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Abstract. In a sequence of fascinating papers, Leland and Leland & Toft have
investigated various properties of the debt and credit of a firm which keeps a constant
profile of debt and chooses its bankruptcy level endogenously, to maximise the value
of the equity. One feature of these papers is that the credit spreads tend to zero as
the maturity tends to zero, and this is not a feature which is observed in practice.
This defect of the modelling is related to the diffusion assumptions made in the
papers referred to; in this paper, we take a model for the value of the firm’s assets
which allows for jumps, and find that the spreads do not go to zero as maturity goes
to zero. The modelling is quite delicate, but it just works; analysis takes us a long
way, and for the final steps we have to resort to numerical methods.

1 Introduction.

The burgeoning literature on credit modelling falls into two methodological classes,
the structural approach and the intensity-based approach, or reduced-form approach.
The central feature of the first is some attempt to model the evolution of the as-
sets of the firm, whereas the second treats default as an essentially random event,
whose intensity may nonetheless depend on underlying variables. This paper is an
outgrowth of one of the most interesting series of papers using the first approach,
by Leland (1994a,1994b) and Leland & Toft (1996). In these papers, we study a
firm the value of whose assets evolves as a diffusion until falling below some critical
bankruptcy level. The firm is partly financed by debt, whose maturity profile is
maintained constant through time, by the simultaneous issuance of new debt and
retirement of old. This debt is of equal seniority, and attracts coupons at a fixed
rate. Additionally, the firm receives tax benefits on the coupon payments to bond-
holders, at least while the value of the assets is high enough. The shareholders set
the bankruptcy level so as to maximise the value of the firm’s equity, while respect-
ing the constraints that the value of equity must remain non-negative at all times,
and that the firm’s assets may not be sold off to pay coupons.
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Leland & Toft’s analysis gives remarkable insight into the workings of debt, and
shows us (among other things) how the value of the firm depends on the leverage,
what the optimal leverage should be to maximise the value of the firm, and what the
credit spread will be. It is in the last of these that we find a rather unsatisfactory
conclusion, that the credit spreads go to zero as maturity decreases to zero. This
is certainly not an observed feature of the market, and is happening because of the
diffusion assumptions in the papers. What we shall do here is to extend the analysis
to allow the value of the firm’s assets to make downward jumps; by so doing, we
eliminate the undesirable qualitative feature of credit spreads decreasing to zero at
the short end, and we also permit a stochastic loss on default. Since we are interested
in default, the restriction to downward jumps is not a problem (and in any case,
big downward jumps are much more likely than big upward jumps!) If we were to
allow jumps of both signs, the analysis of the problem is in effect intractable except
in very simple special cases.

The plan of the paper is as follows. In Section 2, we shall specify the evolution of the
firm’s assets, the structure of its debt, and we shall value the debt. We shall then
show (following Leland & Toft (1996)) how the optimal bankrutcy level is chosen. In
Section 3, we shall present the particular assumptions that we make on the evolution
of the firm’s assets, and show how these allow us to develop the theory further,
obtaining explicit expressions for the bankruptcy level. In contrast to the works of
Leland and Leland & Toft, the value of the firm and the value of its debt no longer
have closed-form expressions, but we are able to find transforms of these, which can
be inverted numerically without too much difficulty. This numerical inversion is the
subject of Section 4, where we present some typical results for our model and discuss
their interpretation. Finally, in Section 5 we summarise our conclusions. Some
technical results are relegated to appendices: Appendix A develops the expression
for the bankruptcy level in the case of a tax threshold, Appendix B explains the
details of the bivariate Laplace transform inversion required to study the spread as
a function of time, and Appendix C presents the results in the diffusion case, which
is the only case where closed-form expressions can be found.

2 The structure of the firm.

Let V; denote the value of the firm’s assets ? at time {. We shall suppose that V/
evolves as

AV, = Vi(dZ, + (r — 6)d1), (2.1)

where Z is some martingale, and r and é are positive constants corresponding to the
riskless rate ®, and the proportional rate at which profit is disbursed to investors.

2This is not the same as the value of the firm; the two differ by the net present value of losses
on default and all future tax rebates. See for the expression for the value of the firm.

3S0 we are assuming immediately that all processes are specified in the risk-neutral measure.
Since our main focus is on pricing issues, this is not a restriction. For questions of determining
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Since this firm will have bondholders as well as shareholders, we cannot interpret ¢
as a dividend rate - from the cashflow 6V,dt the coupons and principal repayments
due to the bondholders must first be paid before the residual can be paid out to the
shareholders as dividend.

The firm is partly financed by debt, which is being constantly retired and reissued
in the following way. In time interval (¢,¢ 4 dt), the firm issues new debt with face
value pdt, and maturity profile ¢, where ¢ is non-negative and fooo ©(s)ds = 1. Thus
in time interval (¢,¢ + dt) it issues debt with face value pp(s)dtds maturing in time
interval (¢ + s, 4+ s + ds). Bearing in mind all previously issued debt, at time 0 the
face value of debt maturing in (s, s + ds) is therefore

0
(/ pe(s —v)dv)ds = p®(s)ds, (2.2)
where ®(s) = fsoo ©(y)dy is the tail of the maturity profile. Taking s = 0 in (2.2),
we see that the face value of debt maturing in (0,ds) is pds, the same as the face
value of the newly-issued debt. Thus the face value of all debt is constant, equal to

P = p/ooo O (s)ds. (2.3)

The paper of Leland & Toft (1996) takes the debt profile to be é7, the Dirac delta-
function at T'; this means that all new debt is always issued with a maturity of 7T'.

