
When is it best to follow the leader?

Philip A. Ernst, L. C. G. Rogers and Quan Zhou

April 12, 2018

Abstract

An object is hidden in one of N boxes. Initially, the probability that it is in box i
is πi(0). You then search in continuous time, observing box Jt at time t, and receiving
a signal as you observe: if the box you are observing does not contain the object, your
signal is a Brownian motion, but if it does contain the object your signal is a Brownian
motion with positive drift µ. It is straightforward to derive the evolution of the posterior
distribution π(t) for the location of the object. If T denotes the first time that one of the
πj(t) reaches a desired threshold 1 − ε, then the goal is to find a search policy (Jt)t≥0

which minimizes the mean of T . This problem was studied by Posner and Rumsey [1966]
and by Zigangirov [1966], who derive an expression for the mean time of a conjectured
optimal policy, which we call follow the leader (FTL); at all times, observe the box with the
highest posterior probability. Posner & Rumsey assert without proof that this is optimal,
and Zigangirov offers a proof that if the prior distribution is uniform then FTL is optimal.
In this paper, we show that if the prior is not uniform, then FTL is not always optimal;
for uniform prior, the question remains open.

1 Introduction

This paper studies a classical search problem first considered independently by Posner and
Rumsey [1966] and Zigangirov [1966]. An object is hidden in one of N boxes; we denote by
j∗ the index of the true box. Initially,

P (j∗ = i) = πi(0).

We then observe in continuous time, choosing to search box Jt at time t. We see a signal
process Y whose dynamics are

dY (t) = dW (t) + µI{Jt=j∗} dt, (1)

where µ > 0 is a known constant, and W is a Brownian motion. It is straightforward to derive
the evolution of π(t), the posterior distribution at time t. The objective proposed by Posner
and Rumsey [1966] is to choose (Jt)t≥0 to minimize ET , where

T = inf{t : max
j
πj(t) ≥ 1− ε}, (2)

where ε ∈ ( 1
2
, 1) is some desired error bound.
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To the best of our knowledge, the solution to this specific problem was studied by three pa-
pers: Posner and Rumsey [1966], Zigangirov [1966] and Klimko and Yackel [1975]. Posner and
Rumsey [1966] asserted, without proof, that the optimal strategy is to always search the box
with the largest posterior probability. We call this policy the follow the leader (FTL) policy.
They formulated the FTL strategy as the limit of a sequence of discrete-time approximations,
which was later shown by Klimko and Yackel [1971] not to be tight. Zigangirov [1966] consid-
ered only the case of uniform prior distribution, that is, πi = 1/N for i = 1, . . . , N , and offered
a proof for the optimality of FTL. However, this proof lacks clarity on a number of points, and
we were not able to verify the arguments given. Klimko and Yackel [1975] provided a proof
for the optimality of FTL for arbitrary prior distribution, but, as we will explain later, their
proof is in error. The main result of our paper is to give counterexamples that clearly show
FTL is not optimal for some specific values of (π1, . . . , πN ). An additional contribution is the
characterization of the solution to a class of stochastic differential equations, which plays a
key role in our calculations, and can be considered to be generalizations of Tanaka’s SDE.

1.1 Literature review

Optimal scanning problems apparently date back to Shiryaev [1964]. Our specific prob-
lem of interest was considered in the works of Posner and Rumsey [1966], Zigangirov [1966]
and Klimko and Yackel [1975]. We now briefly review other variants of the problem that are
closely related to this work.

Liptser and Shiryaev [1965] considered a setup with two boxes (N = 2) and allow for the
possibility that the object may not be in either box. The task is to determine if the missing
object is in one of the two boxes. Dragalin [1996] considered general stochastic processes other
than Brownian motion and proposed a scanning rule based on the sequential probability ratio
test of Wald [1945].

