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Abstract

This paper presents a general framework for studying diverse beliefs in dynamic
economies. Within this general framework, the characterization of a central-planner
general equilbrium turns out to be very easy to derive, and leads to a range of interest-
ing applications. We show how for an economy with log investors holding diverse beliefs,
rational overconfidence is to be expected; volume-of-trade effects are effectively mod-
elled; the Keynesian ‘beauty contest’ can be modelled and analysed; and bubbles and
crashes arise naturally. We remark that models where agents receive private information
can formally be considered as models of diverse beliefs.

1 Introduction.

Dynamic general equilibrium models provide us with perhaps our best hope of under-
standing how markets and prices evolve, but are often frustratingly difficult to solve.
Representative agent models are an exception, but the limitations of the representative
agent assumption are only too plain. Stepping up to models with many heterogeneous
agents drastically reduces the available range of tractable examples, but is a necessary
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approach to realism. The simplest form of heterogeneity one could consider is one where
agents have different preferences, and perhaps different endowments, but such models
are not immediately suited to explaining effects arising from different information, or
from different beliefs, since the causes are not being modelled.

In a recent survey, Kurz [35] discusses the literature on models with different infor-
mation or beliefs, presents a compelling critique of models with private information, and
expounds his own theory of how to handle diverse beliefs. Models where agents receive
private signals about random quantities of interest have been extensively studied, but
are in general hard to work with; see, for example, Lucas [40], Townsend [47], Gross-
man & Stiglitz [21], Diamond & Verrecchia [18], Singleton [46], Brown & Jennings [10],
Grundy & McNichol [22], Wang [50], He & Wang [26], Judd & Bernardo [31], Mor-
ris & Shin [41], [42], Hellwig [27], [28], Angeletos & Pavan [2]. Problems such as the
Grossman-Stiglitz paradox, and the Milgrom-Stokey no-trade theorem necessitate the
introduction of exogenous noise into the models, but nonetheless the treatment of pri-
vate information is only tractable under very restricted modelling assumptions. There
are also problems at a conceptual level, as Kurz points out. Firstly, what is private
information? In reality, the majority of agents’ information is common, such as macroe-
conomic indicators or the past performance of the stock, so we have to accept that a
very small amount of private information might have a significant impact. Secondly, if
private information does exist, what could we say about it? The private nature of the
information would make it very difficult for us to verify any model that relied upon it.

For these reasons, we prefer to examine the class of models where all agents have
the same information, but interpret that information differently. Although Kurz dis-
tinguishes such models from private information models, we can make the simple but
important observation: a private information model can be considered as a model where
all agents have common information, but have different beliefs about that information.
Indeed, given a model where different agents receive private signals, we could regard this
as a model where all agents receive the same information but interpret it differently:
every agent gets to see all the private signals, but believes that the signals received
by the others are independent of everything else in the economy! It would be hard to
formulate a result general enough to cover all instances of this simple principle, but in
Section 2 we state1 this in the case of a finite-horizon Lucas tree model. This is our first
main result, Theorem 2.3; its statement is a little subtle, but illuminates the nature of
the equivalence.

In our treatment, the agents’ different beliefs are modelled as different probability
measures P

j defined over the same stochastic base (Ω,F , (Ft)t≥0). Contrast this with the
situation of private information, where all agents share the same probability P, but work
over different stochastic bases (Ω,F j , (F j

t )t≥0). The diverse beliefs setting is far easier to
work with, and, as we shall show, leads to simple but effective analyses. The literature
on diverse beliefs is surveyed by Kurz, and includes the papers of Harrison & Kreps [25],
Leland [37], Varian [48], [49], Harris & Raviv [24], Detemple & Murthy [16], Kandel &
Pearson [32], Cabrales & Hoshi [12], Basak [4], Basak [3], Basak & Croitoru [5], Calvet,

1The proof is in Appendix C.
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Grandmont & Lemaire [13], Wu & Guo [52], [53], Buraschi & Jiltsov [11], Fan [19],
Scheinkman & Xiong [45], Jouini & Napp [30], Gallmeyer & Hollifield [20], Kogan, Ross,
Wang & Westerfield [34]. Among these, there are several which use the heterogeneity
generated by diverse beliefs to create interesting effects in a portfolio-constrained setting;
the papers [25], [16], [3], [5], [45], [20] are examples. The point is that if (for example)
short sales are constrained, the short-sales constraint would never bind in an equilibrium
with agents with homogeneous beliefs, because all would agree on the risk premium for
all the assets, and if one agent wanted to short a given asset, then so would all the others.
In all these papers, as in [11] and [14], there is a model where agents have to filter a
hidden process from observations thereof, using different prior information; the analysis
involves quite lengthy and detailed calculations based on some explicit filtering problem
formulation. Our second main result, Theorem 3.1, is a general result, including all these
examples, which characterizes the equilibrium state-price density process in a complete
market, and hence all equilibrium prices. It is a result which does not require much space
to state, or to prove; how can it be so simple? Why are no lengthy calculations required?
The answer of course is that we are treating the equilibrium problem at a much greater
level of generality than the papers cited earlier; we obtain a more general expression
for the equilibrium, but for any particular example we would need to specialize and
calculate in order to derive explicit solutions. The essential element is to treat different
beliefs as different equivalent probability measures; these are characterized by their
likelihood-ratio martingales, which are easy to work with.

The characterization of the equilibrium given in Theorem 3.1 is not in essence new; in
a single-period setting, Varian [48] expresses the first-order conditions in corresponding
form; Jouini & Napp [30] have the same characterization, which they then use to study a
‘market belief’ (in the style of Calvet et al. [13]). However, it seems that this simple and
powerful characterization of the diverse beliefs equilibrium has escaped general notice, so
we hope to be forgiven for emphasizing its importance, which we intend to demonstrate
further in the paper with several applications of the basic story.

In our account, mutiple agents take positions in a single2 asset which pays a contin-
uous dividend stream, and is in unit net supply. There is a riskless asset, in zero net
supply. The agents have different beliefs, represented as different probability measures,
which we assume with no loss of generality3 are absolutely continuous with respect to
some reference measure. Though we have diverse beliefs, we stress that we do not take a
continuum of stochastically identical agents; agents’ diversities do not just get replaced
by an average. The form of the agents’ beliefs is otherwise unrestricted:

• the agents could be stubborn bigots who assume they know the true distribution
of the processes they observe and never change their views;

• the agents could be Bayesians updating their beliefs as time evolves;

• the evolution of the agents’ beliefs could be interlinked in various ways;

2The restriction to a single asset is for notational convenience only; the entire analysis works also for
multi-assets situations.

3If agent j has probability measure P
j , we could use the average of the P

j as a reference measure.
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all such structure is irrelevant at the first pass.
Having derived the central-planner equilibrium in Section 3, we immediately show

how this framework gives with no effort the result that all agents are ‘rationally over-
confident’ - they all think that the particular consumption stream that they have chosen
is better than those chosen by the others.

Obtaining explicitly-soluble examples with diverse beliefs is no easier than in the
situation where all beliefs are the same, and from Section 4 onwards we make the
simplifying assumption that all the agents have log utilities. This allows us to identify the
state-price density process quite explicitly, and to obtain expressions for the equilibrium
price of the asset, and for the riskless rate of return. We are also able to identify
explicitly the portfolio of the risky asset over time for each of the agents. In contrast
to the common-beliefs situation, the portfolios have non-zero quadratic variation, which
we interpret as a proxy for the volume of trade, and we study this in Section 5.

