L.C.G. ROGERS Coupling and the tail σ -field of a onedimensional diffusion

1. INTRODUCTION

The question of the triviality of the tail σ -field of a one-dimensional diffusion has been completely decided by work of Rösler, Fristedt and Orey, and Küchler and Lunze; the purpose of this note is essentially pedagogical, in that we shall show how the ideas of these earlier papers can be drawn together, illuminated and simplified using a little stochastic calculus.

We shall work throughout with a regular one-dimensional diffusion X with the interval $I \subset \mathbb{R}$ as statespace. Our diffusion will always be assumed to be in natural scale, with speed measure m; we refer the reader to Breiman [1], Freedman [2], Mandl [7], Rogers and Williams [8] for definitions and properties. The sample space is the canonical space $\Omega = C(\mathbb{R}^+, I)$ and we define for $t \ge 0$

 $G_t \equiv \sigma(\{X_s : s \ge t\}) ,$

where X is the canonical process. The *tail* σ -*field* is defined to be

$$\mathcal{G} \equiv \bigcap_{t \ge 0} \mathcal{G}_t \; .$$

Informally, an event is in G if it is determined by the *ultimate* behaviour of the path. In view of the Kolmogorov 0-1 law, it seems reasonable (and is true, as we shall see) that if X is recurrent, the tail σ -field is trivial. If X is transient, is it possible that the tail σ -field is non-trivial, and if so, how? The most illuminating explanation of the fact that G can be non-trivial appears in the paper of Fristedt and Orey [3]. Consider the stochastic differential equation

$$Y_t = \int_0^t \sigma(Y_s) dB_s + t \tag{1}$$

where $\sigma \in C_{\kappa}^{\infty}$. Then the solution Y will diffuse for a while, and will ultimately leave the support of σ for ever, and follow the trajectory $Y_t = \eta + t$, where the random variable η is tail measurable. One expects that if σ were everywhere positive but tended to zero sufficiently rapidly at infinity, then the qualitative behaviour of Y would not change much, and G would be non-trivial. This is exactly what happens; and, as Fristedt and Orey prove, this is all that happens.

Let us now explain the principal results. It turns out that the only interesting case is (reducible to) the case where I = (0,1], and 1 is not absorbing. In this case, the diffusion tends to zero as $t \to \infty$. Defining for $x \in I$

$$c(x) \equiv \operatorname{I\!E}^1(H_x)$$

(where $H_x \equiv \inf\{t > 0 : X_t = x\}$, and \mathbb{E}^y denotes expectation with respect to \mathbb{P}^y , the law of the diffusion started at y), the function c is finite-valued, and

$$M_t \equiv t - c(X_t)$$

is a local martingale. Here is the main result.

THEOREM 3. The following are equivalent:

- (i) *G* is not trivial;
- (ii) $E^{x} < M >_{\infty} < \infty$ for some (all) $x \in (0,1]$;
- (iii) for some (all) $x \in (0,1]$,

$$\lim_{y \to 0} \operatorname{var}_x(H_y) < \infty;$$

(iv)
$$\int_{0}^{1} y(m[y, 1])^{2} dy < \infty$$

- (v) $(M_t)_{t \ge 0}$ is bounded in $L^2(\mathbb{P}^x)$ for some (all) $x \in (0,1]$;
- (vi) $(M_t)_{t \ge 0}$ is convergent a.s. \mathbb{P}^x for some (all) $x \in (0,1]$.

Remarks. Rösler [1] proved (i) \Leftrightarrow (iii). Fristedt and Orey added (iv) and (vi). By var_x we mean the variance under \mathbb{P}^x . The third condition is illuminating; $\mathbb{E}^x(H_y) \to \infty$ as $y \downarrow 0$, yet the variances of H_y remain bounded. Compare this with (1).

The key to the proof of Theorem 3 is the following. If X and X' are independent diffusions in I, the first with law \mathbb{P}^{x} , the second with law $\mathbb{P}^{x'}$; $x \neq x'$, and if $T = \inf\{t > 0 : X_t = X'_t\}$, then

 $G \text{ is trivial } \Leftrightarrow T < \infty \quad \text{a.s.} \tag{2}$

This coupling characterisation of the triviality of G is due to Küchler and Lunze [5]; we prove it below.

