DIVERSE BELIEFS

A. A. Brown \& L. C. G. Rogers

Statistical Laboratory, University of Cambridge

Overview

Overview

- Different forms of diversity
- Private information (PI) equilibria
- Diverse beliefs (DB) equilibria
- Main result: when is a PI equilibrium a DB equilibrium?
- Conclusions

Different forms of diversity

Different forms of diversity

Representative agent models are tractable...

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences?

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information?

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information? Agents receive private signals, share information via prices.

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information? Agents receive private signals, share information via prices. No mathematical theory here; really, only very simple models stand any chance of tractability

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information? Agents receive private signals, share information via prices. No mathematical theory here; really, only very simple models stand any chance of tractability
Kurz: If your theory depends critically on private information, how would you ever verify/refute it?

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information? Agents receive private signals, share information via prices. No mathematical theory here; really, only very simple models stand any chance of tractability

Kurz: If your theory depends critically on private information, how would you ever verify/refute it?

- Diverse beliefs?

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information? Agents receive private signals, share information via prices. No mathematical theory here; really, only very simple models stand any chance of tractability

Kurz: If your theory depends critically on private information, how would you ever verify/refute it?

- Diverse beliefs?
"Everybody has the same information - everybody has Bloomberg - it's what they do with that information which is different"

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information? Agents receive private signals, share information via prices. No mathematical theory here; really, only very simple models stand any chance of tractability

Kurz: If your theory depends critically on private information, how would you ever verify/refute it?

- Diverse beliefs?
"Everybody has the same information - everybody has Bloomberg - it's what they do with that information which is different" (Bill Janeway)

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information? Agents receive private signals, share information via prices. No mathematical theory here; really, only very simple models stand any chance of tractability

Kurz: If your theory depends critically on private information, how would you ever verify/refute it?

- Diverse beliefs?
"Everybody has the same information - everybody has Bloomberg - it's what they do with that information which is different" (Bill Janeway)
Same filtrations, but different probability measures.

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information? Agents receive private signals, share information via prices. No mathematical theory here; really, only very simple models stand any chance of tractability

Kurz: If your theory depends critically on private information, how would you ever verify/refute it?

- Diverse beliefs?
"Everybody has the same information - everybody has Bloomberg - it's what they do with that information which is different" (Bill Janeway)
Same filtrations, but different probability measures. Simple, powerful and general mathematical tools exist to handle such situations.

Different forms of diversity

Representative agent models are tractable... but ignore the interaction of agents = market.

- Diverse preferences? A well-trodden path, leading to pricing systems which are too orderly.
- Diverse information? Agents receive private signals, share information via prices. No mathematical theory here; really, only very simple models stand any chance of tractability

Kurz: If your theory depends critically on private information, how would you ever verify/refute it?

- Diverse beliefs?
"Everybody has the same information - everybody has Bloomberg - it's what they do with that information which is different" (Bill Janeway)
Same filtrations, but different probability measures. Simple, powerful and general mathematical tools exist to handle such situations.
- Diverse beliefs include diverse information!

Private information (Pl) setup.

Private information (Pl) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T

Private information (Pl) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T
- Single asset delivers random output δ_{t} at time $t \in \mathbb{T}$

Private information (Pl) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T
- Single asset delivers random output δ_{t} at time $t \in \mathbb{T}$
- Common knowledge \mathbb{R}^{d}-valued process $\left(X_{t}\right)_{t \in \mathbb{T}}$, includes δ

Private information (Pl) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T
- Single asset delivers random output δ_{t} at time $t \in \mathbb{T}$
- Common knowledge \mathbb{R}^{d}-valued process $\left(X_{t}\right)_{t \in \mathbb{T}}$, includes δ
- Agent j receives private signal z_{t}^{j} at time t :

$$
Z_{t}=\left(z_{t}^{1}, \ldots, z_{t}^{J}\right)
$$

Private information (Pl) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T
- Single asset delivers random output δ_{t} at time $t \in \mathbb{T}$
- Common knowledge \mathbb{R}^{d}-valued process $\left(X_{t}\right)_{t \in \mathbb{T}}$, includes δ
- Agent j receives private signal z_{t}^{j} at time t :

$$
Z_{t}=\left(z_{t}^{1}, \ldots, z_{t}^{J}\right)
$$

- Agent j has preferences

$$
E\left[\sum_{t=0}^{T} U_{j}\left(t, c_{t}\right)\right],
$$

U_{j} Inada, C^{2}, strictly concave.

Private information (Pl) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T
- Single asset delivers random output δ_{t} at time $t \in \mathbb{T}$
- Common knowledge \mathbb{R}^{d}-valued process $\left(X_{t}\right)_{t \in \mathbb{T}}$, includes δ
- Agent j receives private signal z_{t}^{j} at time t :

$$
Z_{t}=\left(z_{t}^{1}, \ldots, z_{t}^{J}\right)
$$

- Agent j has preferences

$$
E\left[\sum_{t=0}^{T} U_{j}\left(t, c_{t}\right)\right],
$$

U_{j} Inada, C^{2}, strictly concave.

- $\mathcal{G}_{t} \equiv \sigma\left(X_{s}, Z_{s}: s \leq t\right)$ is σ-field of all information at time t

Private information (PI) equilibria.

Private information (PI) equilibria.

Definition. A private-information equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\bar{S}_{t}, \bar{\Theta}_{t}, \bar{C}_{t}\right)_{t \in \mathbb{T}}$ of \mathcal{G}-adapted processes, where $\bar{\Theta}_{t}=\left(\bar{\theta}_{t}^{1}, \ldots, \bar{\theta}_{t}^{J}\right)$,
$\bar{C}_{t}=\left(\bar{c}_{t}^{1}, \ldots, \bar{c}_{t}^{J}\right)$, and \bar{S}_{t} is real-valued, with the following properties:

Private information (PI) equilibria.

Definition. A private-information equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\bar{S}_{t}, \bar{\Theta}_{t}, \bar{C}_{t}\right)_{t \in \mathbb{T}}$ of \mathcal{G}-adapted processes, where $\bar{\Theta}_{t}=\left(\bar{\theta}_{t}^{1}, \ldots, \bar{\theta}_{t}^{J}\right)$,
$\bar{C}_{t}=\left(\bar{c}_{t}^{1}, \ldots, \bar{c}_{t}^{J}\right)$, and \bar{S}_{t} is real-valued, with the following properties:
(i) for all j, \bar{c}^{j} is adapted to the fillration $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right)$ and $\bar{\theta}^{j}$ is previsible with respect to $\overline{\mathcal{F}}^{j}$;

Private information (PI) equilibria.

Definition. A private-information equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\bar{S}_{t}, \bar{\Theta}_{t}, \bar{C}_{t}\right)_{t \in \mathbb{T}}$ of \mathcal{G}-adapted processes, where $\bar{\Theta}_{t}=\left(\bar{\theta}_{t}^{1}, \ldots, \bar{\theta}_{t}^{J}\right)$,
$\bar{C}_{t}=\left(\bar{c}_{t}^{1}, \ldots, \bar{c}_{t}^{J}\right)$, and \bar{S}_{t} is real-valued, with the following properties:
(i) for all j, \bar{c}^{j} is adapted to the filltration $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right)$ and $\bar{\theta}^{j}$ is previsible with respect to $\overline{\mathcal{F}}^{j}$;
(ii) for all j and for all $t \in \mathbb{T}$, the wealth equation

$$
\bar{\theta}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)=\bar{\theta}_{t+1}^{j} \bar{S}_{t}+\bar{c}_{t}^{j}
$$

holds, with $\bar{S}_{T}=\bar{\theta}_{T+1}^{j}=0$;

Private information (PI) equilibria.

