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Decomposing the branching Brownian path
by

Kalvis M. Jansons & L.C.G. Rogers

1. Introduction. We shall consider a real-valued branching Brownian motion with
drift ¢ € R, which is killed at rate p and gives birth to single offspring at rate A < p.
This ensures that the process dies out in finite time almost surely, so the path of the
branching Brownian motion is bounded below. In this paper, we state and prove a
decomposition of the branching Brownian motion at its minimum, analogous to the
decomposition at its minimum of an upward-drifting Brownian motion (Williams [10]),
or more closely analogous to the decomposition at its minimum of an exponentially-
killed piece of Lévy process (Greenwood and Pitman [4]). Indeed, in the limiting
situation where the birth rate A drops to zero, we recover the well-known decomposition

at its minimum of an exponentially-killed piece of Brownian path.

If one started the branching Brownian motion (BBM) at 0, one could condition
it never to enter (—oo, —e], where € > 0 is small (so one is conditioning every particle of
the process to remain in (—e, 00) until death); in this way one would obtain a branching
diffusion process in (—e, 00), which converges to a non-degenerate limit process as € | 0.
If P, denotes the law of this limit branching diffusion, then P, s the law of the post-
manimum piece of the BBM. It is a homogeneous Markov branching diffusion, with
position-dependent splitting and birth rates; see Jansons & Rogers [5] for the exact

form of the process, and a number of calculations.

The description of the pre-minimum piece of the BBM is not so obvious. For one
thing, the parametrisation of the pre-minimum piece in terms of time is inappropriate
and clumsy; one should be parametrising in terms of the ‘time through the tree’. To
understand this, start at the minimum, and trace back towards the origin of time; after
a while, you come to a place where the particle splits, and you could follow either of
the branches, one now going forward in real time, the other going backward in real
time. Thus in terms of ‘time through the tree’; going back from the minimum we see a

branching diffusion process not unlike the post-minimum part of the BBM. An obvious
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and appealing conjecture is that this process has the same law as the post-minimum
piece, and is independent (given the height of the minimum). This conjecture turns
out to be false, but something very similar is true. If V is the number of ends of
the branching diffusion, and if z1,...,zy are the heights above the minimum of the

endpoints of the branching diffusion shape, then the law of the pre-minimum piece of

the BBM P* is related to P, by

(1.4) dP* = 2% dP.,
(1.i1) 7 = Z;/:l exp(—2cz;).

(Informally, the reason for the appearance of the sum of V' terms is that each of the V
ends could have been the root of the tree.) In contrast to the post-minimum process,

under P* the branching shape is not a Markov branching diffusion.

Thus the path decomposition result says that the pre- and post-minimum pieces of
the BBM are independent (given the height of the minimum), with laws P* and P,

respectively. An accurate statement and proof of this result occupy §2.

Thus the pre- and post-minimum parts of the tree are similar, but differ by
a reweighting of the measure; the pre-minimum piece is ‘bigger’. Indeed, if Ny is the
number of internal vertices in the pre-minimum piece, and N is the number in the post-
minimum piece, we compute EN; and EN; for the case ¢ = 0 and show that as p | A,
EN; — oo, but EN; — 3. One can understand qualitatively why the pre-minimum
piece should be bigger, because in the pre-minimum piece a particle J may split off
from the parent particle and then go diffusing and splitting while the parent particle
heads down toward the minimum; if the minimum is a reasonable distance below the
place where the particle .J was born, the requirement that .J and its descendants do not
go below the minimum is not unduly restrictive, so the pre-minimum piece can have

quite big branches which are unlikely for the post-minimum piece.