Section 6 addresses the ‘beauty contest’ metaphor of Keynes [33]. In this Section,
we consider4 whether the individual agents in the model would do better to publicly
profess beliefs they do not believe in. The point of doing this is that their objective
is defined in terms of their true beliefs, yet the equilibrium is characterized by the
professed beliefs which guide their investment decisions. It may be (and it turns out
to be) that they may individually improve their objective by professing beliefs which
they do not hold. However, if all agents resort to this subterfuge, the only Pareto-
efficient solution results in lower welfare in some suitable sense. The solution arrived at
is a mixture of their true beliefs and a population-average of beliefs. We contrast this
with the recent study of Allen, Morris & Shin [1], where the asset prices are defined
in terms of average expectation operators which do not compose in a time-consistent
fashion. One consequence of this is that the prices are not derived from a state-price
density, whereas in our situation they are. We believe that the time-inconsistency of their
average-expectation operators depends strictly on the overlapping-generations structure
assumed in their model, where each individual lives for just two periods. In such a story,
an agent cannot directly compare consumption now and consumption five periods in the
future, because five periods in the future he will not be consuming. The comparison
can only be via the intermediate pricing achieved in markets at the intervening times.
Indeed, in an overlapping-generations model with diverse beliefs but with agents who
live for a random length of time which may be arbitrarily large, Brown & Rogers [9]
find a state-price density which determines prices in the usual way.

In the next section, Section 7, we study the discrete-time analogue of the continuous-
time situation of Section 4, but with a difference. Starting from the observation that
it is typically much easier to gather information on the stock price of a firm than on
its dividend process, we imagine now that some agents think that the stock price is a
multiple of the dividend (as it would be in a homogeneous market.) Otherwise, they
believe that the changes in the log dividend are independent identically-distributed

4For this section only, we consider a simplified one-period example. Keynes hypothesizes (but does not
fully explain) some mechanism which rewards beliefs which are closer to the ‘average’ belief. Our approach
does not require us to modify the objectives of the agents.
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normal variables, whose variance they know, but whose mean has a normal prior, which
they attempt to learn. Their beliefs are updated by the changes in price; but their beliefs
enter into the calculation of the price also, so there is a natural feedback mechanism
from beliefs into prices. It is possible to carry the analysis quite a long way, but the
story is ultimately too complicated to study in general except by simulation. We present
some simulation results which show how the mistaken belief that the stock is a multiple
of the dividend can produce some very substantial and abrupt changes in price - bubbles
and crashes. In general terms, having more diligent5 agents in the economy reduces the
frequency and severity of these big changes.

We place in an appendix a very simple-minded model-fitting exercise; this is not
because the study is not of intrinsic interest, but rather because it differs in style from
the mainly theoretical body of the paper. We take the diverse-beliefs model with log
agents and try to fit it to various sample moments of the dataset of Shiller6, as Kurz, Jin
& Motolese [36] do. We find good agreement using a model with just three agents, and
having reasonable parameter values. This supports the view that diverse beliefs may be
able to resolve the equity premium puzzle, but the ability to match a few moments is
not of course sufficient to justify a statistical model. Weizmann [51], Jobert, Platania
& Rogers [29], Li & Rogers [38] analyze the equity premium puzzle from the point
of view of a representative Bayesian agent, and find reasonable values for parameter
estimates, but do not present evidence that the fitted models do any better than just
fitting constants to the data.

Section 8 concludes and maps out directions for future research.

2 Equivalence of private-information and diverse-

beliefs models.

The purpose of this section is to show that any private-information (PI) equilibrium is
(in a suitable sense) also a diverse-belief (DB) equilibrium. It would be impossible to
formulate a result broad enough to cover all imaginable instances of this principle, but
what we shall do is to prove the result in the context of a discrete-time finite-horizon
Lucas tree model with a single asset, and multiple agents. To begin with there is a
lengthy, necessary but straightforward statement of notation and definitions. The main
result is then expressed quite simply, but its rather lengthy proof is deferred to an
appendix.

The time index set is T = {0, 1, . . . , T} for some positive integer T . We suppose
there is a single asset which delivers (random) output δt at time t ∈ T, and there is an
R

d-valued process (Xt)t∈T which we interpret as commonly-available information; we
suppose that δ is one of the components of X. There are j agents, and in period t,
agent j receives private signal zj

t ; we write Zt = (z1
t , . . . , zJ

t ) for the vector of all signals.

5We shall refer to an agent as diligent if he actually uses the changes in log dividend - not the changes in
log price - to update his beliefs.

6This dataset can be downloaded from http://www.econ.yale.edu/∼shiller/data.htm
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Agent j has von Neumann-Morgenstern preferences over consumption streams (ct)t∈T

given by

E

[

T
∑

t=0

Uj(t, ct)

]

. (2.1)

The functions Uj(t, ·) : (0,∞) → R are assumed concave, strictly increasing, C2 and
to satisfy the Inada conditions. We write Gt ≡ σ(Xs, Zs : s ≤ t) for the σ-field of all
information at time t; all filtrations considered will be sub-filtrations of G.

Definition 2.1. A private-information equilibrium with initial allocation y ∈ R
J is a

triple (S̄t, Θ̄t, C̄t)t∈T of G-adapted processes, where Θ̄t = (θ̄1
t , . . . , θ̄

J
t ), C̄t = (c̄1

t , . . . , c̄
J
t )

and S̄t is real-valued, with the following properties:

(i) for all j, c̄j is adapted to the filtration F̄ j
t = σ(Xu, S̄u, zj

u : u ≤ t) and θ̄j is
previsible with respect to F̄ j;

(ii) for all j and for all t ∈ T, the wealth equation

θ̄j
t (S̄t + δt) = θ̄j

t+1S̄t + c̄j
t (2.2)

holds, with the convention S̄T = θ̄j
T+1 = 0;

(iii) for all t ∈ T, markets clear:

∑

j

θ̄j
t = 1,

∑

j

c̄j
t = δt;

(iv) θ̄j
0 = yj for all j;

(v) For all j, (θ̄j, c̄j) optimizes agent j’s objective (2.1) over all choices (θ, c) of port-
folio and consumption which satisfy the wealth equation (2.2), and such that c is
F̄ j-adapted, θ is F̄ j-previsible, and θ0 = yj.

The notion of a PI equilibrium should be contrasted with the notion of diverse-belief
equilibrium, where the filtration is common, but the beliefs are not. So we shall suppose
that there is some given filtration (Gt)t∈T and some probability measure P j on (Ω,GT )
for each j = 1, . . . , J . Agent j’s preferences over consumption streams (ct)t∈T are given
by

Ej

[

T
∑

t=0

Uj(t, ct)

]

(2.3)

where Ej denotes expectation with respect to P j .

Definition 2.2. A diverse-belief equilibrium with initial allocation y ∈ R
J is a triple

(S̃t, Θ̃t, C̃T )t∈T of G-adapted processes, where Θ̃t =
(

θ̃1
t , . . . , θ̃

J
t

)

, C̃t =
(

c̃1
t , . . . , c̃

J
t

)

and

S̃ is real-valued, with the following properties.

(i) Θ̃ is G-previsible;
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(ii) for all j and all t ∈ T, the wealth equation

θ̃j
t (S̃t + δt) = θ̃j

t+1S̃t + c̃j
t (2.4)

with the convention S̃T = θ̃j
T+1 = 0;

(iii) for all t ∈ T, markets clear:

∑

j

θ̃j
t = 1,

∑

j

c̃j
t = δt;

(iv) θ̃j
0 = yj for all j;

(v) For all j, (θ̃j
0, c̃

j) optimizes agent j’s objective (2.3) over all choices (θ, c) of port-
folio satisfying the wealth equation (2.4), and such that c is G-adapted, θ is G-
previsible, and θ0 = yj

Now that we have defined our terms, we are ready to state the main result.

Theorem 2.3. Suppose that (S̄, Θ̄, C̄) is a PI equilibrium with initial allocation y ∈ R
J

for the discrete-time finite-horizon Lucas tree model introduced above. Then it is pos-
sible to construct a filtered measurable space (Ω̃, (G̃t)t∈T), carrying G̃-adapted processes
X̃, S̃, Θ̃, C̃ of dimensions d, 1, J and J respectively, and probability measures P j , j =
1, . . . , J , on (Ω̃, G̃T ) such that (S̃t, Θ̃t, C̃t)t∈T is a DB equilibrium with initial allocation
on y ∈ R

J and beliefs (P j)Jj=1 with the property that

L(X, S̄, Θ̄, C̄) = L(X̃, S̃, Θ̃, C̃).