Definition. A private-information equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\bar{S}_{t}, \bar{\Theta}_{t}, \bar{C}_{t}\right)_{t \in \mathbb{T}}$ of \mathcal{G}-adapted processes, where $\bar{\Theta}_{t}=\left(\bar{\theta}_{t}^{1}, \ldots, \bar{\theta}_{t}^{J}\right)$,
$\bar{C}_{t}=\left(\bar{c}_{t}^{1}, \ldots, \bar{c}_{t}^{J}\right)$, and \bar{S}_{t} is real-valued, with the following properties:
(i) for all j, \bar{c}^{j} is adapted to the filltration $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right)$ and $\bar{\theta}^{j}$ is previsible with respect to $\overline{\mathcal{F}}^{j}$;
(ii) for all j and for all $t \in \mathbb{T}$, the wealth equation

$$
\bar{\theta}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)=\bar{\theta}_{t+1}^{j} \bar{S}_{t}+\bar{c}_{t}^{j}
$$

holds, with $\bar{S}_{T}=\bar{\theta}_{T+1}^{j}=0$;
(iii) for all $t \in \mathbb{T}$, markets clear:

$$
\sum_{j} \bar{\theta}_{t}^{j}=1, \quad \sum_{j} \bar{c}_{t}^{j}=\delta_{t}
$$

Private information (PI) equilibria.

Definition. A private-information equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\bar{S}_{t}, \bar{\Theta}_{t}, \bar{C}_{t}\right)_{t \in \mathbb{T}}$ of \mathcal{G}-adapted processes, where $\bar{\Theta}_{t}=\left(\bar{\theta}_{t}^{1}, \ldots, \bar{\theta}_{t}^{J}\right)$,
$\bar{C}_{t}=\left(\bar{c}_{t}^{1}, \ldots, \bar{c}_{t}^{J}\right)$, and \bar{S}_{t} is real-valued, with the following properties:
(i) for all j, \bar{c}^{j} is adapted to the filltration $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right)$ and $\bar{\theta}^{j}$ is previsible with respect to $\overline{\mathcal{F}}^{j}$;
(ii) for all j and for all $t \in \mathbb{T}$, the wealth equation

$$
\bar{\theta}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)=\bar{\theta}_{t+1}^{j} \bar{S}_{t}+\bar{c}_{t}^{j}
$$

holds, with $\bar{S}_{T}=\bar{\theta}_{T+1}^{j}=0$;
(iii) for all $t \in \mathbb{T}$, markets clear:

$$
\sum_{j} \bar{\theta}_{t}^{j}=1, \quad \sum_{j} \bar{c}_{t}^{j}=\delta_{t} ;
$$

(iv) $\bar{\theta}_{0}^{j}=y^{j}$ for all j;

Private information (PI) equilibria.

Definition. A private-information equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\bar{S}_{t}, \bar{\Theta}_{t}, \bar{C}_{t}\right)_{t \in \mathbb{T}}$ of \mathcal{G}-adapted processes, where $\bar{\Theta}_{t}=\left(\bar{\theta}_{t}^{1}, \ldots, \bar{\theta}_{t}^{J}\right)$,
$\bar{C}_{t}=\left(\bar{c}_{t}^{1}, \ldots, \bar{c}_{t}^{J}\right)$, and \bar{S}_{t} is real-valued, with the following properties:
(i) for all j, \bar{c}^{j} is adapted to the filtration $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right)$ and $\bar{\theta}^{j}$ is previsible with respect to $\overline{\mathcal{F}}^{j}$;
(ii) for all j and for all $t \in \mathbb{T}$, the wealth equation

$$
\bar{\theta}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)=\bar{\theta}_{t+1}^{j} \bar{S}_{t}+\bar{c}_{t}^{j}
$$

holds, with $\bar{S}_{T}=\bar{\theta}_{T+1}^{j}=0$;
(iii) for all $t \in \mathbb{T}$, markets clear:

$$
\sum_{j} \bar{\theta}_{t}^{j}=1, \quad \sum_{j} \bar{c}_{t}^{j}=\delta_{t} ;
$$

(iv) $\bar{\theta}_{0}^{j}=y^{j}$ for all j;
(v) For all $j,\left(\bar{\theta}^{j}, \bar{c}^{j}\right)$ optimizes agent j 's objective over (θ, c) satisfying the wealth equation, and such that c is $\overline{\mathcal{F}}^{j}$-adapted, θ is $\overline{\mathcal{F}}^{j}$-previsible, and $\theta_{0}=y^{j}$.

Private information (PI) equilibria.

Definition. A private-information equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\bar{S}_{t}, \bar{\Theta}_{t}, \bar{C}_{t}\right)_{t \in \mathbb{T}}$ of \mathcal{G}-adapted processes, where $\bar{\Theta}_{t}=\left(\bar{\theta}_{t}^{1}, \ldots, \bar{\theta}_{t}^{J}\right)$,
$\bar{C}_{t}=\left(\bar{c}_{t}^{1}, \ldots, \bar{c}_{t}^{J}\right)$, and \bar{S}_{t} is real-valued, with the following properties:
(i) for all j, \bar{c}^{j} is adapted to the filltration $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right)$ and $\bar{\theta}^{j}$ is previsible with respect to $\overline{\mathcal{F}}^{j}$;
(ii) for all j and for all $t \in \mathbb{T}$, the wealth equation

$$
\bar{\theta}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)=\bar{\theta}_{t+1}^{j} \bar{S}_{t}+\bar{c}_{t}^{j}
$$

holds, with $\bar{S}_{T}=\bar{\theta}_{T+1}^{j}=0$;
(iii) for all $t \in \mathbb{T}$, markets clear:

$$
\sum_{j} \bar{\theta}_{t}^{j}=1, \quad \sum_{j} \bar{c}_{t}^{j}=\delta_{t} ;
$$

(iv) $\bar{\theta}_{0}^{j}=y^{j}$ for all j;
(v) For all $j,\left(\bar{\theta}^{j}, \bar{c}^{j}\right)$ optimizes agent j 's objective over (θ, c) satisfying the wealth equation, and such that c is $\overline{\mathcal{F}}^{j}$-adapted, θ is $\overline{\mathcal{F}}^{j}$-previsible, and $\theta_{0}=y^{j}$.

Bars denote variables in PI setting

Diverse beliefs (DB) setup.

Diverse beliefs (DB) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T

Diverse beliefs (DB) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T
- $\tilde{\mathcal{G}}_{t}$ is σ-field of all information at time t

Diverse beliefs (DB) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T
- $\tilde{\mathcal{G}}_{t}$ is σ-field of all information at time t
- Single asset delivers random output δ_{t} at time $t \in \mathbb{T}$

Diverse beliefs (DB) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T
- $\tilde{\mathcal{G}}_{t}$ is σ-field of all information at time t
- Single asset delivers random output δ_{t} at time $t \in \mathbb{T}$
- Agent j has beliefs P^{j}

Diverse beliefs (DB) setup.