There are at least two areas where the branching Brownian motion and its de-
composition are of interest. The first is in the modelling of branching polymers in a
fluid; see De’Bell, Lookman & Zhao [2] for analysis of aspects of a discrete model of
branching polymers, Silver [8], Parsons & Subjeck [6], and Viitala & Jarnefelt [9] for
examples of branching polymers in biology, and Jansons & Rogers [5] for an exposi-

tion of probabilistic methods in polymer physics, including applications to conditioned
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branching Brownian motion. A branching polymer does not have any distinguished
root, or direction of time running through it, so to model these things, we have to
quotient out this part of the BBM description. In §3 we do this, showing that it is
possible to put a measure on the space of branching polymer shapes with the property
(stated here for ¢ = 0) that if one takes a random branching polymer shape, picks an
end of it at random and uses this as the root of a rooted branching-diffusing process,
then the process one obtains is just BBM. We then give a description of a model of a
branching polymer attached to a wall by one of its ends. It is worth pointing out that
the law of this process is neither P, or P*, but is in fact a slightly different reweighting
of Ps. The framework we have set up allows us to compute many of the things we
might want to know about because of the connection with BBM; as an example, we
compute the expected number of ends of a branching polymer attached by one of its
ends to a wall.

The second area where branching Brownian motion is extensively studied is
measure-valued diffusions and superprocesses; as a first entrance to a vast and growing
literature, we refer the reader to Dawson, Iscoe & Perkins [1], Dynkin [3], Perkins [7].
The decomposition at the minimum of a BBM splits the process into two; how is this

reflected in the measure-valued limiting process?

Finally, we remark that the methods and results of this paper could be gener-

alised to any subcritical branching Lévy process.

§2. Decomposing branching Brownian motion. Ignoring the motion of
the particles, we see a binary branching tree with a distinguished root, internal vertices
(where a particle gives birth to an offspring) and external vertices (where a particle
dies). We consider the root to be an external vertex, so that there are always two more

external vertices than internal.

Now consider what happens on one of the edges of the tree; there is a drifting

Brownian motion X running along until an independent exp(A+ ) time T, say. Define

1
2

p=(c*+ 2N+ 2u)7,

a=p—c, [B=p+te.



Then it is well known (see, for example, Greenwood & Pitman [4]) that the path

(Xt)o<t<T can be decomposed at its minimum in the following way.

LEMMA 1. On some probability space, take independent random elements

(1) € with exp(B) distribution;
(i) & with exp(a) distribution;
(ii1) (Y3)¢>0 and (Y{)i>o0 both Brownian motions with drift —p.

If now 7 =inf{u:Y, = —¢&}, 7' =inf{u: Y] = =¢'}, and we define

Y, 0 <t <
Zt:{ i =r=T r<t<rt+7

Y1f—|—1'/—t —|_£/ - 57

then (Zi)o<i<r+r has the same distribution as (X¢)o<i<T.
The feature of Lemma 1 which we shall exploit is this; given the value Xg,J =
inf{X, : 0 < s < T}, X7, we could reconstruct (the distribution of) (X;)o<i<7 by
running a Brownian motion with drift —p until it hit .J, and then by running an

independent Brownian motion with drift —p backward down from X7 until it hit .J.

This recipe gwes a reqular conditional distribution for (X¢)o<i<T given (Xo,J, X7).

The probabilistic structure of the branching Brownian motion can thus be de-

scribed informally by the following three steps:

(2.1) choose the ‘family tree’, assigning an independent geometric (¢) number of off-

spring to each individual;

(2.ii) decide the heights of each of the vertices of the tree, and the minimum height
of each edge, recursively by choosing the minimum Y on an edge which starts

at height z¢ according to the density

Bexp(=B(zo —y)) I(zo > y)dy

and then, given the value of the minimum on the edge, choosing the final value

X, according to the density

aexp(—a(ry —y)) [(r1>y)d;z;1;
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(2.iii) knowing the heights of each vertex, and the smallest value on each edge, use the
regular conditional probability for the path given the initial, final and minimal

values to fill in the behaviour of the particle on each edge of the tree.