Another class of problems similar to optimal scanning is problems of “quickest search.”
These problems are often formulated under the setting N →∞ with an unknown number of
boxes containing the hidden objects. We refer readers to Lai et al. [2011] for a discrete-time
solution and Bayraktar and Kravitz [2014] for a continuous-time solution to these quickest
search problems. We also note that optimal scanning problems and quickest search problems
are known collectively as “screening problems.” We refer the readers to the references given
in Heydari et al. [2016] for other variants of screening problems. More generally, such problems
can be viewed as sequential decision problems. References on this topic include Dvoretzky
et al. [1953], Shiryaev [2007, Chap. 4], and Peskir and Shiryaev [2006, Chap. VI].

2 The evolution of the posterior.

As we noted at (1), the signal process Y evolves as

dY (t) = dW (t) + µI{Jt=j∗} dt.
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If (Yt)t≥0 is the filtration of the observation process, and we choose to search box Jt at time t,
then the posterior likelihood (relative to Wiener measure) that the true box is j, given Yt, is

zj(t) = πj(0) exp

( ∫ t

0
µI{Js=j} dYs − 1

2
µ2
∫ t

0
I{Js=j} ds

)
. (3)

The posterior probabilities are obtained by normalizing the zj :

πj(t) = zj(t)/z̄(t), (4)

where of course z̄(t) =
∑

j zj(t). Now

dzj(t) = zj(t)µI{Jt=j} dYt (5)

so if we write Xj(t) = µ−1 log(zj(t)) then we have

dXj(t) = I{Jt=j} (dYt − 1
2
µdt). (6)

The evolution (1) of Y is expressed in the filtration of W , but familiar results of filtering theory
(see Kallianpur et al. [1972]) establish that we can rewrite the evolution in the filtration Y as

dY (t) = dŴ (t) + µπJt(t) dt (7)

where Ŵ is the innovations process, a Y-Brownian motion, and µπJt(t) is the Y-optional
projection of the drift µI{Jt=j∗} of (1).

Formulating the dynamics slightly more generally, as

dzj(t) = zj(t)θj(t) dYt (8)

where θ is a bounded previsible N -vector process, we can consider the evolution of π(t) defined
in terms of z(t) by (4). Some routine calculations with Itô’s formula give us

dπj(t) = πj(t){ θj(t)− θ(t) · π(t) }{ dYt − θ(t) · π(t) dt }. (9)

In the case of special interest to us, where θj(t) = µI{Jt=j}, the representation (7) combines
with (9) to show that

dπj(t) = πj(t){ θj(t)− θ(t) · π(t) }dŴ (t). (10)

In particular, π(t) is a Y-local martingale; but we know this already, because πj(t) = P ( j∗ =
j | Yt ), which is even a martingale.

3 The FTL policy.

For the FTL policy, the dynamics (8) has the special form

θj(t) = µIj(X(t)), (11)
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where we define for x ∈ RN

Ij(x) = 1 if xj = max{xi : i = 1, . . . , j} > max{xi : i > j}
= 0 else. (12)

Thus Ij(x) is the index where the N -vector x is maximal, taking care to avoid ambiguities
when there are ties, and to ensure that

∑
j Ij(x) = 1.

In these terms, the evolution of the renormalized1 log-likelihoods Xj(t) can be expressed
as

dXj(t) = Ij(X(t)) (dYt − 1
2
µdt)

= Ij(X(t)) (dŴ (t) + µ(πj(t)− 1
2

) dt) (13)

≡ Ij(X(t)) dZt, (14)

say. Since

πj(t) =
eµXj(t)∑N
i=1 e

µXi(t)
(15)

is a function of X(t), the SDE (13) is an autonomous SDE, but the coefficients are not
Lipschitz, or even continuous, so the sense in which the SDE has a solution needs to be
clarified.