- Time index set is $\mathbb{T}=\{0,1, \ldots, T\}$ for some positive integer T
- $\tilde{\mathcal{G}}_{t}$ is σ-field of all information at time t
- Single asset delivers random output δ_{t} at time $t \in \mathbb{T}$
- Agent j has beliefs P^{j}
- Agent j has preferences

$$
E\left[\sum_{t=0}^{T} U_{j}\left(t, c_{t}\right)\right]
$$

U_{j} Inada, C^{2}, strictly concave.

Diverse beliefs (DB) equilibrium.

Diverse beliefs (DB) equilibrium.

A diverse-beliefs equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{T}\right)_{t \in \mathbb{T}}$ of $\tilde{\mathcal{G}}$-adapted processes, where $\tilde{\Theta}_{t}=\left(\tilde{\theta}_{t}^{1}, \ldots, \tilde{\theta}_{t}^{J}\right), \tilde{C}_{t}=\left(\tilde{c}_{t}^{1}, \ldots, \tilde{c}_{t}^{J}\right)$ and \tilde{S} is real-valued, with the following properties.

Diverse beliefs (DB) equilibrium.

A diverse-beliefs equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{T}\right)_{t \in \mathbb{T}}$ of $\tilde{\mathcal{G}}$-adapted processes, where $\tilde{\Theta}_{t}=\left(\tilde{\theta}_{t}^{1}, \ldots, \tilde{\theta}_{t}^{J}\right), \tilde{C}_{t}=\left(\tilde{c}_{t}^{1}, \ldots, \tilde{c}_{t}^{J}\right)$ and \tilde{S} is real-valued, with the following properties.
(i) $\tilde{\Theta}$ is $\tilde{\mathcal{G}}$-previsible;

Diverse beliefs (DB) equilibrium.

A diverse-beliefs equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{T}\right)_{t \in \mathbb{T}}$ of $\tilde{\mathcal{G}}$-adapted processes, where $\tilde{\Theta}_{t}=\left(\tilde{\theta}_{t}^{1}, \ldots, \tilde{\theta}_{t}^{J}\right), \tilde{C}_{t}=\left(\tilde{c}_{t}^{1}, \ldots, \tilde{c}_{t}^{J}\right)$ and \tilde{S} is real-valued, with the following properties.
(i) $\tilde{\Theta}$ is $\tilde{\mathcal{G}}$-previsible;
(ii) for all j and all $t \in \mathbb{T}$, the wealth equation

$$
\tilde{\theta}_{t}^{j}\left(\tilde{S}_{t}+\delta_{t}\right)=\tilde{\theta}_{t+1}^{j} \tilde{S}_{t}+\tilde{c}_{t}^{j}
$$

holds, with $\tilde{S}_{T}=\tilde{\theta}_{T+1}^{j}=0$;

Diverse beliefs (DB) equilibrium.

A diverse-beliefs equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{T}\right)_{t \in \mathbb{T}}$ of $\tilde{\mathcal{G}}$-adapted processes, where $\tilde{\Theta}_{t}=\left(\tilde{\theta}_{t}^{1}, \ldots, \tilde{\theta}_{t}^{J}\right), \tilde{C}_{t}=\left(\tilde{c}_{t}^{1}, \ldots, \tilde{c}_{t}^{J}\right)$ and \tilde{S} is real-valued, with the following properties.
(i) $\tilde{\Theta}$ is $\tilde{\mathcal{G}}$-previsible;
(ii) for all j and all $t \in \mathbb{T}$, the wealth equation

$$
\tilde{\theta}_{t}^{j}\left(\tilde{S}_{t}+\delta_{t}\right)=\tilde{\theta}_{t+1}^{j} \tilde{S}_{t}+\tilde{c}_{t}^{j}
$$

holds, with $\tilde{S}_{T}=\tilde{\theta}_{T+1}^{j}=0$;
(iii) for all $t \in \mathbb{T}$, markets clear:

$$
\sum_{j} \tilde{\theta}_{t}^{j}=1, \quad \sum_{j} \tilde{c}_{t}^{j}=\delta_{t}
$$

Diverse beliefs (DB) equilibrium.

A diverse-beliefs equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{T}\right)_{t \in \mathbb{T}}$ of $\tilde{\mathcal{G}}$-adapted processes, where $\tilde{\Theta}_{t}=\left(\tilde{\theta}_{t}^{1}, \ldots, \tilde{\theta}_{t}^{J}\right), \tilde{C}_{t}=\left(\tilde{c}_{t}^{1}, \ldots, \tilde{c}_{t}^{J}\right)$ and \tilde{S} is real-valued, with the following properties.
(i) $\tilde{\Theta}$ is $\tilde{\mathcal{G}}$-previsible;
(ii) for all j and all $t \in \mathbb{T}$, the wealth equation

$$
\tilde{\theta}_{t}^{j}\left(\tilde{S}_{t}+\delta_{t}\right)=\tilde{\theta}_{t+1}^{j} \tilde{S}_{t}+\tilde{c}_{t}^{j}
$$

holds, with $\tilde{S}_{T}=\tilde{\theta}_{T+1}^{j}=0$;
(iii) for all $t \in \mathbb{T}$, markets clear:

$$
\sum_{j} \tilde{\theta}_{t}^{j}=1, \quad \sum_{j} \tilde{c}_{t}^{j}=\delta_{t}
$$

(iv) $\tilde{\theta}_{0}^{j}=y^{j}$ for all j;

Diverse beliefs (DB) equilibrium.

A diverse-beliefs equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{T}\right)_{t \in \mathbb{T}}$ of $\tilde{\mathcal{G}}$-adapted processes, where $\tilde{\Theta}_{t}=\left(\tilde{\theta}_{t}^{1}, \ldots, \tilde{\theta}_{t}^{J}\right), \tilde{C}_{t}=\left(\tilde{c}_{t}^{1}, \ldots, \tilde{c}_{t}^{J}\right)$ and \tilde{S} is real-valued, with the following properties.
(i) $\tilde{\Theta}$ is $\tilde{\mathcal{G}}$-previsible;
(ii) for all j and all $t \in \mathbb{T}$, the wealth equation

$$
\tilde{\theta}_{t}^{j}\left(\tilde{S}_{t}+\delta_{t}\right)=\tilde{\theta}_{t+1}^{j} \tilde{S}_{t}+\tilde{c}_{t}^{j}
$$

holds, with $\tilde{S}_{T}=\tilde{\theta}_{T+1}^{j}=0$;
(iii) for all $t \in \mathbb{T}$, markets clear:

$$
\sum_{j} \tilde{\theta}_{t}^{j}=1, \quad \sum_{j} \tilde{c}_{t}^{j}=\delta_{t} ;
$$

(iv) $\tilde{\theta}_{0}^{j}=y^{j}$ for all j;
(v) For all $j,\left(\tilde{\theta}_{0}^{j}, \tilde{c}^{j}\right)$ optimizes agent j 's objective over $\tilde{\mathcal{G}}$-adapted $c, \tilde{\mathcal{G}}$-previsible θ which satisfy the wealth equation, and $\theta_{0}=y^{j}$

Diverse beliefs (DB) equilibrium.

