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Abstract

This paper approaches optimal control problems for discrete-time controlled Markov pro-
cesses by representing the value of the problem in a dual Lagrangian form; the value is ex-
pressed as an infimum over a family of Lagrangian martingales of an expectation of a pathwise
supremum of the objective adjusted by the Lagrangian martingale term. This representation
opens up the possibility of numerical methods based on Monte Carlo simulation which may
be advantageous in high-dimensional problems, or in problems with complicated constraints.
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1 Introduction

The title of this paper refers to this: we intend to show that the solution of a stochastic optimal
control problem can be characterised in terms of a pathwise optimisation. In simple terms,
this means that we can randomly generate a sample path, and then solve a deterministic
optimisation for that sample path on its own. Repeating, we can get an approximation to the
solution of the problem.

This approach is in contrast to the more familiar method of trying to find the value
function of the problem, and the associated optimal control; this more familiar approach
requires consideration of all possible future evolutions of the process at each time that a
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control choice is to be made. This method is well developed, and generally effective, but there
are certainly problems (such as the optimal control of a diffusion in high dimensions) where
the approach is impractical.

The approach we follow is foreshadowed by various papers in the control literature, where
the relationship between deterministic and stochastic optimal control is explored. There is for
example the paper of Davis & Burstein [5], where the theme of optimal control of a diffusion
process is considered. The tools applied, notably the use of the stochastic flow of a ‘null’
solution to the optimal control problem, are strongly specific to that particular context, but
the form of the solution, involving a pathwise optimsation of the original objective modified
by a Lagrangian term, invites extension. Other interesting papers around this theme are by
Rockafellar & Wets [10], Wets [12] and by Back & Pliska [2], who present the maximisation of
some concave path functional over a family of adapted processes in terms of the maximisation
of the same functional modified by a linear (Lagrangian) functional over the larger family of
measurable processes. The linear functional is of course the gradient of the objective at the
optimum, in some suitable sense.

Both of these contributions leave the representation of the Lagrangian form of the solution
in quite abstract terms. By contrast, the approach to be followed in this paper derives simple
and quite explicit representations which may be the basis for effective numerical techniques.
This approach does not require any convexity assumptions on the objective, unlike [10],[12],
[2], and the proofs are simple and completely elementary. Although our first result has the
appearance of the ‘Lagrangian form’ of the problem studied by [10], [12], [2], the subsequent
results do not.

The approach of this paper is inspired by the recent result of Rogers [11], proved indepen-
dently by Haugh & Kogan [7], on Monte Carlo pricing of American options!. This result says
the following. Given an adapted process? (Zt)o<t<T, the value Y at time 0 of the optimal
stopping problem satisfies

Yy = supEZ;
T€T
= inf E[ sup (Z— My)], (1)

MeMo 0<t<T

where 7 is the family of stopping times, and M, is the space of uniformly-integrable martin-
gales started at 0. The importance of this result is that it gives a way to find the value of an
American option via Monte Carlo simulation; given the sample path of Z — M, we simply stop
at the best place, without considering what might be happening on any other path, and in
particular without considering what the value function might be at any time. The numerical
methods presented in [11] are crude, but good enough to get upper and lower bounds in a
number of interesting examples which were different by about 0.5%2%. Andersen & Broadie
[1] present a more systematic way to search out ‘good’ martingales, and achieve bounds that
are generally better. Jamshidian [8] proposes a ‘multiplicative’ version of the result of [11],
[7].

1See Davis & Karatzas [6] for a weaker partial result.
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Now the optimal stopping problem is a particularly simple class of optimal control prob-
lems; could any variant of the result (1) be used for more general stochastic control problems?
Passing to complete generality introduces a couple of major complications; the first is that the
space of possible controls is no longer a two-point set, but can be very large; and the second
is that the choice of controls now affects the law of the process, and there is no canonical
choice. However, the main message of this paper is that we can extend the dual methodology
that worked so well for optimal stopping problems; we present a number of different ways of
doing this, and explore some numerical examples. We present results only in a discrete-time
setting; there are doubtless continuous-time analogues, but we prefer to present the main
ideas in the technically simplest form. Our main focus is on the development of Monte Carlo
methodologies that use the main ideas of the paper to solve optimal control problems. Existing
techniques for solving Hamilton-Jacobi-Bellman equations by PDE methods are reasonably
satisfactory provided the problem is not too involved, but it does not take much imagination
to come up with examples that are so complicated that only a simulation methodology could
possibly work.