We shall address this by firstly studying the SDE (13) without the drift term:

dXj(t) = Ij(X(t)) dWt, (16)

where W is a standard Brownian motion. To appreciate the issues involved, let us first consider
the case N = 2, when the SDE is

dX1(t) = I{X1(t)>X2(t)} dWt = I{X1(t)−X2(t)>0} dWt (17)

dX2(t) = I{X2(t)≥X1(t)}, dWt = I{X1(t)−X2(t)≤0} dWt. (18)

So if Yt ≡ X1(t)−X2(t) we have the celebrated Tanaka SDE

dYt = sign(Yt) dWt (19)

for Y , where the definition of sign is the correct one for the definition of semimartingale local
time - see Theorem IV.43.3 of Rogers and Williams [2000]. There is no strong solution to this
SDE, but there is a weak solution, represented by taking Y to be a Brownian motion started
at y0 = X1(0)−X2(0), which we may as well suppose is positive, and then defining

dWt = sign(Yt) dYt = d|Yt| − dLt (20)

1In Posner and Rumsey [1966], the signal has a constant volatility σ, as well as the drift µ. We could always
scale the signal to turn the volatility to 1, and indeed we could also replace µ by any desired positive value;
this is equivalent to a constant rescaling of time, which will not affect optimality of a search policy.
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where L is the local time of Y at zero. Then we have

dX1(t) = I{Yt>0} dYt = d(Y +
t )− 1

2
dLt. (21)

Thus

X1(t) = X2(0) + Y +
t − 1

2
Lt (22)

X2(t) = X2(0) + Y −t − 1
2
Lt. (23)

In view of the above, we realize:

• We cannot hope for (16) to have a strong solution;

• We might obtain uniqueness in law for all initial values;

• If all the Xj start from 0, the sum
∑

j Xj(t) is a Brownian motion when N = 2;

• If all the Xj start from 0, the running minimum Xj(t) ≡ inf{Xj(s) : s ≤ t} is the same
for all j when N = 2.

For general N , we have the analogous conclusions.

Theorem 1. For all starting values X(0), the SDE (16) has a weak solution which is unique
in law. If X(0) = 0, then

(1)
∑N

j=1Xj(t) ≡Wt is a Brownian motion;

(2) the running minimum processes coincide:

Xj(t) ≡ inf{Xj(s) : s ≤ t} = N−1W (t) ≡ X(t) (24)

(3) for all t ≥ 0,
Xj(t) = X(t) for all but at most one index j; (25)

(4) Xj(t)−X(t) = W (t)−W (t) if Xj(t) > X(t);

(5) The process

Xk(t)− (N − 1)−1
∑
j 6=k

Xj(t) =
NIk(X(t))− 1

N − 1
(W (t)−W (t)) (26)

is a martingale.

Theorem 1 is proved in Appendix A. It deals immediately with the question of existence
and uniqueness of solutions of (13), because any weak solution to (16) can be transformed by
change of measure into a weak solution to (13), and vice versa.
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4 The value of FTL.

Our aim in this Section is to discover the value function V (x1, . . . , xN ) of the FTL policy, where
xj denotes the initial value of the jth log-likelihood xj = µ−1 log zj(0). It does not appear
possible to express this in closed form, but we can find a recursive algorithm for computing
the value numerically. It is obvious that V is a symmetric function of its arguments, so we
will make the convention in what follows that the arguments of V have been arranged in
decreasing order:

x1 ≥ x2 ≥ . . . ≥ xN . (27)

It is also obvious that the value will not be changed if we add the same constant to all the
arguments.

Now suppose that all the inequalities in (27) are strict, and we apply the FTL rule. What
happens is that initially we observe the most likely box, box 1, up until the time τ2 when X1

first falls2 to x2. At that time, X2 begins to move, and in accordance with Theorem 1 we find
that

dX1(t) = dX2(t) = 1
2
dZt, max{X1(t), X2(t)} −X1(t) = Zt − Zt. (28)

This continues until the first time τ3 that one of X1, X2 (and hence both) falls to x3. Thereafter
we observe the boxes 1, 2, 3 with

dX1(t) = dX2(t) = dX3(t) = 1
3
dZt, max{X1(t), X2(t), X3(t)} −X1(t) = Zt − Zt.

This continues sequentially, with the Xj starting to move one after another, until all the Xj

achieve a common minimum xN at time τN , or, of course, the termination criterion is achieved.
So we see that calculation the value comes down to solving a sequence of first-exit problems,
which we formalize in the following result.