A diverse-beliefs equilibrium with initial allocation $y \in \mathbb{R}^{J}$ is a triple $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{T}\right)_{t \in \mathbb{T}}$ of $\tilde{\mathcal{G}}$-adapted processes, where $\tilde{\Theta}_{t}=\left(\tilde{\theta}_{t}^{1}, \ldots, \tilde{\theta}_{t}^{J}\right), \tilde{C}_{t}=\left(\tilde{c}_{t}^{1}, \ldots, \tilde{c}_{t}^{J}\right)$ and \tilde{S} is real-valued, with the following properties.
(i) $\tilde{\Theta}$ is $\tilde{\mathcal{G}}$-previsible;
(ii) for all j and all $t \in \mathbb{T}$, the wealth equation

$$
\tilde{\theta}_{t}^{j}\left(\tilde{S}_{t}+\delta_{t}\right)=\tilde{\theta}_{t+1}^{j} \tilde{S}_{t}+\tilde{c}_{t}^{j}
$$

holds, with $\tilde{S}_{T}=\tilde{\theta}_{T+1}^{j}=0$;
(iii) for all $t \in \mathbb{T}$, markets clear:

$$
\sum_{j} \tilde{\theta}_{t}^{j}=1, \quad \sum_{j} \tilde{c}_{t}^{j}=\delta_{t} ;
$$

(iv) $\tilde{\theta}_{0}^{j}=y^{j}$ for all j;
(v) For all $j,\left(\tilde{\theta}_{0}^{j}, \tilde{c}^{j}\right)$ optimizes agent j 's objective over $\tilde{\mathcal{G}}$-adapted $c, \tilde{\mathcal{G}}$-previsible θ which satisfy the wealth equation, and $\theta_{0}=y^{j}$

Tildes denote variables in diverse beliefs problem

Main result.

Main result.

Theorem. Suppose that ($\bar{S}, \bar{\Theta}, \bar{C}$) is a Pl equilibrium with initial allocation $y \in \mathbb{R}^{J}$ for the discrete-time finite-horizon Lucas tree model introduced above. Then it is possible to construct a filtered measurable space $\left(\tilde{\Omega},\left(\tilde{\mathcal{G}}_{t}\right)_{t \in \mathbb{T}}\right)$, carrying $\tilde{\mathcal{G}}$-adapted processes $\tilde{X}, \tilde{S}, \tilde{\Theta}, \tilde{C}$ of dimensions $d, 1, J$ and J respectively, and probability measures $P^{j}, j=1, \ldots, J$, on $\left(\tilde{\Omega}, \tilde{\mathcal{G}}_{T}\right)$ such that $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{t}\right)_{t \in \mathbb{T}}$ is a DB equilibrium with initial allocation on $y \in \mathbb{R}^{J}$ and beliefs $\left(P^{j}\right)_{j=1}^{J}$ with the property that

$$
\mathcal{L}(X, \bar{S}, \bar{\Theta}, \bar{C})=\mathcal{L}(\tilde{X}, \tilde{S}, \tilde{\Theta}, \tilde{C})
$$

Main result.

Theorem. Suppose that ($\bar{S}, \bar{\Theta}, \bar{C}$) is a Pl equilibrium with initial allocation $y \in \mathbb{R}^{J}$ for the discrete-time finite-horizon Lucas tree model introduced above. Then it is possible to construct a filtered measurable space $\left(\tilde{\Omega},\left(\tilde{\mathcal{G}}_{t}\right)_{t \in \mathbb{T}}\right)$, carrying $\tilde{\mathcal{G}}$-adapted processes $\tilde{X}, \tilde{S}, \tilde{\Theta}, \tilde{C}$ of dimensions $d, 1, J$ and J respectively, and probability measures $P^{j}, j=1, \ldots, J$, on $\left(\tilde{\Omega}, \tilde{\mathcal{G}}_{T}\right)$ such that $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{t}\right)_{t \in \mathbb{T}}$ is a DB equilibrium with initial allocation on $y \in \mathbb{R}^{J}$ and beliefs $\left(P^{j}\right)_{j=1}^{J}$ with the property that

$$
\mathcal{L}(X, \bar{S}, \bar{\Theta}, \bar{C})=\mathcal{L}(\tilde{X}, \tilde{S}, \tilde{\Theta}, \tilde{C})
$$

- $\left(\tilde{\Omega},\left(\tilde{\mathcal{G}}_{t}\right)_{t \in \mathbb{T}}\right)$ does not in general have any private signals;

Main result.

Theorem. Suppose that ($\bar{S}, \bar{\Theta}, \bar{C}$) is a Pl equilibrium with initial allocation $y \in \mathbb{R}^{J}$ for the discrete-time finite-horizon Lucas tree model introduced above. Then it is possible to construct a filtered measurable space $\left(\tilde{\Omega},\left(\tilde{\mathcal{G}}_{t}\right)_{t \in \mathbb{T}}\right)$, carrying $\tilde{\mathcal{G}}$-adapted processes $\tilde{X}, \tilde{S}, \tilde{\Theta}, \tilde{C}$ of dimensions $d, 1, J$ and J respectively, and probability measures $P^{j}, j=1, \ldots, J$, on $\left(\tilde{\Omega}, \tilde{\mathcal{G}}_{T}\right)$ such that $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{t}\right)_{t \in \mathbb{T}}$ is a DB equilibrium with initial allocation on $y \in \mathbb{R}^{J}$ and beliefs $\left(P^{j}\right)_{j=1}^{J}$ with the property that

$$
\mathcal{L}(X, \bar{S}, \bar{\Theta}, \bar{C})=\mathcal{L}(\tilde{X}, \tilde{S}, \tilde{\Theta}, \tilde{C}) .
$$

- $\left(\tilde{\Omega},\left(\tilde{\mathcal{G}}_{t}\right)_{t \in \mathbb{T}}\right)$ does not in general have any private signals;
- A PI equilibrium is observationally indistinguishable from a DB equilibrium;

Main result.

Theorem. Suppose that ($\bar{S}, \bar{\Theta}, \bar{C}$) is a Pl equilibrium with initial allocation $y \in \mathbb{R}^{J}$ for the discrete-time finite-horizon Lucas tree model introduced above. Then it is possible to construct a filtered measurable space $\left(\tilde{\Omega},\left(\tilde{\mathcal{G}}_{t}\right)_{t \in \mathbb{T}}\right)$, carrying $\tilde{\mathcal{G}}$-adapted processes $\tilde{X}, \tilde{S}, \tilde{\Theta}, \tilde{C}$ of dimensions $d, 1, J$ and J respectively, and probability measures $P^{j}, j=1, \ldots, J$, on $\left(\tilde{\Omega}, \tilde{\mathcal{G}}_{T}\right)$ such that $\left(\tilde{S}_{t}, \tilde{\Theta}_{t}, \tilde{C}_{t}\right)_{t \in \mathbb{T}}$ is a DB equilibrium with initial allocation on $y \in \mathbb{R}^{J}$ and beliefs $\left(P^{j}\right)_{j=1}^{J}$ with the property that

$$
\mathcal{L}(X, \bar{S}, \bar{\Theta}, \bar{C})=\mathcal{L}(\tilde{X}, \tilde{S}, \tilde{\Theta}, \tilde{C})
$$

- $\left(\tilde{\Omega},\left(\tilde{\mathcal{G}}_{t}\right)_{t \in \mathbb{T}}\right)$ does not in general have any private signals;
- A PI equilibrium is observationally indistinguishable from a DB equilibrium;
- .. so we gain no modelling advantage by working with (complicated) PI models!

Isn'† this obvious?

Isn'† this obvious?

- Take a PI equilibrium, and let everyone see all private signals .

Isn'† this obvious?