The paper of Leland (1994b) uses
w(t) = me™™ (2.4)

for some positive m. This is the main maturity profile that we shall be discussing in
this paper, though the methods extend immediately to any maturity profile of the
form (1) = Z?;O 0; exp(—m;t) for some weights 6; and positive m; for which ¢ is
non-negative and integrates to 1.

All debt is of equal seniority, and attracts coupons at the fixed rate pdt until ma-
turity, or default if that occurs sooner. Default happens at the first time H that
the value of the firm’s assets falls to some level Vg or lower; the value of Vg will be
determined optimally later. On default, a fraction a of the value of the firm’s assets
is lost in reorganisation.

A bond issued at time 0 with face value 1 and maturity ¢ is worth

do(V, Vg, 1) = E{/MH pe“”ds} n E[e‘” 1< H}
0

bl =) B[V H <]

(2.5)

default probabilities, we would of course need to work in the real-world probability. See ...
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The first term on the right of (2.5) can be interpreted as the net present value of all
coupons paid up til ¢ or the default time H, whichever is sooner. The second term
is the net present value of the principal repayment, if this occurs before bankruptcy,
and so the final term must be the net present value of what is recovered upon
bankruptcy, if this happens before maturity. Indeed, V(H) is the value of the firm’s
assets when bankruptcy occurs and (1 — «)V(H) is the value that remains after
bankruptcy costs are deducted. Of this, the bondholder with face value 1 gets the
fraction 1/ P, since his debt represents this fraction of the total debt outstanding.
Notice that if the process V were continuous, then V(H) would simply be the
bankruptcy level Vg, but as we shall be allowing the possibility that V has jumps,
V(H) may be below V.

The total value at time 0 of all debt outstanding is

DV, V) = /Oopq)(t) do(V, Vi, 1) dt

= ppkE {/OH e‘”@(s)ds} + pk {/OH e‘”@(s)ds}

(1 —a)p

P

E {V(H)e‘THCT)(H)} .
(2.6)

Here ®(t) = [~ ®(s)ds. Using the assumed form (2.4) of the maturity profile, we

t

have ®(t) = m®(t) = exp(—mt), and so the total value of the debt simplifies to
pP 4+ mP

m-+r

D(V,Vg) = Bl —emtH| L (1 —)E|V(H)e t™H | (2.7)
This expression for the debt involves parameters of the problem, as well as two
expectations. If the value process V were a log-Brownian motion, as in the earlier
papers of Leland and Leland & Toft, then these expectations could be written in
closed form: see Appendix C. For our model, there will be no closed-form solution,
but we may nevertheless make progress, as we shall see in Section 3.

Write €' = pP for the total coupon rate. We shall assume that there is a corporate
tax rate 7, and the coupons paid can be offset against tax. The effect of this is to
generate an income stream of 7C'dt for the firm. It has to be realised that this is a
rather idealised treatment of tax, but is better than ignoring the effect altogether.
Leland & Toft (1996) also introduce a tax cutoff level Vg, whose effect is that the
tax rebates are 0 while V < Vp, and are 7C'dt when V > Vp. Again this is an
idealisation, but it is intended to reflect the idea that when the coupons exceed the
profits, you are unable to reclaim the tax on the coupon payments in excess of the
profits*. Without such a tax cutoff, the numerical values of the coupons become
ridiculously high, with the firm in effect promising huge returns financed by tax
rebates; the tax cutoff prevents this.

4In Section 4, we shall use a tax cutoff Vp = C'/§, which is the value of V at which the disbursed
profits exactly equal the coupons.



In this set-up, assuming no cutoff for tax rebates, the value of the firm is

C
v:v(V,VB):V—I-T—E
T

1 e—ﬂ —aE {V(H)e—ﬂ, (2.8)

made up of the value of the firm’s assets plus the net present value of all tax rebates
on the coupons up to bankruptcy?®, less the net present value of the losses on default.
Once again, the expectations cannot be written in closed form in the general prob-
lem, although for the log-Brownian case of Leland & Toft (1996) this is possible. In
terms of (2.8) and (2.7), we can simply express the value of equity of the firm as

Q(V.Ve) =v(V, V) — D(V, V). (2.9)
It is this that the shareholders will attempt to maximise by choice of V.

Asin Leland & Toft (1996), the optimality criterion is the ‘smooth pasting’ condition

9Q

—(VB,VB) =0 2.10

5y (Ve V) (2.10)
It might appear that without any explicit expression for ) it will be impossible to
solve (2.10) explicitly for Vg. However, in the class of models to be considered next,

it turns out (surprisingly) that we can do so.

3 A class of models.

We return to the dynamics (2.1) for the value of the firm’s assets, and make some
explicit assumptions about the abstract martingale Z appearing there. We shall
assume that 7 is a Lévy process with no upward jumps, a so-called spectrally negative
Lévy process. This means that we can express V as

Vi = Vo exp(Xy), (3.1)

where X is a Lévy process started at 0 with no upward jumps. For more infor-
mation on Lévy processes, see for example the book of Bertoin (1996), or Chapter
VI of Rogers & Williams (2000). We restrict attention to spectrally negative Lévy
processes for reasons of tractability; we have already discussed why this may in any
case be an acceptable modelling hypothesis, and we note that the analysis of Leland
(1994b) is dealt with as a special case of what we shall develop here.

As is well known, the moment generating function of a Lévy process has the form

E°exp(zX;) = exp(tp(2)) (3.2)

5This must be modified when there is a cutoff on tax rebates: see Appendix A.



for some function ¢ which is analytic in the interior of its domain of definition ©.