Remark. Notice that the Theorem makes no statement about any analogue on the
measurable space (Ω̃, G̃T ) of the signal process Z on the measurable space (Ω,GT ). There
may or may not be one. Without compelling agents in the PI equilibrium to reveal these
private signals, the most it would be possible to observe would be the common knowledge
X, the equilibrium price S̄, the portfolio position Θ̄ and the consumption choices C̄.
What the Theorem says is that the joint law of these processes (that is, the observables)
is the joint law of the same observables in a DB equilibrium. So from the point of view
of testing model predictions, there are no statistical properties of a PI equilibrium which
could not be explained by a DB equilibrium. This justifies the claim that (for at least
a finite-horizon Lucas tree model) we may ignore all (complicated) PI models and work
only with (easier) DB models; PI equilibria are contained in DB equilibria. The proof
of Theorem 2.3 is deferred to Appendix C.

3 Diverse beliefs equilibria.

We are going to derive a general equilibrium for a dynamic economy with J ≥ 2 agents,
containing a single productive asset, whose output process (δt)t≥0 is observable to all
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agents. We shall suppose that time is continuous, and that δ is adapted to a filtration
(Ft)t≥0 which is known to all agents. To cover various technical issues, we shall assume
that the filtered probability space (Ω,F , (Ft)t≥0, P

0) satisfies the usual conditions; see
[44] for definitions and further discussion. For simplicity, we shall assume also that F0

is trivial, so that all F0-measurable random variables are constant.
Though the J agents all have the same information, they do not share the same

beliefs about the distributions of the processes they observe. We suppose that agent j
thinks that the true probability is P

j, a measure locally equivalent to P
0, with density

process Λj

Λj
t =

dP
j

dP0

∣

∣

∣

Ft

, (3.1)

which is a positive martingale.
The objective of agent j is to obtain

supEj

∫ ∞

0
Uj(t, c

j
t ) dt (3.2)

where the supremum is over all consumption policies which keep the wealth of agent j
positive. Here, Uj is some strictly increasing time-dependent utility, such that Uj(t, ·)
satisfies the Inada conditions. Notice that even if all agents have the same Uj, their
objective is calculated taking expectations under their different P

j, and so differences in
beliefs will result in different optimal behaviour.

The equilibrium for this market is determined in the following result.

Theorem 3.1. Suppose that the market is complete7, and that integrability condition
(3.10) holds. Then the unique equilibrium is determined by the state-price density process
ζ, which is related to the individual agents’ optimal consumption processes cj by

νjζt = U ′
j(t, c

j
t )Λ

j
t (3.3)

for some constants νj > 0. The process ζ is determined from the market-clearing con-
dition and the νj by

∑

j

Ij(t, ζtνj/Λ
j
t ) = δt, (3.4)

where Ij is the inverse marginal utility (U ′
j)

−1 of agent j.

Proof. Agent j’s objective can be written in the equivalent forms

Ej

∫ ∞

0
Uj(t, c

j
t ) dt = E0

∫ ∞

0
Λj

tUj(t, c
j
t ) dt. (3.5)

7The result holds also for a central-planner equilibrium; the essential point is that there must be a common
pricing of all contingent claims. In the case of a central-planner equilibrium, the constants νj in the solution
are determined by the weights on the individual agents.
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Now consider the price that agent j is willing to pay at time s for a contingent claim
which pays amount Yt at time t > s. Denote this price by πj

s(Yt)
8. By considering

the change in agent j’s objective from buying this (marginal) contingent claim, the first
order conditions give:

0 = πj
s(Yt)U ′

j(s, c
j
s)Λj

s − E0
[

Yt U ′
j(t, c

j
t )Λj

t | Fs

]

.

Rearrangement gives

πj
s(Yt) = E0

[

Yt

U ′
j(t, c

j
t )Λ

j
t

U ′
j(s, c

j
s)Λ

j
s

∣

∣

∣

∣

Fs

]

(3.6)

So we see that agent j has state price density given by:

ζj
t = U ′

j(t, c
j
t )Λ

j
t (3.7)

As we assume that the market is complete, then the agents must agree on the price of
all contingent claims. So looking at the expression for πj

s(Yt) and recalling that Yt is
arbitrary, we must have

ζj
t,s =

U ′
j(t, c

j
t )Λ

j
t

U ′
j(s, c

j
s)Λ

j
s

is the same for all j. Hence

νjζt = U ′
j(t, c

j
t )Λj

t

where νj is some Fs random variable. By taking s = 0 and invoking the triviality of F0,
we see that in fact νj must be constant.

Now that we have (3.3), deriving equilibrium prices follows from market clearing in the
usual way. Defining9 the inverse marginal utilities Ij by

Ij(t, U
′
j(t, y)) = y (3.8)

for any y > 0, then
Ij(t, ζtνj/Λ

j
t ) = cj

t .

Summing on j and using market clearing gives

∑

j

Ij(t, ζtνj/Λ
j
t ) = δt. (3.9)

This is an implicit equation for the unknown ζ in terms of the known quantities δ and
Λj , and involving the constants νj. We shall assume the integrability condition:

∀ νj > 0, E0

[
∫ ∞

0
ζtδt dt

]

< ∞, (3.10)

8Here, Yt is some bounded Ft-measurable random variable
9The assumed properties of Uj ensure that Ij is well defined.
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where ζ is determined from the νj by (3.9). The point of doing this is that the stock
price, which is just the NPV of all future dividends, is given by

St = E0

[
∫ ∞

t

ζuδu

ζt
du

∣

∣

∣

∣

Ft

]

. (3.11)

and we require that this be finite.
�

Remarks. (i) In the case where all agents have the same beliefs (thus ΛJ ≡ 1 for all j),
this reduces to the familiar expression for the state-price density as the marginal utility
of optimal consumption.

(ii) Notice that the situation is completely general; there is no assumption about the
nature of the stochastic processes, nor is there any assumption about the nature of the
diverse beliefs. No such assumption is needed for (3.3).

(iii) Rational overconfidence. Kurz remarks that “a majority of people often expect
to outperform the empirical frequency measured by the mean or median”. In other
words, each of the agents believes that they will usually do better than the average. In
our setup, this result comes for free. If c̃t is any consumption stream and cj

t is agent j’s
optimal consumption stream, then we have

Ej

∫ ∞

0
Uj(t, c

j
t )dt ≥ Ej

∫ ∞

0
Uj(t, c̃t)dt (3.12)

This follows simply from the fact that cj
t is agent j’s optimal consumption stream. In

general, different agents will choose a different consumption stream, even if they have
the same utility functions; even if they do have the same utilities, each agent believes
that he will do better (on average) than all the other agents.

4 Log agents.

Getting a reasonably explicit form for the state-price density process ζ is key to making
progress, and for the rest of the paper unless explicitly stated to the contrary we shall
make the simplifying assumption

Uj(t, x) = e−ρjt log x (4.1)

for some positive ρj. This leads to an explicit form for the state-price density, and from
that, expressions for the wealth processes of the individual agents, the equilibrium price
of the stock, and the equilibrium dynamics of the riskless rate when we assume specific
dynamics for the dividend process.

Theorem 4.1. With preferences given by (4.1), the state-price density process is

ζt = δ−1
t

∑

j

e−ρjtΛj
t

νj
. (4.2)
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The positive constants νj are fixed in terms of the initial wealths of the agents by

wj
0 = Λj

0/νjρj (4.3)

where we make the convention that ζ0 = 1. At all times, the optimal consumption rate
processes are related to wealth by

cj
t = ρj wj

t , (4.4)

and the stock price is

St = δt

∑

j e−ρjtΛj
t/ρjνj

∑

j e−ρjtΛj
t/νj

. (4.5)

Proof. Under the assumed form (4.1) for the utility, the relation (3.3) for the state-
price density simplifies to

e−ρjtΛj
t

cj
t

= νjζt. (4.6)

The wealth process of agent j is thus

wj
t = E0

[

∫ ∞

t

ζucj
u

ζt
du

∣

∣

∣

∣

Ft

]

= E0

[

∫ ∞

t

e−ρjuΛj
u/νj

ζt
du

∣

∣

∣

∣

Ft

]

= ζ−1
t e−ρjtΛj

t/νjρj (4.7)

= cj
t/ρj (4.8)

The derivation exploits the fact that Λj is a P
0-martingale. Using (4.6), market clearing

gives

δt =
∑

j

cj
t = ζ−1

t

∑

j

e−ρjtΛj
t

νj
,

and hence by rearrangement

ζt = δ−1
t

∑

j

e−ρjtΛj
t

νj
,

which is (4.2). Since the stock is in unit net supply, and the bank account in zero net
supply, we can quickly identify the stock price, using (4.7):

St =
∑

j

wj
t = ζ−1

t

∑

j

e−ρjtΛj
t

ρjνj
. (4.9)
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Substituting from ζ from (4.2) leads to

St = δt

∑

j e−ρjtΛj
t/ρjνj

∑

j e−ρjtΛj
t/νj

�

Notice that in this case of log utilities, the price-dividend ratio takes a particularly
simple form:

St

δt
=

∑

j e−ρjtΛj
t/ρjνj

∑

j e−ρjtΛj
t/νj

, (4.10)

which we shall have need of later when it comes to fitting various moments to the Shiller
dataset in Section A. If all the agents have the same beliefs, this is just a deterministic
function of time, but with heterogeneous beliefs this becomes a random process. Notice
also that the price-dividend ratio depends only on the likelihood-ratio martingales, and
not on the underlying dividend process, though this property is special to the log case.