We can make this precise by defining the set £ of edges with heights to be

&= {($07y7$1); To > Y,T1 > y}7

then taking the set Ji(z) to be

Ji(z) ={(z0,y,21) €E; 0 =z},

and then defining for n > 1
n—1
Tu(z) = [J{(r &) € = (a,y,2") € €,7 € Ti(a'), 7' € Taj(a')}.
j=1

Finally, let the set J(z) of rooted family trees with heights (RFTH) started at x be
defined by

We shall shortly define our probability measure on J(z), but first we stress that these
are family trees; when a particle gives birth, the new one is considered to be distinct
from the old. This is to be contrasted with the situation where particles split into two
indistinguishable particles; while the family tree can be converted into one of the latter
by ignoring the distinction between new and old particles, it is essential to some of
the counting arguments that we retain the distinction, at least until the analysis has
proceeded far enough to allow us to drop the distinction without harm. Just to be quite
explicit, if (7,€,7") € Tn(z), with £ = (z,y,2") € Ji(z), and 7 € J;(2'), 7’ € Ta—j(2'),
then we consider 7 to be the future of the parent particle, 7/ to be the future of the

offspring particle.
Now we specify the distribution to be put on J(zg). If we let
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¢—($7 y) = /Be_ﬁ(r_y)I(f>y)

o(

by, x) = ae I,

and if T' denotes the random RFTH, then

Py (T = (20,Y,X1) € Ti(20), Y € 4, Xi € B)
o[ b(en)on )y doy
AxXB

and recursively, for 7 € J;, 7' € Tn—j,

Ppo(T = (1,6,7"), €= (20,Y,X1), TeT, 7" €l', Y € A, X1 € B)

= P/ d—(20,y)P+(y,x1)dy doy Py (r € T)Py, (7' € T).
AxXB

Informally, but more intuitively, if the edges of the RFTH are indexed by S, edge e € S
starting at vertex i(e) and ending at vertex j(e), and if the height at vertex 7 is &;,

minimum height on edge e is 7., then the probability density of the tree is

(H & (&iceys Ne) P+ (Mes gj(e))dgj(e)dne>pqu_l

e€S
where m is the number of internal vertices in the tree (i.e. with valence 3), ¢ is the
number of external vertices (i.e. with valence 1), to include the root. Now the root
plays a distinguished role which is a hindrance in our study of branching polymers,
and even in the decomposition of branching Brownian motion. It is needed only to
provide some reference altitude on the path, and for what follows it is better to use the
manimum of the path to provide this reference height, which we shall shift to 0. Thus

if the minimum of a RFTH occurs on edge e,, we define

T =& — Ney s Ye = Te — Ne.

and the probability density of the tree can be expressed as

M-I ¢ (ige,)s 0)dai(e, )P+ (0, 2 j(ery)dT ey P™q" ",

where



M- = ] ¢ (wicey ¥e) s (Yo, Tje) A iger dye
e€ES_

fI—|— = H QD Ti(e)s Ye ¢+(yea ](e))dyedl'](e),
€€S+

and where S_ is the set of edges before e,, S4 the set of edges after e,.

Let us notice that

S (@i, y) bt (y,w;) = afe PETIRE =D LEEN L)

so that the density can be written as

3)  JIr@icerveice)). eXP{ DT Y crﬂi}e—%xopmqf_l,

e j external ¢ internal

where 0 is the initial node, and

r(z,y, .TL‘/) = 2(A + p)exp(—p(z + x = 2y))I(I’I/>y).

The point of this is that the distinguished role of the root has largely disappeared from

the expression for the density; indeed, the root is only distinguished by the factor e ~2¢%o
(which is 1 in the special case ¢ = 0, for example).

