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• Different forms of diversity

• Private information (PI) equilibria

• Diverse beliefs (DB) equilibria

• Main result: when is a PI equilibrium a DB equilibrium?

• Conclusions
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“Everybody has the same information - everybody has Bloomberg - it’s what they

do with that information which is different” (Bill Janeway)

Same filtrations, but different probability measures. Simple, powerful and

general mathematical tools exist to handle such situations.

• Diverse beliefs include diverse information!
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Uj Inada, C2, strictly concave.

• Gt ≡ σ(Xs, Zs : s ≤ t) is σ-field of all information at time t
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Main result.

THEOREM. Suppose that (S̄, Θ̄, C̄) is a PI equilibrium with initial allocation y ∈ R
J for

the discrete-time finite-horizon Lucas tree model introduced above. Then it is

possible to construct a filtered measurable space (Ω̃, (G̃t)t∈T), carrying

G̃-adapted processes X̃, S̃, Θ̃, C̃ of dimensions d, 1, J and J respectively, and

probability measures P j , j = 1, . . . , J , on (Ω̃, G̃T ) such that (S̃t, Θ̃t, C̃t)t∈T is a DB

equilibrium with initial allocation on y ∈ R
J and beliefs (P j)J

j=1
with the property

that

L(X, S̄, Θ̄, C̄) = L(X̃, S̃, Θ̃, C̃).
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THEOREM. Suppose that (S̄, Θ̄, C̄) is a PI equilibrium with initial allocation y ∈ R
J for

the discrete-time finite-horizon Lucas tree model introduced above. Then it is

possible to construct a filtered measurable space (Ω̃, (G̃t)t∈T), carrying

G̃-adapted processes X̃, S̃, Θ̃, C̃ of dimensions d, 1, J and J respectively, and

probability measures P j , j = 1, . . . , J , on (Ω̃, G̃T ) such that (S̃t, Θ̃t, C̃t)t∈T is a DB

equilibrium with initial allocation on y ∈ R
J and beliefs (P j)J

j=1
with the property

that

L(X, S̄, Θ̄, C̄) = L(X̃, S̃, Θ̃, C̃).

• (Ω̃, (G̃t)t∈T) does not in general have any private signals;

• A PI equilibrium is observationally indistinguishable from a DB equilibrium;

• .. so we gain no modelling advantage by working with (complicated) PI

models .... !
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• Take a PI equilibrium, and let everyone see all private signals ...

• .. but agent j thinks that every other signal is non-informative.

????

• ... but even if I think your signals are uninformative, I cannot ignore them,

because you rely on them in your choices; and that makes them informative.
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˛
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How do we go from the first to the second??
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j
t S̄t = E
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(S̄t+1 + δt+1)
˛

˛

˛
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t
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where Fj
t ⊂ F̄j

t depends only on public information relating to agent j;
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• Change (PI-FOC) to
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t S̄t = E

h
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j
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˛

˛

˛
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t

i

.

where Fj
t ⊂ F̄j

t depends only on public information relating to agent j;

• Enlarge Fj
t to include all public information, by specifying (independent)

distribution for other agent’s variables.
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t = U ′

j(t, c̄
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t ); and F̄j

t = σ(Xu, S̄u, z
j
u : u ≤ t) Perturbation

θ̄j 7→ θ̄j + η of the portfolio process changes c̄j 7→ c = c̄j + ǫ, where

ǫt = ηt(S̄t + δt) − ηt+1S̄t.
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j(t, c̄
j
t )ǫt

i

= E
h

T
X

t=0

λ̄
j
t{ηt(S̄t + δt) − ηt+1S̄t}
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θ̃i
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P
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t = δt.
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c̃i
t = δt.

Then:
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j
t (S̃t + δ̃t) = θ̃

j
t+1

S̃t + c̃
j
t almost-surely P j .
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u+1

, c̃
j
u : u ≤ t), and λ̃

j
t ≡ U ′

j(t, c̃
j
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t = σ(c̃i

u, θ̃i
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same as the P -distribution of (X, θ̄j , c̄j , S̄)!

Now claim

λ̃
j
t S̃t = Ej

h

λ̃
j
t+1

(S̃t+1 + δ̃t+1)
˛

˛

˛

G̃t

i

because G̃t = F̃j
t ∨ Aj

t , where Aj
t = σ(c̃i

u, θ̃i
u+1

: u ≤ t, i 6= j) is independent of

F̃j
t .

Uses:

Proposition. If X is an integrable random variable, if G and A are two sub-σ-fields

of F such that A is independent of X and G, then

E[X|G] = E[X|G ∨ A] a.s..
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Step 4: verification of optimality.

Suppose (θt, ct) is any investment-consumption pair for agent j: so θ0 = yj , θ is

G̃-previsible, c is G̃-adapted, θt(S̃t + δt) = θt+1S̃t + ct for all t.

Then

Ej
T

X

t=0

Uj(t, ct) ≤ Ej
T

X

t=0

h

Uj(t, c̃
j
t ) + λ̃

j
t (ct − c̃

j
t )

i

= Ej
T

X

t=0

h

Uj(t, c̃
j
t ) + λ̃

j
t

n

(θt − θ̃
j
t )(S̃t + δ̃t) − (θt+1 − θ̃

j
t+1

)S̃t

oi

= Ej
T

X

t=0

Uj(t, c̃
j
t ) + Ej

T
X

t=1

(θt − θ̃
j
t )

n

λ̃
j
t (S̃t + δ̃t) − λ̃

j
t−1

S̃t−1

o

= Ej
T

X

t=0

Uj(t, c̃
j
t )
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