This is about as far as we can get without some more specific assumptions on the
nature of the dividend process. The next result develops the equilibrium under the
assumption that the dividend process is an Itô process.

Theorem 4.2. Suppose that (4.1) holds, and that the dividend process satisfies

dδt = δtσt(dXt + α∗
t dt) (4.11)

where X is an (Ft)-Brownian motion under P
0, and σ is some positive bounded previsible

process with bounded inverse. Suppose that the agents’ likelihood-ratio martingales Λj

obey
dΛj

t = Λj
tα

j
tdXt (4.12)

where the αj are previsible processes10. Then the state-price density process evolves as

dζt = ζt(−rtdt − κtdXt) (4.13)

where

rt = ρ̄t + σt(α
∗
t + ᾱt) − σ2

t , (4.14)

κt = σt − ᾱt. (4.15)

The processes ᾱ and ρ̄ are weighted averages of the αj and ρj :

ᾱt ≡
∑

j

qj
t α

j
t , ρ̄t ≡

∑

j

qj
t ρj , (4.16)

where

qj
t ≡

e−ρjtΛj
t/νj

∑

i e
−ρitΛi

t/νi
. (4.17)

10Thus under the measure P
j the process X becomes a Brownian motion with drift αj (by the Cameron-

Martin-Girsanov Theorem; see [44], IV.38 for an account).
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Proof. The equation (4.2) for the state-price density gives

ζtδt =
∑

j

e−ρjtΛj
t

νj
≡ Lt, (4.18)

say. A little Itô calculus gives us

dLt = Lt(ᾱt dXt − ρ̄t dt) (4.19)

where ᾱ and ρ̄ are as defined at (4.16), (4.17) The dynamics of the riskless rate follow
easily from (4.18), (4.19); we have after some calculations that

dζt = ζt(−rtdt − κtdXt)

where

rt = ρ̄t + σt(α
∗
t + ᾱt) − σ2

t , (4.20)

κt = σt − ᾱt, (4.21)

as claimed at (4.14), (4.15).
�

Remarks. (i) We can also derive the dynamics of the stock price. After some routine
calculations, we arrive at

dSt = St

{

(κt + at)(dXt + κtdt) + rdt)
}

− δtdt, (4.22)

where

at ≡

∑

αj
te

−ρjtΛj
t/νjρj

∑

e−ρjtΛj
t/νjρj

is an average of the αj
t using weights different from the qj

t . This allows us to identify
the volatility σS of the equilibrium stock price, namely

σS
t = κt + at = σt − ᾱt + at. (4.23)

In general, this is different from the volatility σt of the dividend process, even if that
volatility is constant11. Observe also that if ρj = ρ is the same for all j, then at = ᾱt,
and hence σS

t = σt. This checks out with what we would get from (4.10), which implies
that δt = ρSt when all the impatience parameters are the same.

(ii) Notice also that if all agents have the same beliefs, αj
t = αt for all j, and α∗ ≡ 0, we

see

rt = −σ2
t +

∑

j e−ρjtρj/νj
∑

j e−ρjt/νj
+ σtᾱt;

11Compare with Kurz et al [36] .
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thus for constant α and σ, the riskless rate is a smooth deterministic function of time.
By contrast, if the αj are constants but distinct, the agents have different beliefs, and
the riskless rate is truly stochastic.

(iii) If all agents agreed, it is also immediate from (4.10) that the volatility of the stock
is the same as the volatility of the dividend process; this illustrates again the general
principle that heterogeneous beliefs will generate fluctuations which would be absent in
a model where all agents agree.

5 Volume of trade.

In Section 4 we derived the stock price process, and the individual wealth processes,
when all agents had log utility. This simple and explicit setup allows us to go further,
and derive the portfolios held by the individual agents. This is of interest because
in the case where there is no diversity of belief, Λj

t ≡ 1 for all j, we see from (4.7),
(4.9) that agent j’s wealth process wj

t is of the form wj
t = gj(t)St for some smooth

deterministic function gj. This implies that each agent’s holding of the stock varies
smoothly and deterministically in time; in the extreme case where all the ρj are the
same, there is no trade at all, and the agents simply stick with their initial holdings of
the stock consuming the dividend which it produces. What we shall show in this section
is that even when all the agents have identical time preferences, that is, all the ρj are
the same, diversity of belief generates a considerable amount of trading, and (roughly
speaking) the more diverse the beliefs are then the more trading there is. Compare with
Harris & Raviv [24], and De Long et al. [15], who find that (in the context of a private-
information equilibrium) agent heterogeneity generates trading. Of course, one has to
define what is meant by volume of trading, since in the continuous-time setting the
portfolio processes are typically of infinite-variation. We therefore take as our definition
of volume of trading the quadratic variation of the agents’ portfolios.

Theorem 5.1. Suppose that the assumptions of Theorem 4.2 hold. With the notation
of that Theorem, the number πj

t of units of the risky asset held by agent j at time t is

πj
t =

wj
t (α

j
t + κt)

∑

i w
i
t(α

i
t + κt)

=
wj

t (α
j
t + κt)

St(at + κt)
. (5.1)

Assuming further that σ is constant, all αj are constant, and that ρj = ρ for all j, the
portfolio amounts πj have stochastic differential expansions

dπj
t = θj

t dXt + d( finite-variation terms)

where

θj
t = −πj

t ᾱt + qj
t

{

αj(σ + αj − ᾱt) − vt

}

/σ

= qj
t

[

(αj − ᾱ)2

σ
−

vt

σ
+ αj − ᾱ

]

. (5.2)
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Proof. Starting from the expression (4.7) for the wealth, an Itô expansion gives

dwj
t = wj

t{−ρjdt + (αj
t + κt)dXt + (rt + κ2

t + αj
tκt)dt}. (5.3)

However, the wealth dynamics of agent j can be expressed in terms of the portfolio
process πj as

dwj
t = πj

t (dSt + δtdt) − cj
tdt + (wj

t − πj
t St)rtdt. (5.4)

Comparing coefficients and using (4.22) leads to the identification

πj
t =

wj
t (α

j
t + κt)

∑

i w
i
t(α

i
t + κt)

=
wj

t (α
j
t + κt)

St(at + κt)
,

as asserted at (5.1)12

For the second part of the Theorem, we suppose that σ is constant, all the αj are
constant, and that ρj = ρ for all j. The expression (5.1) for the proportion held by
agent j is now simply

πj
t =

wj
t (α

j + σ − ᾱt)

σSt

=
ζtw

j
t (α

j + σ − ᾱt)

ζtσSt

=
Λj

t (α
j + σ − ᾱt)

σνj(
∑

Λi
t/νi)

(5.5)

The defining expression for ᾱt, simplified in this situation to

ᾱt =

∑

αjΛj
t/νj

∑

Λj
t/νj

, (5.6)

leads after some calculations to

dᾱt = −ᾱ2
t dXt +

∑

(αi)2Λi
tνi

∑

Λj
t/νj

dXt + finite-variation terms

=

∑

(αi − ᾱt)
2Λi

t/νi
∑

Λj
t/νj

dXt + finite-variation terms

≡ vt dXt + finite-variation terms,

12In the case where all the agents have the same belief, we have that:

πj
t =

e−ρjt/νjρj
∑

i e−ρit/νiρi

hence there is no volatility in the evolution of πj
t .
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say. Suppose that dπj
t = θj

tdXt+ finite-variation terms. Multiplying (5.5) throughout
by

∑

Λi
t/νi, and expanding gives

{

θj
t + πj

t ᾱt

}

(

∑

Λi
t/νi

)

=
Λj

t

σνj

{

αj(σ + αj − ᾱt) − vt

}

after some calculations. Rearranging, and recalling (4.17), we obtain the expression

θj
t = −πj

t ᾱt + qj
t

{

αj(σ + αj − ᾱt) − vt

}

/σ

= qj
t

[

(αj − ᾱ)2

σ
−

vt

σ
+ αj − ᾱ

]

with some calculation, as asserted.
�

Remarks. Notice that the sum of the θj is zero, as it must be, since the sum of the
πj is identically 1. The absolute value of θj

t can be interpreted as the volume of trade
in the risky stock by agent j. Hence the length of the vector θ can be interpreted as
the total volume of trade. The representation (5.2) shows that in general terms the
volume of trade gets bigger with greater diversity of beliefs, though it is hard to make
this statement more precise.

6 Diverse beliefs and beauty contests.

The lively metaphor of a beauty contest, set forth by Keynes in Chapter 12 of his book
The General Theory of Employment, Interest, and Money [33], proposes a situation
where competitors have to pick the six prettiest faces from a set of one hundred pho-
tographs; the winner is the person whose chosen six are the most chosen by all entrants
to the competition. By a rather questionable extension of the metaphor, Keynes sug-
gests that the choice of a portfolio of stocks is rather like this, where what matters is
less the fundamental value of the stocks, but rather how the mass of market players
perceive the values of the stocks. The metaphor has stuck in the popular imagination of
the subject, and leads to the idea that in some sense people should adjust their beliefs
according to what they think the population as a whole believes.

In this Section, we substantiate this notion in a simple but well-specified example.
We again use the principle of modelling differences between agents as differences in
beliefs, but in a simpler setting, where there are just two times, time 0 and time 1.
There is a finite set of J agents, and a single risky asset in zero net supply, claims to
which will be traded at time 0, and whose random value X will be revealed at time
1. Agent j is a CARA agent, with utility Uj(x) = −γ−1

j exp(−γjx). The equilibrium
analysis of this problem is of course very simple; we shall see what happens if agents
are allowed to pretend that their beliefs about the distribution of X are different, and
submit demands as a function of price based on these fake beliefs.
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Theorem 6.1. (i) If agent j believes that X ∼ N(αj , vj), then the time-0 equilibrium
price S0 for a claim to a unit of the risky asset at time 1 will be

S0 =
∑

j

pjαj , (6.1)

where

pj ∝
1

γjvj
,

∑

pj = 1. (6.2)

(ii) If agents are allowed to pretend they have different beliefs, that X ∼ N(α̃j , vj), then
the unique Pareto efficient choice is for agent j to choose

α̃j = (1 − pj)αj + pjS̃0, (6.3)

where

S̃0 =

∑

pj(1 − pj)αj
∑

pj(1 − pj)
. (6.4)

The equilibrium price in this case is S̃0.

(iii) In the equilibrium achieved in (ii), it is never the case that all agents improve their
objectives, and it can be that all agents’ objectives are reduced.

Proof. (i) At time 0, the asset is on sale for (equilibrium) price S0, and agent j faces
the optimization problem of choosing the number θ of units of the asset to hold until
time 1 with a view to obtaining

max
θ

Ej[ Uj(θ(X − S0)) ].

This is of course a simple calculation, resulting in the optimal portfolio choice

θ = θj ≡
αj − S0

γjvj
. (6.5)

Market clearing now determines the equilibrium price S0:

S0 =
∑

j

pjαj , (6.6)

where pj ∝ (γjvj)
−1,

∑

j pj = 1. The agent’s maximized objective is

−γ−1
j exp

(

−
(αj − S0)

2

2vj

)

. (6.7)

(ii) Given that agent j is now professing to believe that X ∼ N(α̃j , vj), the first analysis
is repeated with tilded variables; we obtain equilibrium portfolios and price

θ̃j =
α̃j − S̃0

γjvj
, S̃0 =

∑

j

pjα̃j. (6.8)
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The objective of agent j now becomes

−γ−1
j exp

(

−γj θ̃j(αj − α̃j) −
(α̃j − S̃0)

2

2vj

)

. (6.9)

If we consider the choice of agent j, assuming that the choices of all the other agents
are given and fixed, then it is easy to work (6.8), (6.9) into the problem

max
α̃j

{

(α̃j − S̃0)(αj − α̃j) + 1

2
(α̃j − S̃0)

2
}

. (6.10)

A few lines of algebra lead to the conclusion that

α̃j = (1 − pj)αj + pjS̃0. (6.11)

If we suppose that all agents have allowed themselves to profess beliefs different from
what they truly believe, then the relation (6.11) must hold for each j; multiplying on
both sides by pj, summing over j and using (6.8) gives us

S̃0 =
∑

j

pjα̃j =
∑

pj(1 − pj)αj +
∑

p2
j S̃0,

which results in

S̃0 =

∑

pj(1 − pj)αj
∑

pj(1 − pj)
. (6.12)

(iii) Suppose the contrary: agent j will do better in the Pareto efficient solution (6.11),
(6.12) if and only if

(αj − S0)
2 < (α̃j − S̃0)

2 + 2(α̃j − S̃0)(αj − α̃j); (6.13)

see (6.7), (6.10). If we write qj = cpj(1− pj), where the positive constant c is chosen to
make

∑

qj = 1, we have (6.12) that S̃0 =
∑

qjαj , and so

∑

qj(αj − S0)
2 =

∑

j

qj(αj − S̃0)
2 + (S0 − S̃0)

2. (6.14)

However, the right-hand side of (6.13) can be written as

(αj − S̃0)
2 − (αj − α̃j)

2 ;

multiplying by qj and summing on j gives us

∑

j

qj(αj − S̃0)
2 −

∑

qj(αj − α̃j)
2, (6.15)

which is clearly less than (6.14), contradicting the supposition that (6.13) holds for all
j.

Numerical examples show that all agents’ objectives may be reduced.
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Remarks. (i) Notice that the expression (6.12) for the equilibrium price S̃0 is an average
of the αj , as is the original equilibrium price (6.6); but the weights are different. The
interpretation of the expression (6.11) for α̃j is that the modified belief is the original
belief shifted a bit towards S̃0, rather in the style of Keynes. However, the shifting of αj

is towards the modified average S̃0, not the original average S0, and it is natural to ask
whether in fact α̃j lies between αj and S0. Numerical examples show that this is not
always the case, though it appears to be the majority case.

(ii) We have proved that (6.11), (6.12) is the only possible Pareto-efficient modification
of the beliefs of all the agents. Could it be that there is some proper subset F of
{1, . . . , J} such that if the agents in F profess different beliefs, and the agents in F c do
not, then no agent would wish to change their choice? Modifying the preceding analysis,
it is not hard to show that generically this does not happen; an agent who is given the
choice of whether or not to fake his beliefs, ceteris paribus, will always want to do so.
This is not surprising, of course; given the freedom to optimize over a larger set, an
agent would always prefer that.

(iii) Since the expression (6.15) is less than (6.14), there is not only a poorer objective
for some agent, but also in some collective sense the agents are doing worse.

(iv) Notice that there are differences between the model we have studied here, and the
Keynesian metaphor. In the latter, the payoff is entirely determined by the behaviour of
the population of agents, whereas in our example, the random return X is not affected
by the acts of the agents, although the time-0 equilibrium price is. We find that, given
the freedom to dissemble about their beliefs, agents will do so, but that this will in
general leave them worse off; it may even be that all are worse off as a result.