- Take a Pl equilibrium, and let everyone see all private signals .
- .. but agent j thinks that every other signal is non-informative.

Isn'† this obvious?

- Take a PI equilibrium, and let everyone see all private signals .
- .. but agent j thinks that every other signal is non-informative.

Isn'† this obvious?

- Take a PI equilibrium, and let everyone see all private signals ...
- .. but agent j thinks that every other signal is non-informative.
- ... but even if I think your signals are uninformative, I cannot ignore them, because you rely on them in your choices;

Isn'† this obvious?

- Take a PI equilibrium, and let everyone see all private signals ...
- .. but agent j thinks that every other signal is non-informative.
- ... but even if I think your signals are uninformative, I cannot ignore them, because you rely on them in your choices; and that makes them informative.

Outline of proof.

Outline of proof.

Agent j in PI equilibrium chooses optimal $\left(\bar{\theta}^{j}, \bar{c}^{j}\right)$.

Outline of proof.

Agent j in Pl equilibrium chooses optimal $\left(\bar{\theta}^{j}, \bar{c}^{j}\right)$. His state-price density $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$ must have the property

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \overline{\mathcal{F}}_{t}^{j}\right] . \quad \text { (PI-FOC) }
$$

Outline of proof.

Agent j in Pl equilibrium chooses optimal $\left(\bar{\theta}^{j}, \bar{c}^{j}\right)$. His state-price density $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$ must have the property

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \overline{\mathcal{F}}_{t}^{j}\right] . \quad \text { (PI-FOC) }
$$

Agent j in DB equilibrium chooses optimal $\left(\tilde{\theta}^{j}, \tilde{c}^{j}\right)$.

Outline of proof.

Agent j in Pl equilibrium chooses optimal $\left(\bar{\theta}^{j}, \bar{c}^{j}\right)$. His state-price density $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$ must have the property

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \overline{\mathcal{F}}_{t}^{j}\right] . \quad \text { (PI-FOC) }
$$

Agent j in DB equilibrium chooses optimal $\left(\tilde{\theta}^{j}, \tilde{c}^{j}\right)$. His state-price density $\tilde{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$ must have the property

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\delta_{t+1}\right) \mid \tilde{\mathcal{G}}_{t}\right] . \quad \text { (DB-FOC) }
$$

Outline of proof.

Agent j in Pl equilibrium chooses optimal $\left(\bar{\theta}^{j}, \bar{c}^{j}\right)$. His state-price density $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$ must have the property

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \overline{\mathcal{F}}_{t}^{j}\right] . \quad \text { (PI-FOC) }
$$

Agent j in DB equilibrium chooses optimal $\left(\tilde{\theta}^{j}, \tilde{c}^{j}\right)$. His state-price density $\tilde{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$ must have the property

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\delta_{t+1}\right) \mid \tilde{\mathcal{G}}_{t}\right] . \quad \text { (DB-FOC) }
$$

How do we go from the first to the second??

Outline of proof.

Agent j in Pl equilibrium chooses optimal $\left(\bar{\theta}^{j}, \bar{c}^{j}\right)$. His state-price density $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$ must have the property

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \overline{\mathcal{F}}_{t}^{j}\right] . \quad \text { (PI-FOC) }
$$

Agent j in DB equilibrium chooses optimal $\left(\tilde{\theta}^{j}, \tilde{c}^{j}\right)$. His state-price density $\tilde{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$ must have the property

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\delta_{t+1}\right) \mid \tilde{\mathcal{G}}_{t}\right] . \quad \text { (DB-FOC) }
$$

How do we go from the first to the second??

- Change (PI-FOC) to

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \mathcal{F}_{t}^{j}\right] .
$$

where $\mathcal{F}_{t}^{j} \subset \overline{\mathcal{F}}_{t}^{j}$ depends only on public information relating to agent j;

Outline of proof.

Agent j in Pl equilibrium chooses optimal $\left(\bar{\theta}^{j}, \bar{c}^{j}\right)$. His state-price density $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$ must have the property

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \overline{\mathcal{F}}_{t}^{j}\right] . \quad \text { (PI-FOC) }
$$

Agent j in DB equilibrium chooses optimal $\left(\tilde{\theta}^{j}, \tilde{c}^{j}\right)$. His state-price density $\tilde{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$ must have the property

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\delta_{t+1}\right) \mid \tilde{\mathcal{G}}_{t}\right] . \quad \text { (DB-FOC) }
$$

How do we go from the first to the second??

- Change (PI-FOC) to

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \mathcal{F}_{t}^{j}\right] .
$$

where $\mathcal{F}_{t}^{j} \subset \overline{\mathcal{F}}_{t}^{j}$ depends only on public information relating to agent j;

- Enlarge \mathcal{F}_{t}^{j} to include all public information, by specifying (independent) distribution for other agent's variables.

Step 1: FOCs for PI equilibrium.

Step 1: FOCs for PI equilibrium.
Recall that $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$;

Step 1: FOCs for PI equilibrium.
Recall that $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right) ; \quad$ and $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right)$

Step 1: FOCs for Pl equilibrium.

Recall that $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$; and $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right) \quad$ Perturbation $\bar{\theta}^{j} \mapsto \bar{\theta}^{j}+\eta$ of the portfolio process changes $\bar{c}^{j} \mapsto c=\bar{c}^{j}+\epsilon$, where

$$
\epsilon_{t}=\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t}
$$

Step 1: FOCs for Pl equilibrium.

Recall that $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$; and $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right) \quad$ Perturbation $\bar{\theta}^{j} \mapsto \bar{\theta}^{j}+\eta$ of the portfolio process changes $\bar{c}^{j} \mapsto c=\bar{c}^{j}+\epsilon$, where

$$
\epsilon_{t}=\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t} .
$$

Leading-order change to objective is

$$
\begin{aligned}
E\left[\sum_{t=0}^{T} U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right) \epsilon_{t}\right] & =E\left[\sum_{t=0}^{T} \bar{\lambda}_{t}^{j}\left\{\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t}\right\}\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t}\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1}\right)\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t} E\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1} \mid \overline{\mathcal{F}}_{t-1}^{j}\right)\right]
\end{aligned}
$$

Step 1: FOCs for Pl equilibrium.

Recall that $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$; and $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right) \quad$ Perturbation $\bar{\theta}^{j} \mapsto \bar{\theta}^{j}+\eta$ of the portfolio process changes $\bar{c}^{j} \mapsto c=\bar{c}^{j}+\epsilon$, where

$$
\epsilon_{t}=\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t} .
$$

Leading-order change to objective is

$$
\begin{aligned}
E\left[\sum_{t=0}^{T} U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right) \epsilon_{t}\right] & =E\left[\sum_{t=0}^{T} \bar{\lambda}_{t}^{j}\left\{\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t}\right\}\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t}\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1}\right)\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t} E\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1} \mid \overline{\mathcal{F}}_{t-1}^{j}\right)\right]
\end{aligned}
$$

since $\bar{S}_{T}=0, \eta_{0}=0 ;$

Step 1: FOCs for Pl equilibrium.