Theorem 2. Suppose that x1 > x2 > . . . > xN , and let Vn(x, xn+1, . . . , xN ) denote the
value if we start with x1 = x2 = . . . = xn = x > xn+1 > . . . > xN . Then the values
Vn(xn, xn+1, . . . , xN ) can be calculated recursively as

Vn(xn, xn+1, . . . , xN ) = An(xn) +
Bn(xn)

1 +Kn(xn)
, (29)

where
Kn(y) ≡ n− 1 + bne

−µy, bn ≡ eµxn+1 + . . .+ eµxN , (30)

where Bn is the solution to the ODE (p0 ≡ 1− ε)

(1− p0(1 +Kn(y)))B′(y) = (n− 1)µB(y) +
2n(Kn(y)− 1)

µ
−

−2(1− 2p0)

µKn(y)
(Kn(y)− n+ 1)(Kn(y) + 1), (31)

2Of course, the termination condition may have been achieved before that time.
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with boundary condition

B(xn+1) =
(1 +Kn(xn+1)){µVn+1(xn+1, . . . , xN )− 2q(xn+1)(1− 2ε)}

µ{1− p0(1 +Kn(xn+1))}
, (32)

and where

0 = A(y) + (1− ε)B(y)− 2q(y)(1− 2ε)/µ (33)

q(y) ≡ µ−1 log{ (1− ε)(n− 1 + bne
−µy)/ε }. (34)

The recursion begins at n = N with the Posner-Rumsey value:

VN (xN ) = MPR ≡
2

µ2

[
N − 2

N − 1
(Np0 − 1) + (2p0 − 1) log

(
1− ε

ε/(N − 1)

)]
. (35)

Proof. Holding xn+1, . . . , xN fixed, we let f(s, y) denote the value when the running minimum
of X1, . . . , Xn is y ∈ [xn+1, xn], and the unique leading particle is at y + s ≥ y. The success
criterion will be satisfied if

eµ(y+s)

eµ(y+s) + (n− 1)eµy + bn
= 1− ε, (36)

where bn is given by (30). Hence successful termination occurs when

s = µ−1 log{ (1− ε)(n− 1 + bne
−µy)/ε } ≡ q(y). (37)

Now up until τn+1, in terms of Z we have that

f(Zt − Zt, n−1Zt) + t is a martingale.

The probability that we are viewing the correct box is

p(s, y) =
eµ(y+s)

eµ(y+s) + (n− 1)eµy + bn

=
eµs

eµs + (n− 1) + bne−µy

≡ eµs

eµs +Kn(y)
, (38)

where Kn is defined at (30). Using Itô’s formula, we arrive at the equations

0 = 1
2
fss + (p(s, y)− 1

2
)µfs + 1, (39)

0 = −nfs + fy (s = 0) (40)

with boundary conditions

f(q(y), y) = 0 ∀y ∈ [xn+1, xn], (41)

f(0, xn+1) = Vn+1(xn+1, . . . , xN ). (42)
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We see that (39) is a second-order linear ODE in the variable s, whose general solution can
be shown by routine calculations to be

f(s, y) = A0(y) +
B0(y)

eµs +Kn(y)
+

2s

µ
(1− 2p(s, y)). (43)

for some functions A0, B0. Equivalently, we may express the solution as

f(s, y) = A(y) +B(y)p(s, y) +
2s

µ
(1− 2p(s, y)) (44)

for some functions A, B. The boundary condition at reflection (40) leads to the equation

(n− 1)µB(y)

1 +Kn(y)
+

2n(Kn(y)− 1)

µ(Kn(y) + 1)
= A′(y) +

B′(y)

1 +Kn(y)
(45)

and the boundary condition (41) gives us

0 = A(y) + (1− ε)B(y)− 2q(y)(1− 2ε)/µ. (46)

This allows us to express A(y) as a function of y and B(y), reducing the ODE (45) to a
first-order linear ODE for B. From (46) we find that

A′(y) = −p0B′(y) +
2(1− 2p0)

µKn(y)
(Kn(y)− n+ 1). (47)

Returning this to (45) leads to the first-order ODE (31) for B in y ≥ xn+1. The boundary
condition (42) together with (46) becomes the boundary condition (32).

