(x) = _{F (dt)f (x —t), which is again uniformly continuous
with modulus of continuity no larger than that of f. Thus if ¢ is the density of ¥, and ¢
is the density of Y, we have foralla < b

J? gy - [Poax

and so by the equi-uniform continuity of {¢,¢ : £ 2 1}, it follows that ¢x(a) — d(a) for
every 4, and hence that ¢x(y¢) — o) if yp — .

(i) It suffices to prove that for bounded X € %, =o({¥; -k <n}) and bounded
A-measurable V,

E(XV) = EEXIY)V) . (12)

Now E (X | 4,) = E(X 1¥,) =g (¥,,) for some bounded Borel function g, so for k > n
E(XV) = E(EX | A)V)
= E[EEX 1 A) A)V]
= E[E(g ¥ AYV]
EE@XY)YOV] .

i

If F,, 1 is the distribution function of Yy — ¥, =Zp 1 + -+ + Zy, then

Elg (Y)Y = | Fpid) g e —0)dn(Ye) - (13)
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Now take bounded uniformly continuous g such that E [(g —g)(¥,)| < g, and notice
that E[g(Y,)1Ye] = E[g(Y,,)1Y] as. as k — oo; indeed, the denominator is a.s. con-
vergent since Y — Y, and the convergence of the numerator is ensured by the uniform
continuity of g¢,,. The equality (12) follows. 0

Because the first passage time H 1/& has a uniformly continuous density under each
IP*, x > 1/k, we can apply Theorem 4 to obtain the pleasing conclusion A € (M ..);
the only non-trivial information in the tail ¢-field G comes from the limit of  — ¢ (X)).

Finally, we provide an example which shows that Theorem 4 fails without the
assumption: of a uniformly continuous density for some Z;. Letpy <po < --- be the
primes in ascending order, and suppose that

1 1 .
P(Zp=—) = P(Zy=—) = L+
T ;e Pk z

Since py, is of order k log k, the martingale Yy, =Z| + - -+ + Z is almost surely and L?
convergent. Now

z -1 z 1
Yo + Y = 2YX Nz >0@d
i 1

and so from Y, we can deduce all of Zy, ..., Z,, because if we take primes g1, ..., g;

and combine Erl {q J,-)*1 over a common denomnator, then that denominator is []q;.

However, knowing Y does not allow us to deduce the sign of Z1, for example.
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