2 The problem and its solution.

Consider the problem of controlling a Markov process X taking values in some set X over
choice of control processes a in the class A of adapted processes with values in some set U of
permitted controls. The problem has finite time horizon 7', and objective

T-1
B| Y 5(X0)+ F(xn) | 2
=0
to be maximised over adapted a € A, where the controlled transitions have density p(z,y;a)

with respect to some reference Markovian transition P*. We write Vj(x) for the value function
of the problem starting from state x at time j:

T-1
Vi) =sup B| 3 (%) + F 1)

Xj:x]. (3)

r=j
We may view the effect of control as being an alteration of the law of the underlying process
X. If we do this, introducing the notation

t—1

Ay(a) = H‘P(XMXT-H?GJT)’ (4)
7=0

we may recast the optimisation problem in the form

T—1
Vo(Xo) = sup E* [ > Aj(a)fi(X;,a5) + Ar(a)F(X7)|, (5)
ac :
7=0
where the expectation is now taken with respect to the fixed reference probability P*. The
first result is the following.



Theorem 1

T-1
V<Xo>—mlglE[sup{ZA o) (X )—nm+E;<nj+1>}+AT<a>F<XT>}], (6)

(h =0
where the random variables n; are defined in terms of the functions (h;) via
Nj+1 = hj1 (X)) (X, X aj)- (7)

REMARKS. (i) To get from the form (5) to (6), we have subtracted a martingale-difference
sequence 1;11 — Ej(n]qu) from the objective, then done a pathwise optimisation over the
controls, taken expectations, and finally minimised over choice of the martingale difference
sequence. This is formally similar to what we did at (1); as there, the martingale-difference
sequence can be interpreted as a Lagrangian process to account for the adapted constraint
on the controls a. Once we have included this term in the objective, we optimise pathwise,
allowing ourselves to see the entire path and pick controls in an anticipative way.

(ii) As we shall see, the minimum is attained, when we take h; = V;. This fact is of little
practical value, since we cannot assume that we know V - it is after all the solution we seek!
Nevertheless, this result will allow us to obtain upper bounds on the value function.

(iii) The choice of reference measure can be critical in practice. We cannot expect a simulation
method to work well if most of the paths simulated are quite unlike the paths of the optimally-
controlled process.

PRrOOF. The problem is to find

Vo(Xo) = sup vo(Xo;a)
acA

where of course we define

T-1
vo(Xo;a) = sup E* [ Aj(a) fi(Xj,a;) + Ar(a)F(X7) ] .

acA =0

Now fixing a € A, for any martingale M,

N

1
Uo(XQ; a) = B Aj(a)fj(Xj, aj) + AT(G,)F(XT) :|
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where in the final expression we have specialized somewhat by writing

Ni+1 = hjr1(Xj11) (X5, Xjp15a5).

Hence
Vo (Xo) = supwvg(Xo;a)
acA
~ [ZA (X 0) =1 + B )} + Arla) ()

< [sup{ZA M5 (X505) = o1 + B )} + Arl@F () } |

Taking the infimum over the functions h;, we get

T—1
VollXo) < inf B [sup{ZA W (X05) = myoa + B o)} + Ar@F (i) | 9
In fact, there is equality in (8). To see this, we use the Bellman equation
V@) = swp B f@.)+ Vir(Xp0) | X = 20, =
= Sup{ fi(@,a) + E [V}'+1(Xj+1)tﬂ(3?7Xj+1;a)] }
> fi(z,a) + E* Vi (Xj)e(r, Xj; a)] 9)

for any a. Now we take h; = Vj; the right-hand side of (8) is at most

RHS < E*[Sup{ Ar(a)F(Xr) + ZA = Vit (Xj1)eo(X;, Xj13a5)} } ]
a
= Vo(Xo)
since Vp = F'; the sum telescopes. Combining with (8) gives the result. 1