Here and elsewhere, the notation £* denotes an expectation under the condition
that Xy = z. In order to get the correct growth rate (2.1) we see that we must have

E%exp(X;) = exp(tp(1)) = exp((r — 8)t), (3.3)
so that (1) =r — 4.

Re-expressing the value of debt (2.7) and the value of the firm (2.8) in terms of X,
we obtain

. C+mP 0 —(m+r)H 0| X(H)—(m+r)H
and o
o(V,Vg) = V + = E° [1 - e—ﬂ —aVEP {eX“’)—’“H} , (3.5)
r

where H = H, = inf{t : X(¢) < z} and = = log(Vg/V). Our problem now is to find

the expectation terms in the non-Brownian situation we are dealing with.

Let us begin by discussing the calculation of the terms of the form E°(exp(—AH,));
we shall return to the terms of the form E°(exp(X(H,) — AH,)) later.

To tackle this, we introduce the familiar device of an independent random time 7'
with an exponential(}) distribution, so that

E° [e—”ﬂ — p° {T > Hx} — p° {)_((TA) < :c} (3.6)

where X(¢) = inf{X(u) : v < t} and X(¢) = sup{X(u) : u < ¢t} Thus finding the
first expectations in (3.4) and (3.5) reduces to computing the law of X(7)), which
is the business of the classical Wiener-Hopf factorisation of a Lévy process. This
states that

A

A=d(z)
= %( )43 (2) (3.7)

= B [exp(zX(T0)| . E® [exp(2X(T1))|. (3.8)

See any of Bingham (1974), Bertoin (1996), Rogers & Williams (2000), Greenwood &

Pitman (1980) for more on the Wiener-Hopf factorisation. The factorisation relates

Eoer (T»)

the known quantity A/(A — ¢(z)) to two unknowns, so is in general hard to make
use of. However, our special situation of a spectrally negative Lévy process has the
special feature that the law of X(T)) is exponential; see, for example, Bertoin (1996)
for an explanation. Thus we know that for some §* = 3*()) we shall have

X(m) = 5*ﬁ_*_z' (3.9)

®In general, the domain of definition is the imaginary axis, but there are many examples (such
as those we shall be studying) where the domain of definition is a strip or half-space. See the above
references for more information.

Y (z) = E° e




Thus
A B —z

Py (z) = .
A N
Since this function is analytic in the right half-plane, it must be that the apparent

pole which occurs when A = 1(2) is in fact cancelled out by a zero in the numerator,
which is to say that the unknown value of 5* = 3*(X) must be the solution to

P(B) = A (3.11)

The conclusion then is that we may find the Wiener-Hopf factor ¢} (z) explicitly in
this example, at least up to solution of the equation (3.11). For the examples which
we consider numerically, this can all be handled very easily.

(3.10)

Notice we want the distribution function of the random variable X(7) evaluated at
the point x, and the Wiener-Hopf factorisation only gives us the Laplace transform of
the law of X(7T4); this requires us then to invert the Laplace transform numerically
to get the desired answer. This is a non-trivial numerical problem. The obvious
approach (using Fast Fourier Transform) turned out to be insufficiently stable and
accurate, so we turned to a method of Abate & Whitt (1992) and Hosono (1984),
which worked very well.

This deals with the terms of the form F(exp(—AH.)), but what about the terms of
the form E(exp(X(H,) — AH;))? One of the many fluctuation identities for Lévy
processes discovered over the years states that for any g > 0 and 4 > 0

0 L(0) — b5 (6
/ pe O [exp(0X (H,) — \H,)| dv = Bl = 0+p
e NG
see, for example, Bingham (1975). Taking § = 1 in this identity, we see that
technically the terms of the form E°(exp(X(H,.) — AH,)) are actually no more
difficult than the terms of the form E°(exp(—AH,)); to recover what we want, we

(3.12)

need to do a Laplace transform inversion of a known function. Notice in passing
that taking 8 = 0 in (3.12) gives us back the definition of ¢)7. We shall often have
need of the following simple variant of (3.12):

/ pe T BT {exp(@X(Ho) — AHy)|dx = _F [ 1 —
0 p—0

¢§(M)]

5o (0) (3.13)

which is obtained from (3.12) by a little elementary calculus.

Using the theory of Wiener-Hopf factorisation, we can now compute the value of the
firm (3.5) and the value of the debt (3.4), provided we know what value of Vg to use.
This value is determined by the smooth pasting condition (2.10), and it is a stroke
of good fortune that the value of Vg can be computed in closed form! Defining

o(x,\) | — FTe— Mo
vz, 3,A) = 1 — E7ePX(Ho)=AHo



where E* denotes expectation for the Lévy process started at x, we have alternative
expressions for D and wv:

C +mP

D(V,Vs) = %go(a;,m—l—r)—I—(l—oz)VB[l—'y(:I:,l,m—l—r)], (3.14)

o(V.Ve) = Vi + 2% oa,r) — aVi[l — 22,1, 7)), (3.15)
r

where we write z = log(V/Vg). Now the smooth pasting condition (2.10) expresses
itself as

d(v— D)
I
x z=0
so if we differentiate (3.14) and (3.15), and solve for Vg, we obtain
GimP 99/(07 m + T) - g 99/(07 T)

Vg = mtr .
T 4 ay (0, 1,r) + (1= a)y'(0,1,m +7)

(3.16)

Here, the dashes on ¢ and 7 denote differentiation with respect to the first argument.
The expression (3.16) can only be said to be explicit if we have explicit expressions
for the derivatives of ¢ and v, but this we have, as follows. Firstly, note that both ¢
and 7 vanish at zero, so near 0 we have @(z,\) ~ z¢'(0, ), v(z,0,X) ~ 27'(0,6, X).
Thus

py(p) = pE° {e“)—((m}
/ e‘“sPO X(T)) > :z:} dr
7 e“rEO AHﬂ”}al;z;