In \$2, we set out briefly some notation and basic ideas, and go on to prove (2). Then in \$3 we prove Theorem 3. The final section, \$4, deals with the remarkable result of Fristedt and Orey that $G = \sigma(M_{\infty})$ in the case where G is non-trivial. We shall make use in what follows of some standard facts about one-dimensional diffusions:

- (3) the semigroup $\{P_t : t \ge 0\}$ is strong Feller;
- (4) there is a strictly positive continuous p : (0,∞) × int(I) × int(I) → ℝ such that for f supported in int(I)

1

ć

]

٤

] t

1

٤ f

Ł

(

$$P_t f(x) = \int p_t(x, y) f(y) m(dy)$$

(see Itô-McKean [4], §4.11);

(5) the \mathbb{P}^x -distribution of H_y has a uniformly continuous density (which is even unimodal - see Rösler [10]).

2. COUPLING AND TRIVIALITY OF THE TAIL σ -field G

Any bounded function $f : \mathbb{R}^+ \times \mathbb{I} \to \mathbb{R}$ which is non-constant and such that for all $t, s \ge 0$

$$f(t,\cdot) = P_s f(t+s,\cdot) \tag{6}$$

will be called a *tail function*. Here, (P_t) is the transition semigroup of the diffusion X; since it is strong Feller, it can easily be deduced that any tail function must be jointly continuous. The terminology is explained by the following result.

Proposition. *The following are equivalent:*

- (i) There exists a tail function;
- (ii) G is non-trivial under \mathbb{P}^x for each $x \in int(I)$;
- (iii) G is non-trivial under \mathbb{P}^x for some $x \in I$.

There is a 1-1 correspondence between tail functions f and bounded tail-measurable random variables Y given by

$$f(t,X_t) = \mathbb{E}^{\mathcal{Y}}(\mathcal{Y} \mid \mathcal{F}_t), \quad \mathcal{Y} = \lim_{t \to \infty} f(t,X_t) .$$
(7)

Proof. (i) => (ii). The process $Y_t \equiv f(t, X_t)$ is, from (6), a bounded martingale, so that \mathbb{P}^x -a.s. the limit Y exists. If Y were constant, so would $f(t, X_t)$ be, which contradicts the existence of a strictly positive transition density (4).

(iii) => (i). Let $Y \in L^{\infty}(G)$ be non-constant. Define f by $f(t,X_t) = \mathbb{E}^{x}(Y | \mathcal{F}_t)$; the right-hand side is a function only of X_t since $Y \in L^{\infty}(G) \subset L^{\infty}(G_t)$. Since Y is non-constant, and $Y = \lim_{t \to \infty} f(t,X_t)$, f cannot be constant. The fact that (7) holds is immediate from the Markov property.

Now let $X_0 = x$, and let X' be an independent copy of X but with starting point x'. Define $G'_t \equiv \sigma(\{X'_s : s \ge t\})$ and let $\mathcal{A}_t \equiv G_t \lor G'_t$. We define $\mathcal{A} \equiv \bigcap_t \mathcal{A}_t$. Because X and X' are independent, we have that

$$\mathcal{A} = \mathcal{G} \lor \mathcal{G} ;$$

with Lemma 2 of Lindvall and Rogers [6]. Without independence, this result is false in general. Let $\tilde{\mathbb{P}}^{(x,x')}$ denote the law of the bivariate process (X,X').

Here is the key result of Küchler and Lunze.

THEOREM 1. The following are equivalent:

- (i) for all $x, x' \in I$, $\tilde{\mathbb{P}}^{(x,x')}(T < \infty) = 1$;
- (ii) for all $x \in I$, G trivial under \mathbb{P}^x .

Proof. (i) => (ii). Recall the definition of the coupling time T given in the first section. We use the fundamental coupling inequality for the total-variation norm of $P_t(x, \cdot) - P_t(x', \cdot)$,

$$||P_t(x,\cdot) - P_t(x',\cdot)|| \le 2\tilde{\mathbb{P}}^{(x,x')}(T > t);$$

see, for example, Rogers and Williams [8], V.54.2. Suppose then that f is some tail function. Then for any $s, t \ge 0$, $x, x' \in I$

$$|f(s,x) - f(s,x')| \leq ||P_t(x,\cdot) - P_t(x',\cdot)|| \cdot ||f(s+t,\cdot)||_{\infty}$$

$$\to 0 \quad \text{as} \quad t \to \infty$$

by hypothesis. Hence immediately f is constant, and so G is \mathbb{P}^x -trivial for all x.