The study [11] of Monte Carlo valuation of American options showed that the optimal
policy was in some sense a ‘minimum-variance’ policy, and there is an analogue in this setting
too. Writing

T-1

Y(X;h) = sup{z A (@) (5 (X a7) — e + B3 ()} + AT<a>F<XT>}

7=0

(where the 7; are as at (7) ), Theorem 1 says that V(Xo) = inf(,;) E*[Y(X;h)]. Moreover,
the infimum is attained by taking h; = Vj, and in that case the proof of Theorem 1 shows
that the random variable Y (X; V') is almost surely constant. We therefore have the following
alternative characterisation of the optimal solution.



Corollary 1 Assuming that Vy is non-negative®, the problem

inf E*[Y(X;h)?
o [Y(X;h)"]

is solved by taking h; = Vj.

As in the case of Jamshidian’s version of the optimal stopping result, we have a multiplica-
tive form of Theorem 1.

Theorem 2
T—1

Vo(Xo) < inf B” [Sup{z Aj(a) £;(X;,a;) =2 4 Ap(a)F(X7) } ] (10)
=0 Ej Mj+1]
where the random variables n; are positive. Provided
95 (X5, Xjr1,a5) = Vi(Xj) = Vi1 (Xj41) (X5, Xjr1;a) > 0, (11)
the result (10) can be strengthened to the statement
T-1
Vo(Xo) = mlnE [ sup{z Aj(a) f(X;,aj) ?7“ + Ar(a)F(X7) } ] , (12)
n> = Einj+1]

with the minimising choice of N1 being nj1 = g;f(Xj,XjH, aj).

REMARK. Condition (11) could be weakened to non-negativity; we simply need to change f;
to f; — j, and apply the Theorem to this modified problem (whose value is T'(T' — 1)/2 less
than the value of the original problem).

ProOOF. The proof follows similar lines to the proof of Theorem 1. Fixing a € A, and letting
7 be any strictly positive adapted process,

w(Xoia) = E| S M@0 + Ar(@F (X ]
iz
T—-1
= B[ Zn 5000 gL arwF )|
Just as before,
Vo(Xo) = Slelgvo(Xo;a)
= sy [ S 0G0 oo

< B [ sgp{zg Aj(a) f;(X;, aj) % + Ar(a)F(X7)

H/_/

3Non-negativity is needed only because we use the reasoning E*Y(X;h)? = var(Y(X;h)) + E*(Y(X;h))? >
E*(Y(X;h))? > (min E*Y(X;h))?, and the final step is not true unless we have E*Y (X;h) > 0 for all h.



Taking the infimum over all choices of 1 leads to the first statement (10).
For the second statement (12), we again use the inequality (9) of the Bellman equation;
positivity of g7 allows us to conclude that
fi(X;, a5)

1 i+ S Mt
Ej (Mj+1] ’ ’

and once again the sum telescopes to Vj(Xp). 1

In both of these results, the effect of the controls is to modify the measure; if we simulate
paths according to the measure P*, then the controls applied do not affect the path of X, they
simply affect the value assigned to the path. It may sometimes be more helpful to be able
to allow the controls to act on the path directly, for which we need to formulate the problem
slightly differently.

We shall suppose that if some control sequence (aj);tol is chosen, and the initial value X
for the process is given, then the trajectory X is determined by the relations

Xj+1:§(j,Xj,aj,aj+1), (jZO,...,T—l) (13)

where the ¢; are independent random variables with common distribution, which we could
take to be uniform on [0, 1] if we wish. The function £ expresses the Markovian evolution; for
example, we could have a controlled AR(1) process

Xjt1=pX;+a;+¢ej11 (14)

with IID N(0,0?) noises €j, in which case the function £ is just linear in its arguments; or
it could be that the process X was a finite-state controlled Markov chain, in which case the
function £ has a straightforward though slightly involved form. From a theoretical point of
view it may be a little unusual to specify a Markov process in this way, rather than through
the transition kernel, but from the point of view of simulating the paths of the process, this
is exactly the way we think of the controlled Markov process!