At the final stage, VN is a function of just one variable, and p(s, y) is independent of y;
the form (44) collapses to

f(s) = AN +BN p(s, 0) +
2s

µ
(1− 2p(s, 0)) (48)

with the boundary conditions

f(q(0)) = 0, f ′(0) = 0. (49)

Solving this for AN , BN leads to the Posner-Rumsey solution (35).

5 Counterexamples for the optimality of FTL

In this section, we introduce an alternative strategy that can beat FTL in some circumstances.
We make use of a classical result for the exit time of a Brownian motion at two boundaries.
It was apparently first derived by Darling and Siegert [1953].
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Lemma 1 (Darling and Siegert [1953]). Let W (t) be a Brownian motion with drift λt and
variance σ2t, and started at x. Let ρ = λ/σ2. Consider the boundaries a and b such that
a > x > b. Then exit at one of the boundaries occurs with probability 1, and the probability of
exit at a is given by

P (x, a, b, λ, σ2) =
e−2ρb − e−2ρx

e−2ρb − e−2ρa
.

Conditional on exiting at a, the expected time is given by

Fa(x, a, b, λ, σ
2) =

1

λ

[
(a− x) +

2(a− b)e−2ρa

e−2ρb − e−2ρa
− 2(x− b)e−2ρx

e−2ρb − e−2ρx

]
.

Conditional on exiting at b, the expected time is given by

Fb(x, a, b, λ, σ
2) =

1

λ

[
(x− b) +

2(a− b)e−2ρa

e−2ρb − e−2ρa
− 2(a− x)e−2ρa

e−2ρx − e−2ρa

]
.

Remark. Observe that Fa(x, a, b, λ, σ
2) = Fa(x, a, b,−λ, σ2). The same equality holds true

for function Fb. This would be useful since, by (6), the drift of X(1)(t) is either µ/2 or −µ/2.

Now we introduce an alternative strategy, which we call “Strategy B” . For simplicity,
let us consider three boxes with initial values x1 > x2 > x3 (and thus prior probabilities
π1 > π2 > π3). We shall suppose that

π1(0) ≡ eµx1

eµx1 + eµx2 + eµx3
< 1− ε < eµx1

eµx1 + 2eµx3
, (50)

so that there exists a unique a ∈ (x3, x2) such that

eµx1

eµx1 + eµa + eµx3
= 1− ε. (51)

Strategy B observes X2(t) until it reaches a or x1. If X2 reaches a before x1, then the objective
is achieved, in view of (51). Because of Lemma 1, we know the mean of this stopping time, and
the probability that exit happens at x1. Otherwise, if X2 reaches x1 before a, we now continue
with the FTL policy, whose mean remaining time to finish will be V (x1, x1, x3), which can be
calculated according to Theorem 2.

By fixing µ = 1, x3 = 0 and searching over the corresponding domain of (x1, x2), we obtain
a few counterexamples for different values of ε. These are presented in Table 1.

6 Further discussion

6.1 Discussion of the work of Klimko and Yackel [1975]

Klimko and Yackel [1975] gave a proof for the optimality of FTL for arbitrary prior distribu-
tion; however, according to our counterexamples, this conclusion cannot be correct. Here we
explain why their proof is incorrect.
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ε x1 x2 EA[T ]× 102 EB[T ]× 102

0.4 2 1.4 3.633 3.464
0.3 2.7 1.7 3.053 2.936
0.2 4.05 2.6 1.832 1.797
0.1 6.2 4.0 3.749 3.738
0.05 10.3 7.4 10.6482 10.6476

Table 1: Counterexamples for the optimality of FTL with N = 3, µ = 1 and x1 > x2 > x3 = 0.
EA(T ) denotes the expected search time of the FTL strategy, which can be computed using
Theorem 2. EB(T ) denotes the expected search time of Strategy B, which can be computed
as explained above.