7 Diverse mistaken beliefs

We have seen in Section 6 what happens in a simple example where agents may dissemble
about their beliefs; the agents know what is going on, but they consciously act differently.
In this Section, we shall study what is in some sense the opposite situation, where the
agents do not completely understand the market around them, but nevertheless act in
accordance with the analysis of Section 4. We restrict the discussion to agents with log
utilities, and we shall work in discrete time13.

In practice, it may be very hard to learn about the dividends of an asset; dividend
payments are infrequent, and are often smoothed in various ways which limit their
usefulness as indicators of the state of a firm. On the other hand, the stock price is
usually easy to get hold of; it is available daily or more frequently; and it provides
what is arguably a more sensitive indicator of the state of the firm. In a market of
log agents with common impatience parameter ρ, the stock price is simply a multiple

13The reason for this is that in continuous time the quadratic variation of the observed stock process would
not be consistent with the mistaken beliefs which we propose to assign to some of the agents.

19



of the dividend process, δt = ρSt; see (4.10). So we shall consider a situation where
some agents observe the stock price, and assume that it is a constant multiple of the
dividend process. This introduces a natural and simple feedback mechanism from prices
to beliefs. The agents assume that the log returns of the observed stock prices are
actually the changes in log δ, and they modify their beliefs in the light of this knowledge
- but those modified beliefs then feed back into the stock prices.

To carry this analysis further, we record the following result, whose proof is a
straightforward exercise.

Proposition 1. Suppose that X1,X2, . . . are independent N(µ, τ−1) random variables,
where τ is known, but µ is not known. Starting with a N(µ̂0, (K0τ)−1) prior for µ, the
posterior mean µ̂t for µ, and the posterior precision τt given Yt ≡ σ(X1, . . . ,Xt), satisfy

τt = Ktτ ≡ (t + K0)τ, (7.1)

Ktµ̂t = K0µ̂0 +

t
∑

i=1

Xi. (7.2)

The joint density of (X1, . . . ,Xt) is

λt ≡ exp

{

−
τ

2

t
∑

1

X2
i +

τ

2
(Ktµ̂

2
t − K0µ̂

2
0)

} (

τ

2π

)t/2√K0

Kt
. (7.3)

Remarks. (i) Notice that the joint density of (X1, . . . ,Xt) under the assumption that
these are independent gaussians with zero mean and variance τ−1 will be

λ0
t ≡ exp

{

−
τ

2

t
∑

1

X2
i

} (

τ

2π

)t/2

.

Thus if we take this as the reference measure, the likelihood-ratio martingale takes the
simple form

Λt = λt/λ
0
t = exp

{

τ

2
(Ktµ̂

2
t − K0µ̂

2
0)

}

√

K0

Kt
. (7.4)

(ii) How does λt change to λt+1 when the new observation Xt+1 is seen? If we write

Xt+1 = µ̂t + ε, (7.5)

then some simple calculations from (7.2) give us the updating

µ̂t+1 = µ̂t +
ε

Kt+1
. (7.6)

Using this and (7.3) we are able to derive the updating

2 log(λt+1/λt) = −τε2 Kt

Kt+1
+ log

(

Kt

Kt+1

)

+ log(τ/2π) (7.7)
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for λ.

Working in discrete time, the arguments of Sections 3 and 4 go through with minor
change, giving us

ζtδt =
∑

j

e−ρjtΛj
t/νj (7.8)

exactly as before (4.2), and the analogue

ζtSt =
∑

j

e−ρjtΛj
t

νj(eρj − 1)
(7.9)

≡
∑

j

e−ρjtΛj
t

ν̃j
(7.10)

of (4.9) for the ex-dividend stock price St at time t.
As we remarked earlier, the agents are supposed to see the stock price and assume

that it is a multiple of the dividend process. The discrete-time analogue of the dynamics
(4.11) assumed previously for δ is to suppose that the random variables Xt ≡ log(δt/δt−1)
are independent N(µ, τ−1). Thus the agents will assume that the random variables
log(St/St−1) are independent gaussians with common (unknown) mean and (known)
precision14. If we have determined the λj

n and Sn for n ≤ t, we use the price/dividend
ratio from (7.8) and (7.9) to determine the value of ξ ≡ log(St+1/St):

St+1

δt+1
=

Ste
ξ

δt+1

=

∑

j e−ρj(t+1)λj
t+1/ν̃j

∑

j e−ρj(t+1)λj
t+1/νj

=

∑

j e−ρj(t+1)(λj
t+1/λ

j
t )λ

j
t/ν̃j

∑

j e−ρj(t+1)(λj
t+1/λ

j
t )λ

j
t/νj

. (7.11)

In the expression (7.11), everything is known except the ratios λj
t+1/λ

j
t ; and these are

related (via (7.7) and (7.5)) to the unknown value ξ = log(St+1/St). Hence we are
able to find (numerically) the value of ξ which solves the updating equation, and from
this work out how the price of the asset evolves. To make a meaningful comparison,
we consider the ratio of the price St (which arises under the mistaken belief that the
price is a multiple of the dividend) to the price S∗

t which arises if the agents are able to
observe the dividend process exactly. If this ratio is close to one, then the effects of the
mistaken assumption is small.

The combined effects of all these assumptions are too complicated to be analyzed
except numerically, so we have carried out a number of simulations. Throughout, we

14We move to discrete time because in continuous time the quadratic variation of the price process would
immediately tell the agents that this hypothesis is false.
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supposed that the annualised volatility of the dividend process is 0.25, the actual an-
nualised growth rate is 1.5%, and the time between observations is one day (thus the
moments of each log price change are those implied by the annualised figures).

The characteristics of the agents are generated randomly. One feature which we
took care to build in is that if we perform a simulation with n1 agents, and then repeat
with the same random seed but with n2 > n1 agents, then the first n1 agents in the
second simulation are identical to the n1 agents used in the first. The distributions of
the different characteristics are as follows. The ρj are supposed to be drawn uniformly
from [0.04, 0.33], corresponding to mean look-ahead times ranging from 3 to 25 years.
The assumed values of τ for the agents are drawn uniformly from [0.4τ∗, 1.05τ∗], where
τ∗ is the true value used for the simulations. The prior means for the annualised growth
rate were drawn uniformly from [−0.05, 0.15], and all the νj are assumed to be equal to
1.

We performed a number of runs with the same random seed (and therefore the same
realised sample path of δ) for 30 agents, and for 50 agents. The different runs were also
distinguished by the different numbers of agents who are assumed to be diligent, in the
sense that some of the agents might update their posteriors seeing the true values of δ,
and believing that they are correct. Thus if all the agents were diligent, then the prices
observed are formed exactly as described in Section 4; the ratio of the ideal stock price
S to the dividend process is given by (4.10).We denote this ideal stock price by S∗ for
the purposes of the discussion of this section, to distinguish it from the price S actually
computed at (7.11). The various figures shown come as two panels, the upper showing
the log of the ratio S∗/δ, and the lower showing the log of the ratio S/S∗. The different
figures differ in the number of agents assumed to be diligent; for the same total number
of agents, the upper panel should be the same, and visual inspection shows that this is
the case.

For 30 agents, we show in Figure 1 the behaviour of the price when no agent is
diligent; the repeated ramping up followed by sharp falls is the most obvious feature15,
and the range of values covered is quite high, from about -0.2 to nearly 0.4. Changing
one agent to diligent, we still see a choppy price path, Figure 3, though the ramp-ups
are less pronounced, and the overall range of the trajectory is smaller. The overall level
however is quite different. Increasing the number of diligent agents to 5, Figure 3 largely
eliminates the peaky behaviour of the previous two plots, and it would be natural to
conjecture that this more orderly behaviour becomes more prevalent as the number of
diligent agents rises, but the plot Figure 4 with 10 diligent agents suggests otherwise.
The final plot Figure 5 in the series, with 25 diligent agents, still shows quite a wide
range of variation of S from S∗; only one in six of the agents is mistakenly interpreting
the price as a multiple of the dividend, and yet the log of the price ratio ranges from
below -0.2 to over 0.1.

The Figures 6, 7, 8, 9, 10, 11, show the corresponding results for 50 agents, with
similar qualitative features; notice particularly the dramatic crash when no agent is
diligent!