(ii) => (i). Since $\mathcal{A} = \mathcal{G} \vee \mathcal{G}$, it follows that \mathcal{A} is $\tilde{\mathbb{P}}^{(x,x')}$ -trivial for all x, x'. Now define

 $A^{+} \equiv \{X_{t} - X'_{t} > 0 \text{ for all large enough } t\},$ $A^{-} \equiv \{X_{t} - X'_{t} < 0 \text{ for all large enough } t\},$

$$\phi^{\pm}(x,x') \equiv \widetilde{\mathbb{P}}^{(x,x')}(A^{\pm}) .$$

The events A^+ and A^- are tail events; indeed, they are even invariant events. By hypothesis then, ϕ^{\pm} take only the values 0 and 1. We shall show that ϕ^{\pm} are both zero throughout $\operatorname{int}(I) \times \operatorname{int}(I)$, leaving the extension to the boundary as an easy exercise. Suppose that $x_0, x'_0 \in \operatorname{int}(I)$ and that $\phi^+(x_0, x'_0) = 1$. Then by (4) it must be that ϕ^+ is equal to 1, $m \times m$ -a.e. in $\operatorname{int}(I) \times \operatorname{int}(I)$; and, since ϕ^+ is invariant, it follows immediately that ϕ^+ is 1 everywhere in $\operatorname{int}(I) \times \operatorname{int}(I)$. But $\phi^+(x, x') = \phi^-(x', x)$, and so ϕ^- is 1 everywhere in $\operatorname{int}(I) \times \operatorname{int}(I)$ – which is a contradiction because the events A^+ and $A^$ are disjoint. Thus $\mathbb{IP}^{(x,x')}(A^{\pm}) = 0$ for all x, x', and the two independent diffusions X and X' keep on crossing over, so, in particular, the coupling time T must be finite. \diamond

Terminology. We say that coupling is certain if for all $x, x' \in I$, $\tilde{\mathbb{P}}^{(x,x')}(T < \infty) = 1$, and we say that G is trivial if G is \mathbb{P}^x -trivial for all x.

Here is a simple consequence of Theorem 1:

If X is recurrent, then G is trivial.

Proof. (i) If $I = \mathbb{R}$, then X and X' are independent continuous local martingales, so $\langle X - X' \rangle = \langle X \rangle + \langle X' \rangle$. Moreover, $\langle X \rangle_{\infty} = +\infty$ a.s. since X does not converge. Thus $\langle X - X' \rangle_{\infty} = +\infty$ a.s., and (since X - X' is a time change of Brownian motion) $\sup(X_t - X'_t) = \sup(X'_t - X_t) = +\infty$. Thus coupling is certain.

(ii) If $I = [0, \infty)$, say, with 0 reflecting, extend the speed measure *m* into $(-\infty, 0)$ by reflection and make up independent diffusions Y, Y' on \mathbb{R} with this speed; by (i), Y and Y' are certain to couple and, since |Y| has the same law as X, X and X' are also certain to couple.

 \Diamond

(iii) The case of compact I is similar to (ii).

3. CHARACTERISING THE CASES WHERE G IS NON-TRIVIAL

We now consider what happens when the diffusion X is transient. One of the following cases must apply (after shifting and rescaling I if necessary).

- (i) I = [0,1], 0 and 1 both absorbing. Then G is not trivial.
- (ii) I = [0,1], 0 absorbing, 1 not absorbing. In this case, if f is a tail function, $f(s, 0) = f(t, 0) \forall s, t \ge 0$ and so, since the diffusion is certain to be absorbed in 0, f is constant. Hence G is trivial.

(iii) I = (0,1], 1 is absorbing. Again, G is non-trivial.

(iv) I = (0,1], 1 is not absorbing. This is the interesting case.

(v) $I = [0, \infty), 0$ is absorbing. As in (ii), G is trivial.

(vi) $I = (0, \infty)$. We shall see later that this can be reduced to case (iv).

Thus we shall until further notice assume that

I = (0,1] and 1 is not absorbing.(8)

In particular, this implies that for $0 < y \le x \le 1$, all moments of H_y are finite under \mathbb{P}^x (see, for example, Rogers and Williams [8], V.46.1) and, with $c(x) = \mathbb{E}^1(H_x)$ as before,

 $M_t = t - c(X_t)$ is a continuous local martingale under each \mathbb{P}^x .