Recall that $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$; and $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right) \quad$ Perturbation $\bar{\theta}^{j} \mapsto \bar{\theta}^{j}+\eta$ of the portfolio process changes $\bar{c}^{j} \mapsto c=\bar{c}^{j}+\epsilon$, where

$$
\epsilon_{t}=\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t} .
$$

Leading-order change to objective is

$$
\begin{aligned}
E\left[\sum_{t=0}^{T} U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right) \epsilon_{t}\right] & =E\left[\sum_{t=0}^{T} \bar{\lambda}_{t}^{j}\left\{\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t}\right\}\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t}\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1}\right)\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t} E\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1} \mid \overline{\mathcal{F}}_{t-1}^{j}\right)\right]
\end{aligned}
$$

since $\bar{S}_{T}=0, \eta_{0}=0 ;$ and perturbation η must be $\overline{\mathcal{F}}^{j}$-previsible.

Step 1: FOCs for PI equilibrium.

Recall that $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$; and $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right) \quad$ Perturbation $\bar{\theta}^{j} \mapsto \bar{\theta}^{j}+\eta$ of the portfolio process changes $\bar{c}^{j} \mapsto c=\bar{c}^{j}+\epsilon$, where

$$
\epsilon_{t}=\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t} .
$$

Leading-order change to objective is

$$
\begin{aligned}
E\left[\sum_{t=0}^{T} U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right) \epsilon_{t}\right] & =E\left[\sum_{t=0}^{T} \bar{\lambda}_{t}^{j}\left\{\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t}\right\}\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t}\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1}\right)\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t} E\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1} \mid \overline{\mathcal{F}}_{t-1}^{j}\right)\right]
\end{aligned}
$$

since $\bar{S}_{T}=0, \eta_{0}=0 ; \quad$ and perturbation η must be $\overline{\mathcal{F}}^{j}$-previsible. Hence

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \overline{\mathcal{F}}_{t}^{j}\right]=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \mathcal{F}_{t}^{j}\right]
$$

Step 1: FOCs for PI equilibrium.

Recall that $\bar{\lambda}_{t}^{j}=U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right)$; and $\overline{\mathcal{F}}_{t}^{j}=\sigma\left(X_{u}, \bar{S}_{u}, z_{u}^{j}: u \leq t\right) \quad$ Perturbation $\bar{\theta}^{j} \mapsto \bar{\theta}^{j}+\eta$ of the portfolio process changes $\bar{c}^{j} \mapsto c=\bar{c}^{j}+\epsilon$, where

$$
\epsilon_{t}=\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t} .
$$

Leading-order change to objective is

$$
\begin{aligned}
E\left[\sum_{t=0}^{T} U_{j}^{\prime}\left(t, \bar{c}_{t}^{j}\right) \epsilon_{t}\right] & =E\left[\sum_{t=0}^{T} \bar{\lambda}_{t}^{j}\left\{\eta_{t}\left(\bar{S}_{t}+\delta_{t}\right)-\eta_{t+1} \bar{S}_{t}\right\}\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t}\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1}\right)\right] \\
& =E\left[\sum_{t=1}^{T} \eta_{t} E\left(\bar{\lambda}_{t}^{j}\left(\bar{S}_{t}+\delta_{t}\right)-\bar{\lambda}_{t-1}^{j} \bar{S}_{t-1} \mid \overline{\mathcal{F}}_{t-1}^{j}\right)\right]
\end{aligned}
$$

since $\bar{S}_{T}=0, \eta_{0}=0 ; \quad$ and perturbation η must be $\overline{\mathcal{F}}^{j}$-previsible. Hence

$$
\bar{\lambda}_{t}^{j} \bar{S}_{t}=E\left[\begin{array}{c}
\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \\
\overline{\mathcal{F}}_{t}^{j}
\end{array}\right]=E\left[\bar{\lambda}_{t+1}^{j}\left(\bar{S}_{t+1}+\delta_{t+1}\right) \mid \mathcal{F}_{t}^{j}\right]
$$

where $\mathcal{F}_{t}^{j} \equiv \sigma\left(X_{u}, \bar{S}_{u}, \bar{\theta}_{u+1}^{j}, \bar{c}_{u}^{j}: u \leq t\right) \subseteq \sigma\left(X_{u}, \bar{S}_{u}, \bar{\theta}_{u+1}^{j}, \bar{c}_{u}^{j}, z_{u}^{j}: u \leq t\right)=\overline{\mathcal{F}}_{t}^{j}$.

Step 2: Transferring the law to the DB probability space.

Step 2: Transferring the law to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.

Step 2: Transferring the law to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C);

Step 2: Transferring the Iaw to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.

Step 2: Transferring the law to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of $(X, \Theta, C) ; \quad$ take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$,

Step 2: Transferring the law to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set ($\left.\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}\right)$

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

Step 2: Transferring the law to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set $\left(\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}\right)$

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

where $s=\left(s_{0}, \ldots, s_{T}\right) \in \mathbb{R}^{T+1}$.

Step 2: Transferring the law to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set $\left(\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}\right)$

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

where $s=\left(s_{0}, \ldots, s_{T}\right) \in \mathbb{R}^{T+1} . \quad$ Set $\tilde{\mathcal{G}}_{t}=\sigma\left(\tilde{X}_{u}, \tilde{\Theta}_{u+1}, \tilde{C}_{u}, \tilde{S}_{u}: u \leq t\right)$.

Step 2: Transferring the law to the DB probability

 space.- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set ($\left.\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}\right)$

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

where $s=\left(s_{0}, \ldots, s_{T}\right) \in \mathbb{R}^{T+1}$. Set $\tilde{\mathcal{G}}_{t}=\sigma\left(\tilde{X}_{u}, \tilde{\Theta}_{u+1}, \tilde{C}_{u}, \tilde{S}_{u}: u \leq t\right)$.
Define P^{j} on $\tilde{\Omega}$:

Step 2: Transferring the law to the DB probability

 space.- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set $\left(\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}\right)$

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

where $s=\left(s_{0}, \ldots, s_{T}\right) \in \mathbb{R}^{T+1}$. Set $\tilde{\mathcal{G}}_{t}=\sigma\left(\tilde{X}_{u}, \tilde{\Theta}_{u+1}, \tilde{C}_{u}, \tilde{S}_{u}: u \leq t\right)$.
Define P^{j} on $\tilde{\Omega}$:

- Under $P^{j},\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right) \sim P^{*}$;

Step 2: Transferring the law to the DB probability

 space.- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set $\left(\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}\right)$

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

where $s=\left(s_{0}, \ldots, s_{T}\right) \in \mathbb{R}^{T+1}$. Set $\tilde{\mathcal{G}}_{t}=\sigma\left(\tilde{X}_{u}, \tilde{\Theta}_{u+1}, \tilde{C}_{u}, \tilde{S}_{u}: u \leq t\right)$.
Define P^{j} on $\tilde{\Omega}$:

- Under $P^{j},\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right) \sim P^{*}$;
- Conditional on $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right)$, law of \tilde{S} is $\kappa^{j}\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j} ; \cdot\right)$;

Step 2: Transferring the Iaw to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set ($\left.\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}\right)$

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

where $s=\left(s_{0}, \ldots, s_{T}\right) \in \mathbb{R}^{T+1} . \quad$ Set $\tilde{\mathcal{G}}_{t}=\sigma\left(\tilde{X}_{u}, \tilde{\Theta}_{u+1}, \tilde{C}_{u}, \tilde{S}_{u}: u \leq t\right)$.
Define P^{j} on $\tilde{\Omega}$:

- Under $P^{j},\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right) \sim P^{*}$;
- Conditional on $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right)$, law of \tilde{S} is $\kappa^{j}\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j} ; \cdot\right)$;
- Conditional on $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$, the $\tilde{\theta}^{i}, \tilde{c}^{i}, i \neq j$ are chosen independently subject to the constraints $\sum \tilde{\theta}_{t}^{i}=1, \sum \tilde{c}_{t}^{i}=\delta_{t}$.