Consider that we start the search by choosing one box to observe until π1(t) reaches either
π1 + α or π1 − β, assuming π1 > · · · > πN . Denote this stopping time by τ and assume that
there is no switch of the observed box before τ . Thus for t ∈ [0, τ ], there are N possible search
rules. In both the proofs of Lemma 3.4 and Theorem 3.5 in Klimko and Yackel [1975], the
authors assume that the posterior distribution at τ is independent of the search rule, which
is incorrect. For example, their proof for case (i) of Theorem 3.5 relies on this incorrect
assumption (the authors write that “furthermore, the posterior distribution at exit time are
also independent of the rule used.”)

For a concrete example, consider N = 3 and π(0) = (0.5, 0.25, 0.25). We wish to use this
example to further explain why the reasoning of Klimko and Yackel [1975] is incorrect. Let
τ1 be the exit time of π1 at either 1− ε or 0.4, and assume no switch of observed box before
τ1. Lemma 3.1 of Klimko and Yackel [1975] correctly states that in order to minimize Eπ(τ1)
we should choose to observe box 1. However, if box 1 is observed and π1 exits at 0.4, at τ1
we have the posterior probability π(τ1) = (0.4, 0.3, 0.3) ≡ πA; if box 2 is observed and and π1
exits at 0.4, we have π(τ1) = (0.4, 0.4, 0.2) ≡ πB. The inductive argument used in the proof of
Lemma 3.4 of Klimko and Yackel [1975] now fails because it is no longer clear whether πA or
πB would lead to a smaller expected search time after τ1. In fact, according to our numerics,
πB would give a smaller expected search time if FTL is applied.

6.2 Open problems

Our work gives rise to several open problems. First, what is the optimal strategy for this
optimal scanning problem for any prior distribution? For decades, it has been (incorrectly)
assumed that FTL is optimal. Indeed, as we have shown, FTL is sub-optimal at least for some
values of (π1(0), . . . , πN (0)).

Another open problem concerns whether FTL is optimal for the case of uniform prior
distribution. There is already a proof given by Zigangirov [1966], but as already mentioned,
we found the argument presented to lack clarity in various places, so we cannot be confident
that the result is established.

So the answer to the question in the title is, ‘We don’t know, but we know that it is not
always best to follow the leader!’
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A The SDE dX = I(X) dW.

The aim in this appendix is to prove Theorem 1. Until further notice, we shall focus on the
case Xj(0) = 0 for all j. To begin with, we present two results about any solution of the SDE
(16)

dXj(t) = Ij(X(t)) dWt, Xj(0) = 0 ∀j. (52)

Proposition 1. For all i, Xi
t = X1

t ≡ Xt.

Proof. For any a < 0, we let Hj(a) = inf{t : Xj(t) ≤ a}. If it were the case that for some
i 6= j we have Xi(Hj(a)) > Xj(Hj(a)) = a, then there has to be some time interval (s, u)
containing Hj(a) throughout which Xi(t) > a. This means that throughout (s, u) the process
Xj is not the leader, so it does not move. This contradicts the definition of Hj(a). Therefore
Xi(Hj(a)) ≤ a for all i 6= j, and hence Hi(a) ≤ Hj(a) for all i 6= j. Since we can interchange
the rôles of i and j, it must be that Hi(a) = Hj(a) for all i 6= j, and the result follows.

Proposition 2. For all t ≥ 0, W t = NXt.

Proof. Observe that
∑N

j=1Xj(t) = Wt, since
∑

j Ij(x) ≡ 1, which proves statement (1) of
Theorem 1. With the notation of the proof of Proposition 1, we have that for any a < 0

Xj(H(a)) = X(H(a)) = a ∀j,

where H(a) denotes the common value Hj(a). Therefore W (H(a)) = Na. Further, for any
t < H(a) we have Xj(t) > a, and thus W (t) > Na. So it must be that H(a) = inf{t : W (t) ≤
Na}, and the result follows.

Remark. Statement (2) of Theorem 1 is now proved.