Indeed, for y < x,

$$M(t \wedge H_{y}) = \mathbb{E}^{x}[H_{y} \mid \mathcal{F}_{t}] - c(y) .$$
⁽⁹⁾

It is well known that c is strictly decreasing and convex.

We are now in a position to prove the main result.

THEOREM 3. The following are equivalent:

(i) G is not trivial; (ii) $\mathbb{E}^{x} < M >_{\infty} < \infty$ for some (all) $x \in (0,1]$; (iii) for some (all) $x \in (0,1]$; $\lim_{y \to 0} \operatorname{var}_{x}(H_{y}) < \infty$; (iv) $\int_{0}^{1} y(m[y,1])^{2} dy < \infty$; (v) $(M_{t})_{t \geq 0}$ is bounded in $L^{2}(\mathbb{P}^{x})$ for some (all) $x \in (0,1]$;

(vi) $(M_t)_{t\geq 0}$ is \mathbb{P}^x -a.s. convergent for some (all) $x \in (0,1]$.

Proof. (ii)
$$\Leftrightarrow$$
 (iii). From (9), for $0 < y \le x \le 1$
 $\mathbb{E}^x < M >_{H_y} = \mathbb{E}^x (M(H_y) - M(0))^2$
 $= \mathbb{E}^x (H_y - \mathbb{E}^x (H_y))^2$
 $= \operatorname{var}_x (H_y)$.

Moreover, by the strong Markov property at H_x ,

$$\operatorname{var}_1(H_{\gamma}) = \operatorname{var}_1(H_{\chi}) + \operatorname{var}_{\chi}(H_{\gamma}) ,$$

and $\operatorname{var}_1(H_x) < \infty$ since all moments of H_x are finite under \mathbb{P}^1 . (ii) \Leftrightarrow (v) is immediate, as is (v) => (vi).

To prove the other equivalences, we shall assume we have the diffusion X represented as a time change of a Brownian motion, as we may. Thus if B is a Brownian motion started at $x \in I$, with local time process $\{l(t,x) : t \ge 0, x \in \mathbb{R}\}$,

$$A_t \equiv \int_{I} m(da)l(t,a) ,$$

$$\sigma_t \equiv \inf\{u : A_u > t\} ,$$

$$X_t \equiv B(\sigma_t) .$$

Let $\tau_y \equiv \inf\{t : B_t = y\}, \zeta \equiv \tau_0$. Then $H_y = A(\tau_y)$ for y < x. Hence, defining c(x) = 0 for $x \ge 1$,

$$M(A_{t \wedge \tau_y}) = A_{t \wedge \tau_y} - c(B_{t \wedge \tau_y})$$
$$= \mathbb{E}^x[A_{\tau_y} | \mathcal{B}_t] - c(y)$$

is a (\mathcal{B}_t) -martingale (where (\mathcal{B}_t) is the filtration of B) and hence $M \circ A$ is a (\mathcal{B}_t) -local martingale on $[0, \zeta)$. Since c is convex, we may apply the generalised Itô formula (see Rogers and Williams [8], IV.45.1) to deduce that for $t < \zeta$

$$M \circ A_t = \int_0^t c'(B_s) dB_s$$

and that $\frac{1}{2}c'' = dm$ as measures. This tells us that for each $x \in I$, c'(x) = -2m([x, 1]), and that

$$_t = \int_0^t c'(B_s)^2 ds = _{A_t}$$

Now $\langle M \circ A \rangle_t$ is an additive functional of *B*, and the criterion for this to converge as $t \uparrow \zeta$ is well known from the study of boundary behaviour of diffusions; we have

and if this condition fails, $\langle M \rangle_{\infty} = +\infty$, \mathbb{P}^{x} -a.s.. See, for example, Rogers and 84

Williams [8], V.51.2. Equivalence of (ii) and (iv) is now immediate, and, since $M_t = W(\langle M \rangle_t)$ for some Brownian motion W, (vi) implies that \mathbb{P}^x -a.s. $\langle M \rangle_{\infty} < \infty$ for some x so that, from (10), $\mathbb{E}^x \langle M \rangle_{\infty} < \infty$, which is (ii).