15Other simulations generate ramping down followed by sharp rises.
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What we see in the simulations are qualitative features of bubbles and crashes, which
one might also try to explain by models of herding, or behavioural effects. However,
it is not necessary to construct such models to exhibit these phenomena. The present
framework is able to generate such qualitative features strictly within the neoclassical
framework of finance; all agents are behaving rationally, the only point is that they have
misinterpreted what the market prices actually are. This market is definitely not always
right.

8 Conclusions

This paper has shown how to deal with diverse beliefs of agents in a completely general
manner; the key observation is that we should model agents’ beliefs as probability mea-
sures, whose likelihood-ratio martingales enter naturally into the optimality criterion,
and thence into equilibrium prices.

The first consequence of this approach is that we are able to show that16 equilib-
ria where agents have diverse private information are indistinguishable from equilibria
where agents have common information, but different beliefs. This allows us to restrict
attention to (analytically simpler) diverse-beliefs equilibria.

Abstract expressions for the state-price density and for the equilibrium stock price
arise simply from the assumptions, and are visibly analogous to (but extensions of) the
corresponding expressions with no diversity of belief. An immediate first result is an
explanation of the phenomenon of rational overconfidence.

By specializing to the case of log agents, the equilibrium can be computed quite
explicitly, and its properties studied. We find quite simple and explicit expressions for
the riskless rate, the stock price, the risk premium and the volatility of the stock price, in
terms of the fundamentals of the problem, namely, the dynamics of the dividend process
and the beliefs of the agents, expressed as likelihood-ratio martingales. Diversity of belief
generates an active market, and we are able to find an expression for the volatility of
the agents’ holdings of the stock, which we interpret as a proxy for volume of trade. In
general, greater diversity of belief generates a larger volume of trade.

In a one-period example, we are able to show that under the assumption of diverse
beliefs, there is benefit to individual agents to act as if their beliefs were different from
what they truly believe; such actions modify the equilibrium in such a way that there
is loss of welfare, but no one agent would change. The beliefs adopted are the original
beliefs shifted towards a population average. This is therefore an analysis which explains
the ‘beauty contest’ phenomenon commented on and postulated by Keynes, using no
modelling elements other than rational expectations equilibrium and diverse beliefs. In
particular, it is not necessary to introduce any ‘behavioural’ concepts, nor are the agents’
objectives in any way unconventional.

Staying within this strictly neoclassical financial framework, we find a mechanism to
generate bubbles and crashes, by supposing that some agents assume that the observed

16.. in the context of a finite-horizon Lucas tree model ...
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stock prices are actually constant multiples of the dividend process (as would be the case
in a homogeneous market). Again, there is no need to use concepts from behavioural
finance - the bubble is generated by entirely rational agents, some of whom happen to
be rational and mistaken.

There remain many interesting questions to be studied in this area. For example, can
diverse beliefs create an economic rôle for money, by (say) imposing leverage constraints
which more money will ease? The paper [39] is a first step down this road. Are there
tractable examples where the agents have utilities different from log, and if so, what
do the solutions look like17? These and other questions are in principle amenable to
a correctly-formulated modelling of diverse beliefs, which this paper has attempted to
present.

17An interesting extension of the log agent is [8], where agents are supposed to be CRRA with an integer
coefficient of relative risk aversion.
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A Fitting annual return and consumption data.

Kurz [35] uses his model of diverse beliefs to fit various sample moments of the Shiller
data set, and we perform a similar study here.

We take a very simple version of the model, with just three agents who never change
their beliefs, so we assume that the αj are constant. We also take σt to be constant.

The quantities of interest are shown in the table below; we list both the empirical
value18 and the values as produced by fitting our model.

Table 1: Simulation Results

Fitted Empirical
Mean price/dividend ratio 26.06 25
Standard deviation of price/dividend ratio 3.84 7.1
Mean return on equity 0.077 0.07
Standard deviation of return on equity 0.134 0.18
Mean riskless rate 0.018 0.018
Standard deviation of riskless rate 0.061 0.057
Equity Premium 0.059 0.06
Sharpe Ratio 0.326 0.33

The results shown were generated by choosing σ = 0.517, α∗ = −0.01, α1 = 0.210, α2 =
0.727, α3 = −0.05, ρ1 = 0.131, ρ2 = 0.01, ρ3 = 0.443, ν1 = 14.47, ν2 = 1.00, ν3 = 0.174.

From the table above, we see that the diverse beliefs model with these parameter
values gives quite a good fit to the sample moments considered by Kurz et al.. Only the
standard deviation of the price/dividend ratio is substantially off the empirical value,
a sample moment which we note was not fitted very closely by Kurz either, probably
because the volatility of recorded annual consumption is in general too small to explain
the observed volatility in stock returns. Nevertheless, the model seems to be doing a
reasonable job explaining these figures given the very specific assumptions made.

B Bayesian learning.

The case in which all the α are constant corresponds to that in which the agents all start
with a belief about the behaviour of the dividend process and stick with this forever.
Such a setup is in some senses unsatisfactory, because even if the agents were to observe
that the behaviour of the dividend were very different to their initial beliefs about it,
they would still keep with these initial beliefs.

18These empirical values are calculated by Kurz and are based on the Shiller data set. They are based on
monthly data from the S&P 500 between 1871 and 1998. See [35] and [36] for further details.
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We therefore consider the case of Bayesian agents, who learn as they observe data.
Bayesian learning is a huge topic which has been studied by [6], [7], [23], [14], [43]
among others. For example, Guidolin and Timmermann [23] look at a discrete time
case in which the dividend process can have one of two different growth rates over each
time period and the probability of each growth rate is unknown to the agents. The
agents are learning, so this affects the way that the stock price is calculated and hence
the dynamics of the stock and options prices. Again, David and Veronesi [14] look at a
continuous time model in which at any given time, the economy can be in one of two
states; boom and recession. The agents do not observe this state directly, but instead
must infer it from their observations of the dividend process.

We take a very unsophisticated model of Bayesian learning, which for completeness
summarises a story told before else where; see, for example, Brown, Bawa & Klein [6],
Brennan & Xia [7], or Rogers [43] for much the same material.

An agent observes a Brownian motion with drift:

Yt = Xt + bt

where X is a P-Brownian motion and b is some unknown constant. Instead of making
an initial guess at the value of b and sticking with it, the agent gives a prior distribution
to the unknown parameter b and then updates this prior distribution as time progresses.
If the agent was sure about b, then he would have:

dP

dP0

∣

∣

∣

∣

Ft

≡ Λt = exp{bXt −
1

2
b2t}

However, the agent gives b a normal prior distribution with mean β and precision ǫ. 19

It follows that the change of measure the agent works with is given by:

Λt =

∫ ∞

−∞

√

ǫ

2π
exp{−

ǫ

2
(b′ − β)2 + b′Xt −

1

2
(b′)2t}db′

=

√

ǫ

ǫ + t
exp

{

X2
t + 2βǫXt − ǫ(β)2t

2(ǫ + t)

}

This gives:

Λt = ΛtαtdXt

where:

αt =
Xt + βǫ

ǫ + t
(B.1)

This is of the form described in Section 3, but the αt are now adapted processes
rather than constants. Thus, our model can deal with intelligent agents who update
their beliefs, as well as the simple agents who always hold the same beliefs.

19This is equivalent to having variance ǫ−1
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C Proof of Theorem 2.3

There are several steps to the proof.

(i) If we write λ̄j
t ≡ U ′

j(t, c̄
j
t ), the first thing to prove is that for 0 ≤ t < T

λ̄j
t S̄t = E

[

λ̄j
t+1(S̄t+1 + δt+1)

∣

∣

∣
F̄ j

t

]

. (C.1)

Consider a (small) perturbation θ̄j 7→ θ̄j + η of the portfolio process, with corre-
sponding change c̄j 7→ c = c̄j + ǫ to the consumption process, where (see(2.2))

ǫt = ηt(S̄t + δt) − ηt+1S̄t.