Proposition 3. On a suitable probability space, a solution to (52) may be constructed.

Proof. Consider the Itô excursion point process description of Brownian motion, using notation
and terminology from Ch VI of Rogers and Williams [2000]. According to Proposition VI.51.2,
the rate of excursions which get at least x > 0 away from zero is

n({f ∈ U : sup
t
|f(t)| > x}) = 1/x, (53)

and the full excursion law is specified in various ways. We write U+ for the space of non-
negative excursions:

U+ = {f : R+ → R+|f−1((0,∞)) = (0, ζ) for some ζ > 0}. (54)

We let n+ be the law of excursions away from zero of |W |, so that

n+({f ∈ U : sup
t
f(t) > x}) = 1/x. (55)
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Now let Π be a Poisson random measure on (0,∞)× U+ × {1, . . . , k} with mean measure

MN ≡ N−1dt× n+(df)× µN , (56)

where µN ({j}) = 1 for each j = 1, . . . , N . Now we define the clock

T (`) =

∫∫∫
(0,`]×U+×SN

ζ(f) Π(ds, df, dj), (57)

with inverse
Lt = inf{` : T (`) > t}. (58)

The local time L remains constant through all excursion intervals; let

gt ≡ sup{s : Ls < Lt} (59)

denote the left end of the excursion including time t. Finally, we may define

Xj(t) = −N−1Lt + f(t− gt) if (Lt, f, j) is a point of Π; (60)

= −N−1Lt else. (61)

Proposition 4. Uniqueness in law holds for (52).

Proof. Firstly, let us deal with the case N = 2. We saw in Section 3 that any solution to
the SDE (16) can be represented in terms of the Brownian motion Y defined at (19) by the
equations (22), (23), so the law of the solution (X1, X2) is uniquely determined.

The case N ≥ 3 requires a little more subtlety. Take any j 6= k in {1, . . . , N}, and define

At =

∫ t

0
(Ij(X(s)) + Ik(X(s))) ds, (62)

τt = inf{u : Au > t}. (63)

Notice that

(1− Ij(X(t))− Ik(X(t))) dXj(t) = Ij(X(t))(1− Ij(X(t))− Ik(X(t))) dWt = 0 (64)

so Xj , Xk do not change when the clock A is not growing. Therefore if we define

X̃j(t) = Xj(τt), X̃k(t) = Xk(τt), (65)

we have
inf{X̃j(s) : s ≤ t} = Xj(τt) = X(τt). (66)

With a slight overloading of notation, we have

dX̃j(t) = Ij(X̃(t)) dW̃t,

dX̃k(t) = Ik(X̃(t)) dW̃t,
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so the pair (X̃j , X̃k) is a solution of the SDE for the case d = 2. But we know that uniqueness in
law holds for this situation, so in particular we know that at any time t such that X̃j(t) > X̃k(t)
we must have

X̃k(t) = inf{X̃k(s) : s ≤ t} = inf{X̃j(s) : s ≤ t} = X(τt). (67)

But the choice of the pair j, k was arbitrary, so we deduce that

whenever Xk(t) > X(t), it must be that Xj(t) = X(t) for all j 6= k.

This is statement (3) of Theorem 1. In view of the facts that
∑

j Xj = W and X = N−1W ,
if at time t we have Xk(t) > X(t) then

Xk(t)−X(t) =
∑
j

{Xj(t)−X(t)} = Wt −W t, (68)

proving statement (4) of Theorem 1.
The picture of the solution of (52) is now clearer: each excursion away from 0 of W −W

is assigned to exactly one of the Xj . We shall now prove that the probabilistic structure of
any solution to (52) coincides with the probabilistic structure of the solution constructed in
Proposition (3).