Given a sequence (h;) of functions of the Markovian state variable, we define

Phjpi(z,a) = Ehj1 (80,2, a,6511)).
Then we have the following result.

Theorem 3

T-1
Vo(Xo) = I(I]lllr)lE[ SUP{Z( i(Xj,a5) = hjr1(Xj1) + Phj (X5, a5)) + F(XT)} ] , (15)

J a j:0

where the X; and aj are related through (13). The minimum is attained by taking hj = V.

REMARKS. The Monte Carlo approach to evaluating the right-hand side of (15) would generate
a sequence of ¢ values, then find the optimal controls. In effect, what this means is that we
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have to solve a deterministic optimisation problem along each path, where the choice of control
will now affect where the path goes to, and doing this is arguably no easier than solving the
Bellman equation for the original stochastic control problem. However, in situations where
this deterministic control problem can be dealt with more simply, there may be value in this
result.

ProoF. This follows closely the lines of the proof of Theorem 1; we leave this to the reader
to check. 1

Theorems 1 and 2 give us a way to approach a stochastic optimal control problem by Monte
Carlo methods, by simulating paths repeatedly, and computing the expressions inside the
expectations (6), (10). However, it is important that this optimisation, over the sequence
(aj)g:ol, can be done efficiently, otherwise the method will be too slow. Fortunately, it turns
out that the optimisation required may be performed recursively, so we have a sequence of
optimisation problems over the choice of only one a; at a time.

To explain this in more detail, let us focus on the form (6). We can rewrite the expression
inside the expectation on the right-hand side,

T—1
Aj(a){fi (X5, a5) = njr1 + Ej (nj+1)} + Ar(a) F(Xr) (16)
=0
m—1
= > () {f5(X5,05) = njr + B (0j21)} + A(@) Zn, (17)
=0
where
= A Ar(a)
Zm = ]zn A:,L(a) {£i(Xj,a5) —nj1 + Ef (i)} + mF(XT)
contains all dependence on ayy, .. .,ar—1. Recursively,
N Apyi(a
Zm = fm(Xmsam) = M1 + Ep (mt1) + ﬁlcg))Zerl

= fm(Xm7 am) + E:n(nm-i-l) + SO(er Xm+1; am) [ Zmt1 — hm+1(Xm+1) ] .

Assuming we have already got the maximising values of a1, ..., ar—1, this is a maximisation
over a,, only!

3 Towards an algorithm.

It is clear from the statement of Theorem 1 that the choice of the Lagrangian functions (h;)
is critical. The following little result offers a possible approach to finding good choices.

Proposition 1 Suppose that
B = sup ¢(z,7";a) < 0o

a,z,x’



and suppose given a sequence (Vj(o))};o of functions from X to X, with ngo) = F. Define

recursively the functions (Vk(n))gzo form=1,2,... by
. T-1
V(@) = B [ SHP{ZAk,j(a){fj(Xj,aj) ~ VI (X )e(XG, X1 a;)
a j:k‘

+PVj(ﬂ(Xj,aj)} + Ak,T(a)F(XT)} ‘ Xp =1 }’ (18)

forx e X, k=0,...,T, where

j—1
Ak,j(a) = H o(Xr, Xrg150r),
r=k
and
Py(x,a) = E*[p(x, X1;0)9(X1) | Xo =z ]. (19)
Defining

Ay = sup [V (@) = V"V (@)

k=0,....,T, n>1, we have

T
AP <(@1+B) S Al (20)
r=k+1

REMARKS. (i) The result may be vacuous if the A are infinite; a sufficient condition for
finiteness would be the boundedness of the f; and F, but this is not of course necessary.