- /.
/M "
@'

— (3.17)
(3.18)

as 1t — 00. Thus we can identify the derivative of p at 0 as
#'(0,A) = lim pgpy(p) (3.19)

Similarly, if we notice that for x > 0
1, B,0) = 1 — B exp(BX (H_,) = \H_ + ),
then we may express (taking y > /)
/ /fe_”’y(:c,ﬂ, Ndz = / ple {1 — [TePX(Ho)=AHo | g0
0 0
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= /0 per” {1 E°exp(BX(H,) — \H, — ﬁ.’li)}d(l)

= ﬂ/ (1 — B)e"PEC exp(BX (H,) — \H,.)dz

N (5) ¢A()
/l_ﬁ' @A\(ﬁ)
—p3 N p’ oy (p)
p—p3 p—pP5(B)
L0
B+ 505

as pt — oo. Hence

¢'(0,2)
N

Now the expressions (3.19) and (3.20) for the derivatives at zero of ¢ and 4 can
be evaluated once we have made some assumptions concerning the underlying Lévy
process. We shall assume that our Lévy process is a Brownian motion with drift
plus a compound Poisson process of downward jumps, so has the (Lévy-Khintchin)
representation

70,8, 1) = ~-p (3.20)

P(z) = %O‘ZZQ + bz + /_ (e* — 1v(dx) (3.21)

for some finite” measure ¥ on R™. Now by inspection of the expression (3.10) for
the left Wiener-Hopf factor ¢, we see from (3.21) that

., L _ov . 2X

@@J)—ﬁgﬂ%UO—;%ig7
which is an explicit expression. This allows us to compute the value (3.16) of Vg
explicitly. More generally, we shall want to allow the possibility that the firm gets
the tax rebates only while the value of its assets exceeds some threshold Vi (which
we shall take to be C/é, the value where all of the disbursed profits are going to
pay the coupons). In this case (see Appendix A), the expression for the the value of
the firm changes, and consequently the expression for the bankruptcy level changes
slightly to

(3.22)

v Cn—:rTP (0 m + T‘) TC —ﬁ (r )bap'((),r)
B L+ ay'(0,1,7)+ (1 —a) "0,1,m +r)’
where b = max{log(V7/Vg),0}. We note that when Vp < Vg this reduces to (3.16).
Note also that this is not an explicit expression for Vg, since Vg appears on the
right-hand side, through the dependence on b. Nevertheless, if we choose a value for
VB, (3.23) exhibits a simple linear relation between C' and P, and this is how we
shall use it in what follows.

(3.23)

"This is almost the most general spectrally-negative Lévy process - see Bertoin (1996), for
example.



A major feature of this modelling approach is that spreads do not go to zero as
maturity goes to zero. Let us make precise what we mean, and what we do not
mean by this. In the papers of Leland (1994) and Leland & Toft (1996), the credit
spread is taken to be C'/P — r. It is an aggregated credit spread for a dollar put
into a sinking fund, and it depends on maturity through the parameter m; thus if
we plot the spread as a function of m, we are actually comparing costs of borrowing
for completely different firms! Such a plot is certainly of interest, but needs to be
interpreted with care. We shall present some of these plots later, and also shall
present plots of spreads against maturity for a single firm ABC plc with fized m
with varying maturity. These latter plots show the spread that should be demanded
by someone lending one dollar to ABC for different fixed periods of time.

In more detail, by finding the value of p = p* for which the right-hand side of (2.5)
equals 1 when V =V and ¢t = T', we find the spread p* —r for borrowing with fixed
maturity 7. Rearrangement of (2.5) yields the following expression for the spread
on borrowing of maturity 7"

E [(P —(1—a)V(H))e ™ : H < T}

r
spread = —

P E {1 _ e—r(T/\H)}

(3.24)

To understand the asymptotics of this as 7' | 0, we notice that for very small T" we
may ignore the contribution of the Brownian motion and the drift to the movement
of the Lévy process X; if X has got down to the bankruptcy level 2 = log(Vs/Vp) < 0
by time T, it is overwhelmingly likely to have got there by a jump. If we consider
just the compound-Poisson part of X, then

P(H<T)=1—exp(—Tv(z))+ o(T)

as T | 0. Here, v(z) = [°_v(dy). The rationale for this is that a crossing of z
before time T' is overwhelmingly likely to have been by a jump, and the probability
of more than one jump in [0,7] is o(T'). Given that H < T, the law of log V(H)

will be the law of a single jump conditioned to have gone below z, so

E[V(H)|H <T] = S ‘f(eg:)z/(dy)

say. The denominator of (3.24) is easily seen to be asymptotic to 7T as T' | 0, so in

—V,

conclusion

y(@)((P (1 - a)V)
P

spread — (3.25)
as T | 0.

To summarise: the limiting spread as T' | 0 is non-zero; it has a value given by
(3.25); and this can be checked against numerical results (see Section 4).

10



4 Numerical results.

As mentioned earlier, we shall assume that there is a cutoff level Vp such that when
V' > Vr the firm gets tax rebates at rate 7C', but when V' < Vi there is no tax
rebate. Under this assumption, the value of the firm changes to

v(Vo,Ve) = Vo — aV[l —y(z,1,r)] + 7Cg(x), (4.1)

where the function g is given by

9(x) = ITp<ope(z,r)/r+ Lpso) { ]{bzx}Be_ﬁ*b [ — 142,87 7) ]
+]{b<f} [ @(x - bv T)/T + B{l - 7($ - ba B*a T) - 6_ﬁ*b(1 - ’7(3;7 5*7 T))} ]
(4.2)
where b = log(Vr/Vg), v = log(Vo/VB), and 5* = 3*(r) for short. The constant B

is given by
_ ! _ 9 (B(r)

B (Br)
this and (4.2) are explained in Appendix A.