We need next to consider branching Brownian motions with drift ¢, started at

some point z > 0 and conditioned never to go into (—oo,0]. If we set

p(x) = P, (no particle ever enters (—oo,0])

then by considering what happens at the first birth or death we see that

(4) ¢ R)\—Fu(/\?vbz —I_:LL)v

where (R%)as0 is the resolvent of the drifting Brownian motion killed at 0, from which

easily ¢ satisfies

(5) el + (1= g)(p— M) =0, $(0)=0, 0<¢ <L
The solution can be found explicitly in the case ¢ = 0; see the Appendix.
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Now suppose we take € > 0 as the starting point of a RFTH and insist that
no part of the RFTH goes below 0. The probability density of a tree with m internal

vertices and ¢ external is then

(H@g—(&(e),77e)<5+(ne,§j(e))d77e> P,

where

b4 (7,y) = da(2,y) (250,450

If edge 0 from vertex 0 to vertex 1 is the initial edge, recalling that & = €, if we

integrate out rng in this density we get

</0 Qg—(ea 77)9~5+(777 gl)dn> dfl (H &—(Si(e)v Ue)€g+(77e7 Sj(e))dfj(e)a d776>pm q£_1

e#0

~Bed 4 (0,6)de, (H G- (Eger, 1) (e §j<e)>d£j<e)dne>pm .
e#0

Thus if we were to take the RFTH started at e, condition it not to go below 0, and
then let € | 0, we shall get a conditioned rooted family tree with heights (CRFTH),

which has density

$4+(0,&1)dé (H G- (Eieys e ) D4 (e, §j(e))d§j(e)dne>pm g
e#0

¢$'(0)

The CRFTH is a slightly different object from the ones we have been studying
before; the first edge has just an initial height, 0, and a final height specified, whereas
all others have initial, final and minimum heights specified. Let us call such a tree a
positive rooted family tree with heights (PRFTH); every CRFTH is a PRFTH, and a
CRFTH is a PRFTH chosen at random according to the density (6).

The CRFTH is, not surprisingly, the piece of the branching Brownian motion after the
minimum. To explain the piece of the branching Brownian motion before the minimum,
it is helpful to introduce the notion of a branching tree, as distinct from a family tree. A

(rooted) branching tree with heights (RBTH) which has m internal vertices is formally
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the set, containing 2™ elements, of those RFTHs which are the same if the distinction
between new and old particles is ignored; it is an equivalence class under the equivalence

relation of ignoring new/old distinctions.

Thus, for example, the probability density for a CRBTH is

340, 61)dEx (H B (Esterrme) b (e §j<e>)d§j<e>dne) (2p)™ g
e#0

Before we state the main result, we set up some notation. When we take a
RBTH, shift the minimum to level zero, and split at the minimum, we get a post-
minimum PRBTH 7", and before the minimum we see the RBTH T started at the
original root. If we took the pre-minimum RBTH 7" and took the minimum as the new
root, moving through the tree from the minimum, we should see a PRBTH T, starting

at vertex 0, the minimum.

THEOREM. The decomposition of the branching Brownian motion s as follows:

(8.1) the trees T and T" are independent;
(8.i1) the tree T" is a CRBTH,

(8.ii) the law of T is the same as the of T" but weighted by the density

¢/(0)2 —2cxj
(9) oD DR

7 external

Proof. Tt is clear that we only need to explain the decomposition at the minimum of
the RBTH associated with the drifting branching Brownian motion.

To prove the theorem, let us take PRBTH’s 7"/ and 7 and compute the probabil-
ity (density) of T being 7", and T being 7. Suppose that T" (respectively, T) has m"

internal vertices, and £" external vertices, 0 included (respectively, m, ). The PRBTH
7" can arise as a PRFTH in exactly om” ways, corresponding to the 2m" choices of
new/old distinctions possible at the internal vertices. On the other hand, the PRBTH

7 can arise in exactly (E_ 1)2™ ways, corresponding to the different choices of new/old

at the internal vertices, and to the { — 1 possible external vertices which could have
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been the root of the original branching Brownian motion. Not all of these ([7 —1)2m

possibilities will be equally likely (except in the case ¢ = 0).