Step 2: Transferring the Iaw to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set ($\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}$)

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

where $s=\left(s_{0}, \ldots, s_{T}\right) \in \mathbb{R}^{T+1} . \quad$ Set $\tilde{\mathcal{G}}_{t}=\sigma\left(\tilde{X}_{u}, \tilde{\Theta}_{u+1}, \tilde{C}_{u}, \tilde{S}_{u}: u \leq t\right)$.
Define P^{j} on $\tilde{\Omega}$:

- Under $P^{j},\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right) \sim P^{*}$;
- Conditional on $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right)$, law of \tilde{S} is $\kappa^{j}\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j} ; \cdot\right)$;
- Conditional on $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$, the $\tilde{\theta}^{i}, \tilde{c}^{i}, i \neq j$ are chosen independently subject to the constraints $\sum \tilde{\theta}_{t}^{i}=1, \sum \tilde{c}_{t}^{i}=\delta_{t}$.

Then:

- P^{j}-distribution of $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$ is the P-distribution of $\left(X, \bar{\theta}^{j}, \bar{c}^{j}, \bar{S}\right)$;

Step 2: Transferring the Iaw to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set ($\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}$)

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

where $s=\left(s_{0}, \ldots, s_{T}\right) \in \mathbb{R}^{T+1} . \quad$ Set $\tilde{\mathcal{G}}_{t}=\sigma\left(\tilde{X}_{u}, \tilde{\Theta}_{u+1}, \tilde{C}_{u}, \tilde{S}_{u}: u \leq t\right)$.
Define P^{j} on $\tilde{\Omega}$:

- Under $P^{j},\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right) \sim P^{*}$;
- Conditional on $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right)$, law of \tilde{S} is $\kappa^{j}\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j} ; \cdot\right)$;
- Conditional on $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$, the $\tilde{\theta}^{i}, \tilde{c}^{i}, i \neq j$ are chosen independently subject to the constraints $\sum \tilde{\theta}_{t}^{i}=1, \sum \tilde{c}_{t}^{i}=\delta_{t}$.

Then:

- P^{j}-distribution of $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$ is the P-distribution of $\left(X, \bar{\theta}^{j}, \bar{c}^{j}, \bar{S}\right)$;
- $\tilde{\theta}^{j}$ is $\tilde{\mathcal{G}}$-previsible;

Step 2: Transferring the Iaw to the DB probability space.

- Let κ^{j} be a RCD for \bar{S} given $\left(X, \bar{\theta}^{j}, \bar{c}^{j}\right)$.
- Take $\Omega_{0}=$ path space of (X, Θ, C); take $P^{*}=\mathcal{L}(X, \bar{\Theta}, \bar{C})$.
- Expand to $\tilde{\Omega} \equiv \Omega_{0} \times \mathbb{R}^{T+1}$, and set $\left(\tilde{\omega}=(\omega, s), \omega \in \Omega_{0}\right)$

$$
\tilde{X}(\tilde{\omega})=X(\omega), \quad \tilde{\Theta}(\tilde{\omega})=\Theta(\omega), \quad \tilde{C}(\tilde{\omega})=C(\omega), \quad \tilde{S}_{t}(\tilde{\omega})=s_{t}
$$

where $s=\left(s_{0}, \ldots, s_{T}\right) \in \mathbb{R}^{T+1} . \quad$ Set $\tilde{\mathcal{G}}_{t}=\sigma\left(\tilde{X}_{u}, \tilde{\Theta}_{u+1}, \tilde{C}_{u}, \tilde{S}_{u}: u \leq t\right)$.
Define P^{j} on $\tilde{\Omega}$:

- Under $P^{j},\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right) \sim P^{*}$;
- Conditional on $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}\right)$, law of \tilde{S} is $\kappa^{j}\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j} ; \cdot\right)$;
- Conditional on $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$, the $\tilde{\theta}^{i}, \tilde{c}^{i}, i \neq j$ are chosen independently subject to the constraints $\sum \tilde{\theta}_{t}^{i}=1, \sum \tilde{c}_{t}^{i}=\delta_{t}$.

Then:

- P^{j}-distribution of $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$ is the P-distribution of $\left(X, \bar{\theta}^{j}, \bar{c}^{j}, \bar{S}\right)$;
- $\tilde{\theta}^{j}$ is $\tilde{\mathcal{G}}$-previsible;
- $\tilde{\theta}_{t}^{j}\left(\tilde{S}_{t}+\tilde{\delta}_{t}\right)=\tilde{\theta}_{t+1}^{j} \tilde{S}_{t}+\tilde{c}_{t}^{j} \quad$ almost-surely P^{j}.

Step 3: Extending the conditional expectation.

Step 3: Extending the conditional expectation.
Now define $\tilde{\mathcal{F}}_{t}^{j}=\sigma\left(\tilde{X}_{u}, \tilde{S}_{u}, \tilde{\theta}_{u+1}^{j}, \tilde{c}_{u}^{j}: u \leq t\right)$, and $\tilde{\lambda}_{t}^{j} \equiv U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$.

Step 3: Extending the conditional expectation.
Now define $\tilde{\mathcal{F}}_{t}^{j}=\sigma\left(\tilde{X}_{u}, \tilde{S}_{u}, \tilde{\theta}_{u+1}^{j}, \tilde{c}_{u}^{j}: u \leq t\right)$, and $\tilde{\lambda}_{t}^{j} \equiv U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$. Then we must have

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\tilde{\delta}_{t+1}\right) \mid \tilde{\mathcal{F}}_{t}^{j}\right]
$$

Step 3: Extending the conditional expectation.

Now define $\tilde{\mathcal{F}}_{t}^{j}=\sigma\left(\tilde{X}_{u}, \tilde{S}_{u}, \tilde{\theta}_{u+1}^{j}, \tilde{c}_{u}^{j}: u \leq t\right)$, and $\tilde{\lambda}_{t}^{j} \equiv U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$. Then we must have

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\tilde{\delta}_{t+1}\right) \mid \tilde{\mathcal{F}}_{t}^{j}\right]
$$

because the conditional expedition is determined by the joint law of the conditional and conditioning variables,

Step 3: Extending the conditional expectation.

Now define $\tilde{\mathcal{F}}_{t}^{j}=\sigma\left(\tilde{X}_{u}, \tilde{S}_{u}, \tilde{\theta}_{u+1}^{j}, \tilde{c}_{u}^{j}: u \leq t\right)$, and $\tilde{\lambda}_{t}^{j} \equiv U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$. Then we must have

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\tilde{\delta}_{t+1}\right) \mid \tilde{\mathcal{F}}_{t}^{j}\right]
$$

because the conditional expedition is determined by the joint law of the conditional and conditioning variables, and P^{j}-distribution of $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$ is same as the P-distribution of $\left(X, \bar{\theta}^{j}, \bar{c}^{j}, \bar{S}\right)$!

Step 3: Extending the conditional expectation.