For all the computations, the values of certain parameters were held fixed: we took
c=02,r="75%,6 = 7%, a = 50%, 7 = 35% and V; = 100, which are the
values used by Leland (1994b) and Leland & Toft (1996), so as to aid comparison
with those papers. We shall assume as in Leland & Toft (1996) (but not in Leland
(1994b)) that Vp = C/6.

For our numerical examples, we assumed that the Lévy process X has Lévy exponent

0

1
P(z) = 50222 + bz + a/ ce™ (e — 1) dx
1

= —0%2 4 by —

2 c+ 2’

az

(4.3)

which means in sample-path terms that X; = oW, + bt + J;, where .J is a compound
Poisson process consisting of independent downward jumps with exp(c¢) distribution,
arriving at the times of a Poisson process of rate a. The constant b is chosen to match
the condition (3.3):

b:r—5—02/2—|—a/(1—|—c).

We performed the calculations for four cases. Case A was the diffusion case, with
a = 0. In Case B, we took @ = 0.5 and ¢ = 9 (thus on average® once every two years
the firm suffers an instantaneous loss of 10 % of its value), in Case C we took a =1
and ¢ = 4 (on average once a year the firm suffers an instantaneous loss of 20 %

8Relative to the pricing probability, of course.
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of its value), and finally in Case D we took @ = 0.2 and ¢ = 1, so on average once
every five years the firm instantaneously loses half its value. The values of m used
varied from m = 100 to m = 0.001, so the mean of the maturity profile varied from
about half a week to 1000 years.

The limiting value for the yield spread (3.25) can be given more explicitly, since
v(z) = ae® and
cVp

V= .
1+¢

The expression (3.25) becomes

ae™®(P — (1 —a)V) .
P

(4.4)

We present in Figure 1 a plot of firm value as a function of leverage for each of the
cases. The plots are truncated below at firm value of 100, since we would presumably
mainly be interested in leverages for which the firm value was high. The maximal
value of debt varies from case to case: 111.6 for Case A, 110.4 for Case B, 106.4 for
Case C, and 107.2 for Case D. The optimal leverage also varies; in each case, the
optimal leverage rises as the mean maturity rises.

Figure 2 shows plots of the value of debt as a function of leverage for the four
cases. The general shape of the curves is qualitatively similar to the plots in Leland
(1994b) and Leland & Toft (1996), with longer mean debt maturity increasing the
value of debt, and increasing leverage also increasing the value up to a point, but
then decreasing the value, as the coupons have to be pushed up to induce investors
to put money into the firm which is increasingly risky.

Next in Figure 3 we plot the value of equity over face value (defined as the initial
value of the firm’s assets Vy = 100 less the initial value P of the bondholders’
principal) against leverage. This is arguably what the shareholders would be most
interested in when the company is set up, as it gives the factor by which their initial
investment in the company is increased (as a result of the tax rebates, of course).
The general shape is very similar to Figure 1. Notice how this varies substantially
from case to case: 1.2471 in Case A, 1.2089 in Case B, 1.1048 in Case C and 1.1284
in Case D. The range of variability is much greater than the range in Figure 1 for
the value of the firm. In all cases, the value of debt which maximises firm value is
less than the value of debt which maximises the relatie value of equity.

Our next plots, Figure 4, show the value of debt as a function of coupon. As mean
maturity increases, the value of debt generally rises, but in all cases for large enough
coupon values there is a best maturity for the debt, and as the mean maturity passes
above this the debt value falls back. This means that for the longer mean maturities
there are often two coupon values which could fund the same level of debt.

One of the main conclusions of the paper is displayed in the next plot, Figure 5, of
yield spreads as a function of maturity for a range of different values of leverage. We
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take leverage from 5% to 75% increasing in steps of 5%. Compare the diffusion case,
Case A, with the other cases with jumps. Notice how the spreads are going quite
rapidly to 0 with mean maturity in Case A, but are apparently tending to positive
limits in the other cases. All of the plots exhibit the general types of behaviour
found by Leland (1994b) and Leland & Toft (1996), confirming the empirical results
of Sarig & Warga (1989); for firms with low levels of debt, spreads are small and
increase with mean maturity, but as the level of debt rises the spread curve becomes
humped. We can understand these differences as follows. For a firm with little
debt, the bankruptcy level is a long way from Vp, so initally there is very little risk
of bankrutcy; if bankruptcy occurs, it will only be after a considerable amount of
time that the asset price process has got near to Vg. So the riskiness of such a firm
will be low, but can be expected to rise with maturity. On the other hand, for a
highly-levered firm, Vg is a lot closer to Vg, so debt is more risky, but why should
we see the spread falling ultimately as maturity increases? The reason is that given
that the firm has survived for the first 10 years, the value of the firm is very likely
to have gone up; conditioning on survival effectively forces the firm value up, so
that given that it has survived 10 years, it is much more likely then to continue to
survive, since it 1s now at a much healthier asset value.