(ii) The impact of Proposition 1 lies in the fact that ngn) = F for all n, so Ag?) = 0 for all n.
Hence from (20) we conclude that (provided that the Al(gnfl) are finite)

A =0 Wn>T -k

Thus by applying the recursive construction of Proposition 1 we compute the true value
function step by step back from the end. Now in one sense all we have done is to re-express
the familiar backward recursion of the Bellman equation in a more complicated form, but
there is nevertheless something gained; if we are not able to compute the recursive recipe
(18) exactly (as would be the case where we were using Monte Carlo in a high-dimensional

th

problem, for example), we can still use the approzimate output of the n""' stage to begin on

the (n + l)th.
Proor. Clearly,

" n—1 "
VI (X)) e(Xj, Xjrniag) < ViV (X)X, Xy az) + AV (X, X5 a;)
n—1 "

9



and

n n—1 n
PV (X a5) < PV (X 05) + A

so using this in (18) gives us
W) = [sup{z Mg @55 (X5007) = V(X105 X 305)

PV (X ,a5)} + Ak,T(a)F(XT)} ' Xy = ]

< [bup{z A (@ F5(Xj,05) = VT (X 40)0(X, X115 a))
T
+PViTY (X a5} +Ak,T(a)F(XT)} ‘ Xk = 4 +1+B) Y, AP
r=k+1

T
= V@ +a+B) Y Al
r=k+1

Thus

T
V(@) v @) <1+ B) Y A,
r=k+1

and a similar bound on the other side establishes the result.

4 Infinite horizon.

So far we have been considering only finite-horizon problems, but it is at least as important
to develop methods for infinite-horizon discounted problems, as these will generate time-
independent strategies that are easier to interpret and implement. Throughout this section,
we will assume that f is uniformly bounded, and that we aim to find the value function
V:X — X solving

V(z) = sup E* [f(x,a) + Bz, X1;a0)V(X1) ‘ Xo==x ] (21)

Under the assumptions that 0 < 8 < 1 and that f is uniformly bounded, it is well known that
the Bellman operator Lp : L®(X) — L*°(X) defined by

Lgla) = sup £ [f(w) T Bl X a)g(Xy) \ Xo =z ] (22)

is a monotone contraction with unique fixed point the value function V solving (21).

10



To see where the dual method leads in this infinite-horizon setting, we need to introduce
for each h € L*°(X) the operator Ly, : L*°(X) — L*°(X) defined by

Lyg(z) = E* [sup{ f(z,a) — h(X1)p(z, X1;a) + Ph(z,a) + Bo(z, X1;a)9(X1)} ' Xo=uw }
a

(23)
Just as for Lp, the operator £, is a monotone contraction with a unique fixed point, which
we denote by g;. The analogue of Theorem 1 for the infinite-horizon setting is the following.
Theorem 4 Assuming that f is uniformly bounded, the value function V is characterised as
V =inf g =min g} 24
L gp, = I Gp, (24)

where the infimum is attained by taking h = V.

ProOOF. Evidently, the supremum in the definition of £pg will be reduced if we insist that a
must be a function only of Xy and not of X7; therefore

Laglw) = sup B {f(w,a) — h(X1)p(z, X1;0) + Ph(z,a) + Be(x, X1;a)g(X1) ‘ Xo = m]

= SL;pE* [f(x,a) + Bo(x, X1;a)9(X7)
= Lpg(z).

Since LV = V, we deduce immediately that whatever h we shall have £,V > V, and by
induction we conclude that for all n,

X0:$:|

LV > V.

By the Contraction Mapping Principle, L}V — g; as n — oo, and so we have for any h
g =V,

hence V' < inf}, g7 .

To conclude, we observe that taking h = BV gives for any x,a

f(w,a) + Ph(x,a) < sup{f(z,a’) + Ph(z,a)} = V(x).
Hence,

[,hV(.%')

E* [Sgp{f(x,a) — h(X1)p(z, X1;a) + Ph(z,a) + Be(z, X1;0)V (X1)} ‘ Xo = x}

IN

V(z)+ E* [Sgp{—h(Xl)cp(a:,Xl; a) + Be(z, X1;0)V (X1)} ' Xo = x}
= V().

11



By induction, £}V < V, and so taking the limit as n — oo leads to the conclusion that
gp <V. 1

As in the finite-horizon case, we can ask about possible recursive methods for generating a
better approximation to the solution from an existing one. The following result, proved only
under rather restrictive conditions, shows that something can be done.

Proposition 2 Suppose that f is uniformly bounded, and that

B = sup ¢(z,7';a) < oo,

z,x’a

and that 3 is so small that
B(1+ B)
1-06B
Then the sequence (gn)o, generated by taking an arbitrary go € L*°(X) and letting gn41 be
the unique fized point of Lgg, converges to the value function.