All that now remains is to prove that (i) is equivalent to all the other statements. If (vi) holds, then M_{∞} is a non-degenerate tail-measurable random variable (*M* cannot be constant); thus *G* is not trivial. Conversely, if (iv) is false, $\langle M \rangle_{\infty} = +\infty$, \mathbb{P}^{x} -a.s. for each *x*, and so if *X*, *X'* are independent copies of the diffusion with different starting points then $\langle M - M' \rangle_{\infty} = +\infty$ a.s., where $M'_{t} \equiv t - c (X'_{t})$. Hence, as before, for some *t*

$$c(X_t) - c(X'_t) = 0 ,$$

and so X and X' couple, since c is strictly decreasing.

Finally, to dispose of the case where $I = (0, \infty)$, notice that if G is non-trivial there is some tail function, which is a tail function for the diffusion obtained by time-changing out the time spent in $(1, \infty)$. Hence for this new diffusion we can apply Theorem 3 and conclude that

$$\int_{0}^{1} y^{2} (m[y,1])^{2} dy < \infty .$$
⁽¹¹⁾

Conversely, if this integral is finite, N_{∞} is a non-trivial *G*-measurable random variable, where N is the martingale

$$N_t = A_t - \bar{c}(X_t) ,$$

with $A_t \equiv \int_0^t I_{(0,1]}(X_s) ds$, $\bar{c}(x) \equiv \mathbb{E}^1[A(H_x)]$. In summary then, when $I = (0, \infty)$, non-triviality of *G* is equivalent to (11).

4. THE STRUCTURE OF G IN THE CASES OF NON-TRIVIALITY

We shall suppose still that we are dealing with the interesting case where I = (0,1] and 1 is reflecting; all others can be reduced to this.

If G is non-trivial, and $\Lambda \in G$, $\mathbb{P}^1(\Lambda) \in (0,1)$, we let f denote the corresponding tail function, and note that for each x

$$\Lambda = \{ f(t, X_t) \to 1 \} = \{ f(H_{1/n}, n^{-1}) \to 1 \} \quad \mathbb{P}^x - a.s..$$

Thus if $Y_k \equiv H_{1/k} - c(1/k)$, we have that

والمرجعة والمحمد والمحمول والمروك والمراجع والمراجع

$$\Lambda \in \bigcap_{n} \mathcal{A}_{n} \equiv \bigcap_{n} \sigma(\{Y_{k} : k \ge n\}) .$$

Now since $Z_k \equiv Y_k - Y_{k-1}$ defines a sequence of independent random variables, and since $Y_k \to Y \equiv \lim_{t \to \infty} M_t \equiv M_{\infty}$, we have that

$$\Lambda \in \bigcap_{n} \mathcal{A}_{n} = \bigcap_{n} \sigma(\{Y, Z_{k} : k > n\}) \equiv \mathcal{A} .$$

In view of Kolmogorov's 0-1 law, we expect that $\mathcal{A} = \sigma(Y)$; as an example below will show, this is not correct. However, a special feature of the current situation saves us.

THEOREM 4. Let $\{Z_k; k \ge 1\}$ be independent random variables whose partial sums Y_n converge a.s. to Y. Suppose that for some k, Z_k has a uniformly continuous density. Then the tail σ -field of $\{Y_n\}$ is $\sigma(Y)$.

Proof. (i) Without loss of generality, suppose that Z_1 has a uniformly continuous density f. Notice that for any probability distribution F, the convolution of F with the law of Z_1 has the density $(F * f)(x) = \int F(dt)f(x - t)$, which is again uniformly continuous with modulus of continuity no larger than that of f. Thus if ϕ_k is the density of Y_k , and ϕ is the density of Y, we have for all a < b

$$\int_a^b \phi_k(x) dx \quad \to \quad \int_a^b \phi(x) dx \quad ,$$

and so by the equi-uniform continuity of $\{\phi, \phi_k : k \ge 1\}$, it follows that $\phi_k(a) \to \phi(a)$ for every *a*, and hence that $\phi_k(y_k) \to \phi(y)$ if $y_k \to y$.