We thus have

(10) P(T:T,T: 7~') = 2ﬁz—|—m”< Z G_Zer>ﬂ.HH.q_l
Jj external
vertex of 7

where
I = 6.(0. )z
TT 6= (icemys er ) (e o) Yy dr sy | 9"
e #£0

(11) —pa?
= e ey | [ rlwicon yer @ jgen)dyen da jieny

e’ 20
1 1"
=1
exp E cxjm — E crin pp g
7'" external ¢! internal

and

I = ¢4(0, & )d#, <H b (zie), ye )b+ (Yes xj(é))dyédxj(é)>pmq£_l

§40
is the analogous expression for the PRBTH 7. Do notice the extra factor of ¢! in
(10); it is here because in the original RBTH there are { + 0" — 3 external nodes apart
from the root, so there are £ + " — 3 places where a particle dies. We re-express (10)

as

771)/(0) —2cx; \TT oM™ /8 "eam'
(12) <ﬂq( Y )2 >(WO)H2 ),

Jj external
vertex of 7

the point being that the second factor is the probability (density) of the CRBTH.

This completes the proof of the theorem. a

One obvious corollary of the Theorem is that the expectation of the density (9) with
respect to the CRBTH law must be 1. We provide an independent verification of this
for the case ¢ = 0 in the Appendix.
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It turns out to be quite easy to compute now the distributions of the number of
internal vertices both before and after the minimum in the case ¢ = 0. Indeed, if Ny
is the number of internal vertices in the pre-minimum piece, and N3 is the number in
the post-minimum piece, and ¢;(s) = Es™i, i = 1,2, then if N = Ny 4+ N, is the total

number of internal vertices, we have

o=

d1(8)p2(s) = ¢(s) = EsN = (23p)_1[1 — (1 —4spq)?],

since ¢ satisfies

b= q+ spd°.

But we know from the theorem that

E(sM) = E[(1+ N2)s™]/E(1 + Ny),

because the number of external vertices (excluding the root) of the post-minimum tree
is just 1 + N5, and to get the law of the pre-minimum piece, we simply weight the

post-minimum part by the number of external vertices.

Thus

#1(s) = (BE(1 + NQ))_I%[quQ(S)].

Writing u(s) = s¢a(s), b = E(1 + N3), we deduce that

Bsp(s) = - [u(s)?]

S

implying that

y 3/2
u(3)2 — A+ g{s+ %}

where A is a constant of integration, fixed by the obvious requirements u(l) = 1,

©(0) = 0. These together determine that

(13.i) b=E(1+N,) =



(13.ii) A = -1/(2p(3¢ — p))-

[The first of these confirms the argument leading to (A3).] To summarise, then,

, 1 3 1 —4spg)? — 1117
(14) bo(s) = _[ q {3+ ( Pq) H '
s (3¢ —p)p 6pg
It is easy to compute
A
EN=-2 _ :
qa—p p—A

either from ¢, or directly. Using (13.1), we conclude that

2pq

(15) B = (g —p)(3qg—p)

, EN, =

3¢—p
which highlights the asymmetry between the pre- and post-minimum parts of the tree;

as q | ¥, one sees that

ENy; — 5, EN; — 0.

§3. Tree shapes with heights. The RFTH was a useful notion for setting up,
but gave way soon enough to RBTH, where the new/old distinction of particles was
forgotten. We shall now coarsen the specification further, to give what really matters
for polymer modelling, namely the tree shape with heights (TSH). We identify two
RBTH if

(1) one is obtained from the other by shifting all the heights by the same amount;
or

(ii) one is obtained from the other by nominating a different external vertex as root.

Without loss of generality, the minimum of a TSH will be at zero, and the TSH is
then specified by its ‘shape’ and the heights of each vertex, together with the minimum
height on each edge. Thus the probability (density) of a TSH is
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(16)

( > 6_2“">{Hr(f‘fde)ayea%‘(e))}eXP{ R cmi}(zp)mqf—l

Jj external e 7 external ¢ internal
vertices

with respect to [[, dz; He;ée* dy., where the meanings of the symbols are as before.
This specifies the law in use when we take a ‘random branching polymer’. It is the
natural choice to take when one considers the following fact, now obvious by comparing
(3) and (16); if one chooses a random branching polymer, then picks at random one of

its external vertices according to the distribution

—1
p] = e—2crj{ E : e—ZCl’i}

t external
and uses this external vertex as the root of the tree, then the random RBTH obtained

18 just branching Brownian motion with drift.