For this, define

Aj(t) ≡
∫ t

0
Ij(X(s)) ds, τj(t) ≡ inf{s : Aj(s) > t}, Xj(t) = Xj(τj(t)). (69)

Thus each Xj is a standard Brownian motion. In fact, the Xj are independent Brownian
motions, as we see by the following argument. Fix any t1, . . . , tN > 0, and any θ1, . . . , θN ∈ R.
Then

Mt ≡ exp
[ N∑
j=1

{iθjXj(t ∧ τj(tj))− 1
2
θ2jAj(t ∧ τj(tj))}

]
is a bounded martingale3, so

1 = EM0 = EM∞ = exp
[ N∑
j=1

{iθjXj(tj)− 1
2
θ2j tj}

]
.

Hence the Xj(tj) are independent zero-mean Gaussian, and the independence of the Xj fol-
lows. Thus if we decompose each Xj into its Poisson process Πj of excursions away from the
minimum as in Proposition 3, then the Πj are independent. Therefore if we define a random
measure Π̄ on (0,∞)× U+ × {1, . . . , k} by

Π̄(B × {j}) = Πj(B)

for any Borel B ⊆ (0,∞)×U+, it can be seen that Π̄ is a Poisson random measure, with mean
measure dt×n+(df)×µN , where as before µN ({j}) = 1 for j = 1, . . . , N . This is the measure

3This is proved using Itô’s formula, and the fact that d 〈Xj , Xk〉 = 0 for j 6= k.
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MN defined at (56), but scaled up by a factor of N . A point in (0,∞)× U+ × {1, . . . , k} is a
triple, where the final component in {1, . . . , N} we refer to as the label. If we take all points
in Π̄ with label j, we see the Poisson point process of excursions of a Brownian motion (in
fact, Xj); if we take all points in Π̄, we see the Poisson point process of a Brownian motion
(in fact, W ) but scaled up by a factor of N . This means that the local time of the totality
of all points in Π̄ is growing N times as fast as the local time of the corresponding Brownian
motion, explaining the factor N−1 in expressions (60), (61).

Proposition 5. For any k, the process

Mt ≡ Xk(t)− (N − 1)−1
∑
j 6=k

Xj(t) =
NIk(X(t))− 1

N − 1
(W (t)−W (t)) (70)

is a martingale.

Proof. Firstly we verify the algebraic equivalence of the two sides of (70). If Xk is the lead
process at time t (that is, Ik(X(t)) = 1), then from (68) we have Xk(t) = W (t)−W t +X(t),
and Xj(t) = X(t) for j 6= k, so the two sides of (70) agree in this case. If Xk is not the lead
process at time t, then similarly the left-hand side of (70) is equal to −(N−1)−1(W (t)−W (t)),
as required.

Now take 0 < s < t, any A ∈ Fs, and let τ = inf{u > s : W (u) = W (u)}. Notice that

(N − 1)E[Mt −Mτ : A, τ < t] = E[(NIk(X(t))− 1)(W (t)−W (t)) : A, τ < t]

= E[NIk(X(t))− 1 : A, τ < t] E[W (t)−W (t) : A, τ < t]

= 0

since the label of any excursion is independent of the path of that excursion, and each label
has equal probability 1/N . Therefore

E[Mt −Ms : A] = E[Mt −Ms : A, τ ≤ t] + E[Mt −Ms : A, τ > t]

= E[Mτ −Ms : A, τ ≤ t] + E[Mt −Ms : A, τ > t]

= E[Mτ∧t −Ms : A]

= E[(N − 1)−1(Ik(X(s))− 1)(Wτ∧t −Ws) : A]

= E[E(Wτ∧t −Ws|Fs) (N − 1)−1(Ik(X(s))− 1)IA]

= 0,

because the label of the lead process does not change during [s, τ ], nor does W .

This completes the proof of Theorem 1 in the case where X(0) = 0. The general case
follows by concatentation. So if we have X1(0) > X2(0) > . . . > XN (0), then up until the
time Tj ≡ inf{t : X1(t) = Xj(0)} none of the processes Xi, i ≥ j has moved. Up until T2,
only X1 is moving, so this behaves like Brownian motion. Between T2 and T3, both X1 and
X2 are moving with a common minimum, so we may apply Theorem 1 with two processes,
both starting at the same place; then between T3 and T4 we have three moving processes, and
so on.
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