Since U satisfies the Inada condition, c̄j must be strictly positive and so for small
enough η the process c will be strictly positive. To leading order the change in
agent j’s objective is

E
[

T
∑

t=0

U ′
j(t, c̄

j
t )ǫt

]

= E
[

T
∑

t=0

λ̄j
t{ηt(S̄t + δt) − ηt+1S̄t}

]

= E
[

T
∑

t=1

ηt(λ̄
j
t(S̄t + δt) − λ̄j

t−1S̄t−1)
]

= E
[

T
∑

t=1

ηtE(λ̄j
t (S̄t + δt) − λ̄j

t−1S̄t−1

∣

∣ F̄ j
t−1)

]

, (C.2)

using the facts that S̄T = 0, η0 = 0 (since θj
0 = yj is fixed), and that the portfolio

perturbation must be F̄ j-previsible. This leading-order change in objective must
be 0, since (θ̄j, c̄j) was optimal; since η is arbitrary, inspection of (C.2) gives (C.1).

(ii) Since c̄j is F̄ j-adapted and θ̄j is F̄ j-previsible, we have

F̄ j
t ≡ σ(Xu, S̄u, zj

u : u ≤ t)

= σ(Xu, S̄u, θ̄j
u+1, c̄

j
u, zj

u : u ≤ t)

⊇ σ(Xu, S̄u, θ̄j
u+1, c̄

j
u : u ≤ t) ≡ F j

t ,

say. Since λ̄j
t and S̄t are measurable with respect to F j

t , we can refine (C.1) to

λ̄j
t S̄t = E

[

λ̄j
t+1(S̄t+1 + δt+1)

∣

∣

∣
F j

t

]

. (C.3)

(iii) We now take a regular conditional distribution κj for S̄ given (X, θ̄j , c̄j) - see
II.89 in [44]. To build the sample space Ω̃ on which the DB equilibrium will be
constructed, the first step is to take Ω0 to be the path space of (X,Θ, C), which is
isomorphic to R

(d+2J)(T+1). This gets its Borel σ-field B, and canonical filtration;
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we endow it with a reference probability measure P ∗ which is the law of (X, Θ̄, C̄).
Next we expand the sample space to Ω̃ ≡ Ω0 × R

T+1, and we write (X̃, Θ̃, C̃) for
the processes defined on Ω̃ by

X̃(ω̃) = X(ω)

Θ̃(ω̃) = Θ(ω)

C̃(ω̃) = C(ω),

where ω̃ = (ω, s), ω ∈ Ω0, s = (s0, . . . , sT ) ∈ R
T+1. We define a process S̃ by

S̃t(ω̃) = st

when ω̃ = (ω, (s0, . . . , sT )). We write G̃t = σ(X̃u, Θ̃u+1, C̃u, S̃u : u ≤ t) for the
filtration generated by these processes.

Now we specify the probabilities P j giving the diverse beliefs of the agents. Firstly,
select (X̃, θ̃j, c̃j) according to the law P ∗ (equivalently, (X̃, θ̃j, c̃j) has the same law
as (X, θ̄j, c̄j)). Then conditional on (X̃, θ̃j, c̃j) let the law of S̃ be κj(X̃, θ̃j, c̃j ; ·),
and let the random variables θ̃i, c̃i, i 6= j, be independent subject to the constraints
∑

θ̃i
t = 1,

∑

c̃i
t = δt. [For example, we could take exponential variables V i, Ṽ j,

and define θ̃i
t = (1− θ̃j

t )V
i/

∑

ℓ 6=j V ℓ, c̃i
t = (δ̃t− c̃j

t )Ṽ
i/

∑

ℓ 6=j Ṽ ℓ]. This construction
has achieved the following properties:

(a) the P j-distribution of (X̃, θ̃j, c̃j , S̃) is the same as the P -distribution of (X, θ̄j , c̄j , S̄);

(b) θ̃j is G̃-previsible.

(c)
θ̃j
t (S̃t + δ̃t) = θ̃j

t+1S̃t + c̃j
t

with P j-probability 1, since this is a statement about the joint law of (X̃, θ̃j, c̃j , S̃)
and it must therefore have the same probability as the corresponding statement
about (X, θ̄j, c̄j , S̄);

(d) Similarly,
∑

J

θ̃i
t = 1,

∑

J

c̃i
t = δ̃t

with P ∗-probability 1, and with P k-probability 1 for each k.

(iv) Now we define the filtration F̃ j
t = σ(X̃u, S̃u, θ̃j

u+1, c̃
j
u : u ≤ t), and the processes

λ̃j
t ≡ U ′

j(t, c̃
j
t ). Hence we observe the analogue

λ̃j
t S̃t = Ej

[

λ̃j
t+1(S̃t+1 + δ̃t+1)

∣

∣

∣
F̃ j

t

]

(C.4)

of (C.3) must hold, because the conditional expedition is determined by the joint
law of the conditional and conditioning variables, which (in view of (a)) is the same
as the joint law of the corresponding variable in the PI equilibrium for which (C.3)
holds.
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(v) The next step is to argue that (C.3) holds when we condition on the larger σ-field
G̃t:

λ̃j
t S̃t = Ej

[

λ̃j
t+1(S̃t+1 + δt+1)

∣

∣

∣
G̃t

]

. (C.5)

But G̃t = F̃ j
t ∨ Aj

t , where Aj
t = σ(c̃i

u, θ̃i
u+1 : u ≤ t, i 6= j) is independent of F̃ j

t

so we may apply Proposition 2 to deduce this result.

(vi) The final step is to verify the optimality property (v) in the definition of a DB
equilibrium. Suppose for this that (θt, ct) is any possible investment-consumption
pair for agent j (so θ0 = yj, θ is G̃-previsible, c is G̃-adapted, θt(S̃t+δt) = θt+1S̃t+ct

for all t) and consider the objective

Ej
T

∑

t=0

Uj(t, ct) ≤ Ej
T

∑

t=0

[

Uj(t, c̃
j
t ) + λ̃j

t (ct − c̃j
t )

]

= Ej
T

∑

t=0

[

Uj(t, c̃
j
t ) + λ̃j

t

{

(θt − θ̃j
t )(S̃t + δ̃t) − (θt+1 − θ̃j

t+1)S̃t

}]

= Ej
T

∑

t=0

Uj(t, c̃
j
t ) + E

T
∑

t=1

(θt − θ̃j
t )

{

λ̃j
t(S̃t + δ̃t) − λ̃j

t−1S̃t1

}

= Ej
T

∑

t=0

Uj(t, c̃
j
t )

using (respectively) concavity of Uj, the wealth equation, the fact that θ0 = θ̃j
0 = yj

and θT+1 = 0 = θ̃j
T+1, and (C.4) together with G̃-previsibility of θ, θ̃j.

�

We give here a simple and intuitive result that was needed in the proof of Theorem 2.3.

Proposition 2. If X is an integrable random variable, if G and A are two sub-σ-fields
of F such that A is independent of X and G, then

E[X|G] = E[X|G ∨ A] a.s. (C.6)

Proof of Proposition 2. Consider the collection

C ≡ {F ∈ F :

∫

F
E[X|G] dP =

∫

F
X dP}.

This collection is a d-system (see [44] Chapter II.1 for definitions and basic results).
From the definition of conditional expectation, G ⊆ C. Now take any G ∈ G, A ∈ A and
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calculate
∫

A∩G
E[X|G] dP =

∫

IAE[XIG|G] dP

= P (A)E[X : G] (A is independent of G)

=

∫

A∩G
X dP (A is independent of G, X).

Thus C contains the π-system I consisting of all intersections of the form A∩G, A ∈ A,
G ∈ G, and by Lemma II.1.8 of [44], the d-system d(I) generated by I equals the σ-field
generated by I, which is G ∨ A. But C is a d-system, and so contains G ∨ A. This
establishes the result. �

Remark. Intuitively, it seems plausible that we should not need A to be independent
of G for this result to hold; after all, what we are adding to the σ-field is independent of
the random variable. But this is not true. Take the example of two independent B(1, 1

2
)

random variables X and Y , and let A = σ(Y ), G = σ(Z) where Z = (X + Y ) mod (2).
Thus Z is 1 if exactly one of X, Y is 1, zero otherwise. It is not hard to see that G is
independent of X, and yet A ∨ G = F , so the equality (C.6) fails.
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