(ii) It suffices to prove that for bounded $X \in \mathcal{F}_n = \sigma(\{Y_k : k \le n\})$ and bounded \mathcal{A} -measurable V,

$$E(XV) = E(E(X|Y)V) .$$
⁽¹²⁾

Now $E(X | \mathcal{A}_n) = E(X | Y_n) = g(Y_n)$ for some bounded Borel function g, so for $k \ge n$

$$E(XV) = E(E(X | \mathcal{A}_k)V)$$

= $E[E(E(X | \mathcal{A}_n) | \mathcal{A}_k)V]$
= $E[E(g(Y_n) | \mathcal{A}_k)V]$
= $E[E(g(Y_n) | Y_k)V]$.

If $F_{n,k}$ is the distribution function of $Y_k - Y_n \equiv Z_{n+1} + \cdots + Z_k$, then

$$E[g(Y_n)|Y_k] = \int F_{n,k}(dt) g(Y_k - t)/\phi_k(Y_k) .$$
 (13)

Now take bounded uniformly continuous \tilde{g} such that $E |(g - \tilde{g})(Y_n)| < \varepsilon$, and notice that $E[\tilde{g}(Y_n)|Y_k] \rightarrow E[\tilde{g}(Y_n)|Y]$ a.s. as $k \rightarrow \infty$; indeed, the denominator is a.s. convergent since $Y_k \rightarrow Y$, and the convergence of the numerator is ensured by the uniform continuity of $\tilde{g}\phi_n$. The equality (12) follows.

Because the first passage time $H_{1/k}$ has a uniformly continuous density under each \mathbb{P}^x , x > 1/k, we can apply Theorem 4 to obtain the pleasing conclusion $\Lambda \in \sigma(M_{\infty})$; the *only* non-trivial information in the tail σ -field G comes from the limit of $t - c(X_t)$.

Finally, we provide an example which shows that Theorem 4 fails without the assumption of a uniformly continuous density for some Z_k . Let $p_1 < p_2 < \cdots$ be the primes in ascending order, and suppose that

$$P(Z_k = \frac{1}{p_k}) = P(Z_k = -\frac{1}{p_k}) = \frac{1}{2}$$

Since p_k is of order k log k, the martingale $Y_k = Z_1 + \cdots + Z_k$ is almost surely and L^2 convergent. Now

$$Y_n + \sum_{1}^{n} (p_k)^{-1} = 2 \sum_{1}^{n} I_{\{Z_k > 0\}} (p_k)^{-1}$$

and so from Y_n we can deduce all of $Z_1, ..., Z_n$, because if we take primes $q_1, ..., q_s$ and combine $\sum_{j=1}^{r} (q_j)^{-1}$ over a common denomnator, then that denominator is $\prod q_j$. However, knowing Y does not allow us to deduce the sign of Z_1 , for example.

REFERENCES

- [1] BREIMAN, L. Probability. Addison-Wesley, Reading, Mass., 1968.
- [2] FREEDMAN, D. Brownian Motion and Diffusion. Holden-Day, San Francisco, 1971.
- [3] FRISTEDT, B. and OREY, S. The tail σ-field of one-dimensional diffusions. Stochastic Analysis, ed. A. Friedman and M. Pinsky, Academic Press, New York, 1978.
- [4] ITO, K. and McKEAN, H.P. Diffusion Processes and their Sample Paths. Springer, Berlin, 1965.
- [5] KÜCHLER, U. and LUNZE, U. On the tail σ-field and minimal parabolic functions for one-dimensional quasi-diffusions. Z. Wahrscheinlichkeitsth. verw. Geb., 51, 303-322, 1980.
- [6] LINDVALL, T. and ROGERS, L.C.G. Coupling of multidimensional diffusions by reflection. Ann. Prob., 14, 860-872, 1986.

- [7] MANDL, P. Analytical Treatment of One-dimensional Markov Processes. Springer, Berlin, 1968.
- [8] ROGERS, L.C.G. and WILLIAMS, D. Diffusions, Markov Processes and Martingales Vol.2. Wiley, Chichester, 1987.
- [9] RÖSLER, U. The tail σ-field of a time-homogeneous one-dimensional diffusion process. Ann. Prob., 7, 847-857, 1979.
- [10] RÖSLER, U. Unimodality of passage times for one-dimensional strong Markov processes. Ann. Prob., 8, 853-859, 1980.

L.C.G. Rogers Statistical Laboratory University of Cambridge 16 Mill Lane Cambridge CB2 1SB England, U.K.