Our next plot, Figure 6, shows the yield spread for a dollar lent for different fixed
periods, taking the debt maturity profile parameter m = 1. The analysis leading to
these results requires some steps which may not be obvious at first sight, so we detail
in Appendix B the argument on which the calculation of these figures is based. We
see that the spread does not go to zero as maturity goes to zero in Cases B, C, and
D, whereas the spread does go to zero in Case A, as predicted. But does the limit of
the spread agree with (4.4)? In Tables I-III we present the theoretical limiting values
of the spreads from (4.4) alongside the numerical values, produced by Richardson
extrapolation of the two values of maturities closest to zero; the numerical agreement
is good to a few percent. Bearing in mind the calculations required to arrive at these
figures, this seems quite reasonable: the spread is computed (3.24) as the ratio of
two numbers both of which (for small 7') will be quite close to 0, and each of these
in turn is the output of a numerical bivariate Laplace transform inversion. These
values are then extrapolated.

The final plot, Figure 7, shows (' — 6Vp against Vg. In each case, the lower the
curve, the shorter the mean maturity. A situation where C' — 6Vg > 0 is one where
the firm will continue past the point where all the cashflow from the firm is going
to pay bondholders’ coupons; this is rational for the shareholders, because they can
reasonably expect that the value of the firm will recover in due course and they
will then receive more dividends (and tax rebates). However, this is only rational if
there is enough time for such a recovery to take place, in other words, if the mean
maturity m~! is large enough. This is exactly what the plots show. Note that this in
contrast to the analysis of Kim, Ramaswamy & Sundaresan (1993), who study the
situation where the shareholders will declare bankruptcy immediately the cashflow
from the firm is all used to pay coupons.
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spread. In contrast to Figure 5, we are taking a firm with debt maturity profile
given by m = 1 and considering the spread which would be needed to induce an
agent to lend to that firm for a fixed time period.
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Table I: Comparison of the limiting spreads: Case B

Leverage | Limiting spread: | Limiting spread:
extrapolated theoretical
5% -0.0144 0.0000
10% -0.0129 0.0000
15% -0.0117 0.0000
20% -0.0113 0.0001
25% -0.0109 0.0006
30% -0.0084 0.0031
35% 0.0002 0.0113
40% 0.0238 0.0331
45% 0.0823 0.0872
50% 0.2113 0.2076
55% 0.4528 0.4362
60% 0.8144 0.7858
65% 1.2445 1.2175
0% 1.7515 1.7976
5% 2.1171 2.5797

Table IT: Comparison of the limiting spreads: Case C

Leverage | Limiting spread: | Limiting spread:
extrapolated theoretical
5% -0.0137 0.0005
10% -0.0043 0.0080
15% 0.0326 0.0412
20% 0.1316 0.1320
25% 0.3434 0.3266
30% 0.7342 0.6866
35% 1.3819 1.2872
40% 2.3625 2.2065
45% 3.7159 3.4939
50% 5.3421 5.0668
55% 7.1592 6.8551
60% 9.3157 9.0140
65% 11.8176 11.5609
70% 14.6481 14.4931
5% 17.6454 17.7739
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Table ITI: Comparison of the limiting spreads: Case D

Leverage | Limiting spread: | Limiting spread:
extrapolated theoretical
5% 0.7831 0.7860
10% 1.6073 1.5976
15% 2.4529 2.4312
20% 3.3157 3.2829
25% 4.1921 4.1490
30% 5.0767 5.0237
35% 5.9588 5.8961
40% 6.8110 6.7391
45% 7.5748 7.4948
50% 8.2568 8.1696
55% 8.9044 8.8108
60% 9.5137 9.4143
65% 10.0731 9.9727
0% 10.5096 10.4770
5% 10.3578 10.9195

5 Conclusions and discussion.

We have taken the model of Leland (1994b) of a firm with constant debt structure,
and extended it by incorporating downward jumps in the value of the firm’s assets.
The reason for doing this was to modify one undesirable feature of Leland’s model,
namely, the fact that yield spreads tend to zero as maturity tends to zero, which is
at variance with observation. The problem was correctly diagnosed as arising from
the diffusion assumption in Leland’s model, and on introducing the possibility of
downward jumps in the asset value, the zero limiting spreads vanish. Indeed, we are
able to present an explicit expression for the limit of the spread, and confirm this
by numerical examples. A further advantage of our approach is that it introduces
the possibility of random loss on default, in a very simple way.

It is worth commenting on our choice of maturity profile, which we took to be expo-
nential, as in Leland (1994b). Even for this simple profile, there are no closed-form
solutions for most of the quantities of interest, and we have to resort to numerical
methods. This being the case, it is now in principle and in practice no more difficult
to let the maturity profile be some linear combination of exponentials of different
rates. This then allows much more general maturity profiles, even to the point of
approximating an arbitrary maturity profile to any desired degree of closeness. This
is a project which might be pursued in the future (and would allow us to extend the
work of Leland & Toft (1996) with fixed maturity of debt at issue to the jumping
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case); however, the assumption of the constant maturity profile, so necessary for
the stationary nature of the optimal bankruptcy rule, is one which is unlikely to be
even approximately true in practice, so detailed study of extensions which retain
this assumption seems a lesser goal. We should regard the product of this present
work more as insight into qualitative features of corporate bond yield structure than
as a modelling tool for real data.

The different behaviour of the yield spreads at zero is the principal point of differ-
ence between Leland’s conclusions and our own. In other respects, the results are
qualitatively similar, as the various graphs show; firm value increases with maturity,
and first increases and then ultimately decreases with leverage: the value of debt
grows with mean maturity, and is initially increasing with leverage, though eventu-
ally (at least for large enough maturities) the curve turns down again and the value

of debt falls (the ‘junk bond’ effect).