Now define $\tilde{\mathcal{F}}_{t}^{j}=\sigma\left(\tilde{X}_{u}, \tilde{S}_{u}, \tilde{\theta}_{u+1}^{j}, \tilde{c}_{u}^{j}: u \leq t\right)$, and $\tilde{\lambda}_{t}^{j} \equiv U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$. Then we must have

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\tilde{\delta}_{t+1}\right) \mid \tilde{\mathcal{F}}_{t}^{j}\right]
$$

because the conditional expedition is determined by the joint law of the conditional and conditioning variables, and P^{j}-distribution of $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$ is same as the P-distribution of $\left(X, \bar{\theta}^{j}, \bar{c}^{j}, \bar{S}\right)$!

Now claim

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\tilde{\delta}_{t+1}\right) \mid \tilde{\mathcal{G}}_{t}\right]
$$

Step 3: Extending the conditional expectation.

Now define $\tilde{\mathcal{F}}_{t}^{j}=\sigma\left(\tilde{X}_{u}, \tilde{S}_{u}, \tilde{\theta}_{u+1}^{j}, \tilde{c}_{u}^{j}: u \leq t\right)$, and $\tilde{\lambda}_{t}^{j} \equiv U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$. Then we must have

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\tilde{\delta}_{t+1}\right) \mid \tilde{\mathcal{F}}_{t}^{j}\right]
$$

because the conditional expedition is determined by the joint law of the conditional and conditioning variables, and P^{j}-distribution of $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$ is same as the P-distribution of $\left(X, \bar{\theta}^{j}, \bar{c}^{j}, \bar{S}\right)$!

Now claim

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\tilde{\delta}_{t+1}\right) \mid \tilde{\mathcal{G}}_{t}\right]
$$

because $\tilde{\mathcal{G}}_{t}=\tilde{\mathcal{F}}_{t}^{j} \vee \mathcal{A}_{t}^{j}$, where $\mathcal{A}_{t}^{j}=\sigma\left(\tilde{c}_{u}^{i}, \tilde{\theta}_{u+1}^{i}: u \leq t, i \neq j\right)$ is independent of $\tilde{\mathcal{F}}_{t}^{j}$.

Step 3: Extending the conditional expectation.

Now define $\tilde{\mathcal{F}}_{t}^{j}=\sigma\left(\tilde{X}_{u}, \tilde{S}_{u}, \tilde{\theta}_{u+1}^{j}, \tilde{c}_{u}^{j}: u \leq t\right)$, and $\tilde{\lambda}_{t}^{j} \equiv U_{j}^{\prime}\left(t, \tilde{c}_{t}^{j}\right)$. Then we must have

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\tilde{\delta}_{t+1}\right) \mid \tilde{\mathcal{F}}_{t}^{j}\right]
$$

because the conditional expedition is determined by the joint law of the conditional and conditioning variables, and P^{j}-distribution of $\left(\tilde{X}, \tilde{\theta}^{j}, \tilde{c}^{j}, \tilde{S}\right)$ is same as the P-distribution of $\left(X, \bar{\theta}^{j}, \bar{c}^{j}, \bar{S}\right)$!

Now claim

$$
\tilde{\lambda}_{t}^{j} \tilde{S}_{t}=E^{j}\left[\tilde{\lambda}_{t+1}^{j}\left(\tilde{S}_{t+1}+\tilde{\delta}_{t+1}\right) \mid \tilde{\mathcal{G}}_{t}\right]
$$

because $\tilde{\mathcal{G}}_{t}=\tilde{\mathcal{F}}_{t}^{j} \vee \mathcal{A}_{t}^{j}$, where $\mathcal{A}_{t}^{j}=\sigma\left(\tilde{c}_{u}^{i}, \tilde{\theta}_{u+1}^{i}: u \leq t, i \neq j\right)$ is independent of $\tilde{\mathcal{F}}_{t}^{j}$.

Uses:
Proposition. If X is an integrable random variable, if \mathcal{G} and \mathcal{A} are two sub- σ-fields of \mathcal{F} such that \mathcal{A} is independent of X and \mathcal{G}, then

$$
E[X \mid \mathcal{G}]=E[X \mid \mathcal{G} \vee \mathcal{A}] \quad \text { a.s.. }
$$

Step 4: verification of optimality.

Step 4: verification of optimality.
Suppose $\left(\theta_{t}, c_{t}\right)$ is any investment-consumption pair for agent j :

Step 4: verification of optimality.

Suppose $\left(\theta_{t}, c_{t}\right)$ is any investment-consumption pair for agent j : so $\theta_{0}=y^{j}, \theta$ is $\tilde{\mathcal{G}}$-previsible, c is $\tilde{\mathcal{G}}$-adapted, $\theta_{t}\left(\tilde{S}_{t}+\delta_{t}\right)=\theta_{t+1} \tilde{S}_{t}+c_{t}$ for all t.

Step 4: verification of optimality.

Suppose $\left(\theta_{t}, c_{t}\right)$ is any investment-consumption pair for agent j : so $\theta_{0}=y^{j}, \theta$ is $\tilde{\mathcal{G}}$-previsible, c is $\tilde{\mathcal{G}}$-adapted, $\theta_{t}\left(\tilde{S}_{t}+\delta_{t}\right)=\theta_{t+1} \tilde{S}_{t}+c_{t}$ for all t.

Then

$$
\begin{aligned}
E^{j} \sum_{t=0}^{T} U_{j}\left(t, c_{t}\right) & \leq E^{j} \sum_{t=0}^{T}\left[U_{j}\left(t, \tilde{c}_{t}^{j}\right)+\tilde{\lambda}_{t}^{j}\left(c_{t}-\tilde{c}_{t}^{j}\right)\right] \\
& =E^{j} \sum_{t=0}^{T}\left[U_{j}\left(t, \tilde{c}_{t}^{j}\right)+\tilde{\lambda}_{t}^{j}\left\{\left(\theta_{t}-\tilde{\theta}_{t}^{j}\right)\left(\tilde{S}_{t}+\tilde{\delta}_{t}\right)-\left(\theta_{t+1}-\tilde{\theta}_{t+1}^{j}\right) \tilde{S}_{t}\right\}\right] \\
& =E^{j} \sum_{t=0}^{T} U_{j}\left(t, \tilde{c}_{t}^{j}\right)+E^{j} \sum_{t=1}^{T}\left(\theta_{t}-\tilde{\theta}_{t}^{j}\right)\left\{\tilde{\lambda}_{t}^{j}\left(\tilde{S}_{t}+\tilde{\delta}_{t}\right)-\tilde{\lambda}_{t-1}^{j} \tilde{S}_{t-1}\right\} \\
& =E^{j} \sum_{t=0}^{T} U_{j}\left(t, \tilde{c}_{t}^{j}\right)
\end{aligned}
$$

Conclusions.

Conclusions.

- We can work with simple DB equilibria rather than difficult PI equilibria and lose nothing;

Conclusions.

- We can work with simple DB equilibria rather than difficult PI equilibria and lose nothing:
- Can we extend this argument to continuous time?

Conclusions.

- We can work with simple DB equilibria rather than difficult PI equilibria and lose nothing;
- Can we extend this argument to continuous time? Infinite horizon?

Conclusions.

- We can work with simple DB equilibria rather than difficult PI equilibria and lose nothing;
- Can we extend this argument to continuous time? Infinite horizon?
- Perhaps the reverse implication holds true?

Conclusions.

- We can work with simple DB equilibria rather than difficult PI equilibria and lose nothing;
- Can we extend this argument to continuous time? Infinite horizon?
- Perhaps the reverse implication holds true?