To illustrate how various ‘conditional” polymer shapes can be analysed, we shall
consider the law of a TSH conditioned to have the minimum at one of the external
vertices. We can think of this as the law of a branching polymer attached to a wall by
one end. It is the limit as ¢ | 0 of the law of a TSH conditioned to have one end in

[0,e). Comparing (11) and (15), it is not too hard to see that if

Z

—2cx;
>

7 external
(all external vertices are counted, including the one where the minimum is achieved)
then the law P, of the TSH conditioned to have its minimum at one of the external

vertices is given by

dp,  Z
dP, ~ E.(Z)

In the special case ¢ = 0, Z is just the total number of external vertices, which is 2

greater than the number of internal vertices. But we computed (18) that

BN, — P EN, — EN3(1+4 N3) _ 2pq
3¢—p’ E(1+Ny)  (¢—p)3g—p)
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where N, is the number of internal vertices in the CRBTH, N, = Z — 2. From this,
then, we can easily compute the expected number of external vertices on the branching

polymer with one external vertex attached to a wall; it is

(19) E.7 = 36q3_45pq2+16p2q_p3.
(6¢ —p)(3¢ —p)(q —p)
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Appendix. We shall assume here that ¢ = 0, and that 0 < A < . Thus if

Y(z) = P, (no particle ever enters (—oo,0))

we have

Y = Ri+u(/\¢2 + 1)

(see (3) and (4)) from which

(z) =1 —sinh®~ cosech®(y + akz)

where

1
2

a= (3(p—A)/2\)®, y=sinh"'(a), k=+/)\/3.

As p | A, we obtain
Pplz)=1—-(1+ k:l:)_2.

For general A < pu, and ¢ = 0, we have

Our aim now is to compute

g(x) = Ez[number of ends in the tree; no particle enters (—oo, 0)].

By considering the first birth or death,

where ¢ must solve

(A1) 19" — N+ g +22 g +u =0, g(0)=0, ¢g>0, bounded.

Boundedness is assured because g > A > 0. One solution of the differential equation

can be verified to be
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2usinh’®(y 4 akz)
%0(z) = Sp—=2)

so the task is now to find the general solution to the homogeneous d.e.

(A2) 39" — (A4 p)g +20gy = 0

and match the boundary conditions on g. Setting g(x) = h(y + akz), the equation
(A2) becomes

h"(y) = 4(1 + cosech’y) h(y),

which has

hi(y) = €*¥ cothy(cothy — 1)> = coshy cosech’®y

as one solution. The other solution is of the form

ha(y) = hi(y)v(y),

where
U/ — h1—27
SO
Y sinh® z
o) = [ s
o cosh”zx
15 1
= ?y — 3 sinh 2y + 32 sinh4y — tanh y,
whence

cosh 15
o) = S22 [0

1
—= — $sinh 2y + 3 sinh4y — tanh y|.

sinh®y | 8

Writing y for v 4 akz, we obtain the general solution to (A2) as

24 )
————sinh Ah Bh
TSy y + Ahi(y) + Bha(y),
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and for boundedness at infinity, we must have

8y
5(p—A)

The boundary condition at * = 0 now implies that

B=-—

_ 2p 1.2
A= TAEITESY {4hs(v) — sinh” ~v}.

Straightforward calculations lead to

2p tanh ~y

g'(0) = ak =\

Now we have

g(x)
()

= E, (number of ends in tree | no particle enters (—oo,0))

— Ep (number of ends in tree | no particle enters (—oo,0))

(A3) =9'(0)/4'(0)
tanh? ~

= A
3p
3u— M\

In order that the weighting (11) should convert the law of CRBTH into a probability

measure, we must have that

Y'(0)* ¢'(0) _
B2q '(0)

A few lines of calculation now confirm that this is the case.
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