It should be possible to extend the current analysis to more than one class of debt,
but this remains for the future. Another issue would be to attempt to characterise
optimal bankruptcy policy for a firm which did not satisfy the constant maturity
profile assumption, for example, for a firm which issued a tranche of fixed-dated
bonds at time 0, and then at maturity redeemed the bonds and issued another
tranche. Such an analysis for our modelling framework would require a study of the
joint time and place of first crossing a moving barrier for a Lévy process, and can
be expected to become a numerical task almost immediately.
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Appendix A

As was explained earlier, in the expression (3.15) for the value of the firm, we want
to be able to deal with the situation where there are tax rebates only when the
value of the firm’s assets exceed Vi = Vge’. This requires us to replace the term

7Cp(z,r)/r in the right-hand side of (3.15) with 7C¢(z), where

Hp
g(z) = EI/ e_rt]{Xth}dt. (A1)
0

We now derive a simpler expression for this. To begin with, let

B = EO/ e_rt]{XtZO}dt. (AQ)
0

We deal with two cases, assuming firstly that 0 < = < b. If we let H, = inf{¢ :
X(t) > b}, we notice that

B¥ exp(—rHy) = P*[T, > Hy] = PX(T,) > 8] = exp(~(b— 2)5(r)),
and so

Er/ e " Iix,>pdt = Bexp(—(b— z)3*(r)).
0

Thus for 0 < < b we have (abbreviating 3*(r) to 3*)

g(z) = Ez/ e_”]{thb}dt—EI/ e " [ix,>ndl (A.3)
0 Ho

— B0 _ gpe {exp{—ﬁ*(b ~ X(Hy)) — rHo)
= Be [T — 1 4 A(x, 5% 7) ] (A4)

To see this, note that the second integral in (A.3) does not start to grow until X
first rises to level b (which it crosses continuously) after it first fell below level 0. If
S denotes this time, then we have

E[e75] = E” |exp{—37(b— X(Hy)) — rHy}|.

On the other hand, if > b, then the integral in (A.1) grows until the first time H,
that X falls below b, and in this time it contributes E*[1 — exp(—rH,)]/r to g(z).
Thus

1 —exp(—rH Y B R .
g(l’) = Ex|: p( b):|‘|’EI/ € t]{Xth}dt—E/ € t]{Xth}dt

r H, Hy
— QO(.’L' . b, T)/T 4+ B(Eave—ﬁ*(b—X(Hb))—er _ Ere—ﬁ*(b—X(Ho))—rHo)
= c,o(:u—b,r)/r—l—B(l _7($_baﬁ*7r) _6_5%(1 _7(1’75*7T))) (A5)
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Notice that as we let b | 0, we recover the correct expression. Together, (A.4) and
(A.5) determine g, but we shall now make the constant B more explicit. We have
the celebrated Spitzer-Rogozin identity (see, for example, Bingham (1974)) that

00 oo —At
¢j(5):exp/ (e“—1)/ — P(X; € dr)dL,
0 0

and so

glog;/ﬂf(s) = —/ (e”—l)/ e P(X; € dr)dt
o\ ’ 0 0

R BE/ e P(X, > 0)dt (A.6)
0

as s — oo. In this case, we have that ¢} (s) = 8*(X)/(8*()) — s), and the derivative
of #* with respect to A is just 1/¢'(8*(X)), so a few simple calculations from (A.6)

give us that )
I B ), )

after a few more calculations.

We can now find the Laplace transform of g, using the identity (3.12) and the
expression for g that has resulted from the preceding analysis. We find that

R pB g ) Ur (1) a7 (1)
/Le“gxdx:* .{e“—e }.7_ ” 4+ et A8
[ et = 55 br () o O
after some calculations. Since ¢(0) = 0, we can deduce the derivative of ¢ at 0 from
(A.8) by multiplying by g and letting p T oo. Using (3.22), we conclude that the
derivative of ¢ at zero is

2r Be 5™ B 2P
P (Br) B
We could equally well have deduced this directly from (A.4) using (3.20).

(A.9)

Let us now see how this allows us to derive the alternative form (3.23) for the
bankruptcy level Vg. We now know that for 0 < x < b the expression for the value
of the firm is

v(Vge®, V) = Vge® — aVe{l —~y(z,1,r)} + 7Cy¢(x)
and the derivative of this at zero is easily seen to be
27 (e P
0-2/3* :
On the other hand, the equation (3.14) for the debt remains unaltered by the intro-
duction of a tax threshold, and the derivative of D(Vge®, V) at zero is as before

C+mP

m-+r

Ve + CYVB’)//(O, 1, T) + (AlO)

O'(0,m+71)— (1 —a)Vey'(0,1,m +r).
Solving the smooth pasting condition for Vg gives us (3.23).
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Appendix B

Here we explain how Figure 6 was computed. To calculate one point on the graph,
we choose a value for m, t > 0 and leverage . and firstly calculate the values of Vg,

P, and C for which (3.23) holds, D(V;, V) = P, and

P

L=—"
v(Vo, VB)

where v(Vp, V) is given by (4.1) and (4.2). We next return to (2.5) and for our fixed
t > 0 compute the value p* of p for which do(Vp, Vi, t) = 1. With = = log(Vo/Va),
the expression (2.5) for do(Vp, Vi, 1) can be written as

tANH
1 —
pE° [/ e—“ds} +E" [e—” 1< H} TR VY [eX“’)—TH H < t},
0

where H = inf{t: X; <0}. Taking the Laplace transform in ¢ gives us

— At )\ -I— 14 ( 3)‘/
€ A i t dt — < 17 — (A )H - 7 - EI ( )_(A 7)
/ do(‘/(p B ) )\()\ ) _I_ )\ B €X H +r)H

after some calculations. Now if we take the Laplace transform in z we have (using

(3.13))

CZO()‘v :u)

/ e_““rdx/ e_Atdtdo(VBer',VB,t)
0 0

_ m _¢A_+r(l4)
= N0 e e U

= pfilA+rop) + fo(X+7,p), (B.1)

and our task now is to invert the two double Laplace transforms f; and f;. To do
this, we use a variant of the method of Abate & Whitt (1992) developed by Rogers
(2000). The inversion formula

d
o= [ 5 [ e
r 2mi 27

is the starting point, for suitably chosen contours I'y and I'y. Conventionally, these
would both be shifts of the imaginary axis, but here there is advantage in considering
other contours. The reason is because the expression (3.10) for () involves
computation of 3*(A) = ¢»~!(A), and this inversion of the function ¢ is not going to
be easy to do except in very simple special cases, such as the diffusion case where



and the inverse is explicitly given as

o VEFDO - b
¢0 ()\) - 2 )

g

the choice of root is determined by the fact that ¢~! is increasing on R*. However,
we avoid this problem if the contour I'y is itself the image under b of some other
contour, and this is the key to the method of Rogers (2000). In fact, by taking
Iy = v oy (Ty), where Iy is some translation of the imaginary axis, we ensure
that the contour I'y lies very close to I'g far out (since ¢ and g are very similar
for large arguments), and that the integrand can be evaluated simply. Indeed, if we
abbreviate ¢ = ¥ 0 ¢!, we have

t / 19 O=r)+ny g _ )
=[5 [ o o((C— 7. )

The double integral is now approximated by a double sum, where the function
evaluations are made at a lattice of well-chosen points, as explained in Choudhury,

Lucantoni & Whitt (1994). See Rogers (2000) for further details.

Appendix C

We present here the form of the general results derived in Section (3) in the special
case where there are no jumps, and so the Lévy process X is of the form

Xy = oWy + pt = o(W; + ct), (C.1)

with g = oc=r —§ — 0?/2. Of course, the expressions we derive should agree with
those of Leland (1994) in the cases where Leland gives an expression. However, we
want also some expressions which are not given in Leland (1994), such as the value
of debt (2.5) of a given maturity ¢ with face value 1. From (2.5) we obtain

do(V, Vi, 1) = gE {1 _ e—WH)} LetP(t < H) + 1 =a)Ve _;)VBE {e_TH L H < t}
= g—l— <1 - §>e_”P(H > 1)+ (% - g)E{e_TH cH < t}.
(C.2)

Now the first-passage-time density for a Brownian motion with drift ¢ to a level
a < 0 is well known:

P(H, € dt)/dt = |a|exp(—(a — ct)?/2t)/V 2rt3;

see, for example, Borodin & Salminen (1996). Slightly less well known is the ex-

pression
a+ ct

Vi

a—ct
Vi
27

P(H, <1)=9( ) + e d( ) (C.3)



for the distribution function of H,, but this can be confirmed by differentiating with

respect to t. Here, ® is the N(0,1) distribution function. We can also deduce from
(C.3) that

1
E 6—7‘Ha . Ha S t:| — / 6_T5|CL| exp(—(q — 03)2/23)/\/ 2w s3ds
0
13
— / 6a(‘3_5)|a| exp(—(a — 63)2/28)/ V 2ms3ds
0

a— ct

i)

+ 626aq)(

_ ea(c—&)[@( a+Ct):|7

Vi

using (C.3), where ¢ = v/¢? + 2r. This now gives us an explicit expression

a—ct

do(V, Ve, 1) = g + (1 - g)e-” [1 — ) — 62%(@)]

where a = 7' log(Vg/V), and ¢ = 7' (r — § — ¢%/2). Notice that if we return to
the expression (3.24) for the spread, we see a ratio whose numerator is o(7'), and
whose denominator is O(T'), so in this case we see that the limit as 7' | 0 of the
spread will be 0.

If we introduce the functions

AR+ 20224 A+ 20%2 —p
9_(2) = 0_2 ; 9_|_(Z) = 0_2 5 (05)

we have for Xo =0 and z > 0
Eexp(—AH_;) = exp(—0_(\)z), Eexp(—AH,;) = exp(—04+(N)x). (C.6)

These allow us to make explicit the expressions for the value of debt (2.7) and the
firm value (2.8) (and therefore also the value of equity (2.9)) proved in Section 2;
we obtain

DV, Vg) = %[1 - (VB/V)6—<m+T>} 4 (1= a)Vi(Vi/V)-tn+) (C.7)
o(V,Vs) = V + ? - (VB/V)"—“)} — aVy(Vg/V)-0) (C.8)

in agreement with Leland (1994). For this special case, the Wiener-Hopf factorisa-
tion (3.8) takes the simple explicit form

V) e
A —1(z) N 0+(X) — = ’ 6_(X) + =
28

, (C.9)



and 3* = ;. The functions ¢ and 5 are the same: ¢(z,X) = y(z, 3, ). Thus the

expression (3.16) for Vg becomes

" PO (m+r) —ZE0_(r)
P 1Tl (r)+ (1 —a)f_(m+r)

(C.10)

again in agreement with Leland (1994). If we introduce a tax threshold, then the
expression (3.23) for Vg simplifies to

CrmP g (1) — € =P 0IG_(r)
VB — m+r T
l+ab_(r)+(1—a)f_(m+r)

(C.11)

where b = log(Vy/Vg). This is not quite the same as the expression in Leland (1994),
but the discrepancy is explained by an error in the analysis of Appendix B of that

paper.
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