< 1.

PROOF. The relation linking g,+1 and g, can be expressed as
Goii(s) = B [sgp{f(x,a) — Bga(X0)(X1)(x, X3 0) + Pga(,a)
+Be(z, X150)gn11(X1) } ‘ Xo=u ]
Tf we set A, = sup, |gn () — gn_1(x)|, then this leads to
Int1(x) < ET [sgp{f(x,a) — Bgn—1(X1)(X1)p(z, X1;0) + BPGn-1(2,0)
LB+ BYA + Bpla, X a)gas (X1)) \ Yoz
so if we set gp11 = gna1 + A, we have
gn+1(z) +A < E° [sgp{f(x,a) — Bgn—1(X1)(X1)p(z, X1;0) + BPgn-1(2,0)
LB B)A, + Bl X1 a) G (K1) + A)} ' Xp= 2 }
< B [sgp{f(w, 2) = Bgn-1(X1) (X1)(z, X130) + BPgn_1(z,)
+6(1+ B)A, + BBA + Beo(x, X1;0)gns1(X1) } ' Xo=2 }

Taking
A= P+ B)Ay,
~  1-0B

12



gives us
Gn1(z) < E*|sup{f(z,a) — Bgn-1(X1)(X1)p(z, X1;a) + BPgn—1(z,a)

+Bp(x, X1;0)gn1(X1)} ‘ Xo=ux ],

from which we conclude that g,+1 = gn+1 — A < gp. A similar argument for the lower bound
gives
B(1+ B)

s An,

AnJrl S

and the result follows.

REMARKS. Proposition 2 shows how we may recursively construct approximations to the
solution using this methodology, provided the discount factor § is small enough. The assump-
tions of Proposition 2 will be unlikely to be satisfied in most applications, but at least the
methodology can be tried; the conditions are sufficient but not necessary!

5 Numerical issues.

We have been discussing characterisations of the optimal solution in terms of pathwise optima
of an objective modified by some ‘Lagrangian’ term. Propositions 1 and 2 offer some template
for the possible numerical solution of the problem, which can be summarised as

(i) propose some approximation (h;) to the value;

(ii) evaluate E*[sup, ...J;

(ili) improve the approximation (h;).

It is unrealistic to suppose that in a general problem we would be able to make a good guess
for V' at the first stage, and so we are forced to envisage some doubly recursive scheme, where
we perform a recursion over the approximations to V', each of which is obtained by a backward
recursion in the time variable. At first sight, this appears a lot more computationally intensive
than the classical dynamic programming approach, which appears to need only a backward
recursion over the time variable; when might the approach presented here be better?

One possible answer to that question is, ‘ When the space X is very large.’” Imagine that
X =R for some moderately large N (30, say), and consider the familiar Bellman equations:

Voo1(z) sup E* | f(z,a) + ¢(z, X1;a) Vo (X7) ‘ Xp1==x ], (1<n<T) (25
Vr(x) = F(x).

The right-hand side of (25) requires an integration over X = R¥ of the value function V,,,
which presents two problems: firstly, how do we characterise V,, numerically, and secondly,
how do we integrate it? Both of these are issues for the alternative approach of this paper
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as well. In either approach we will try to characterise V,, numerically, by storing its value
at a (necessarily sparse) finite set of points, or by approximating it in terms of a parametric
family of functions (for example, as a linear combination of some suitable finite set of ‘basis’
functions). Now in implementing the dynamic-programming approach, the first step in the
algorithm must be to evaluate (25) when n = T at some finite set of points in X = RY -
how are those points to be placed? And as we consider this question, it becomes apparent
that the simple dynamic programming approach is not as simple as it appears; we clearly
would like to place evaluation points in regions where the optimally-controlled process is most
likely to go, but when we are starting out on the dynamic programming algorithm, we do
not know where these are. It is not good enough to pick randomly from the law at time T
of the process under some default control - this law may be completely different from the
law of the optimally-controlled process. It is clear then that we must make some first guess
at the law of the optimally-controlled process, before solving the Bellman equation and then
improving our guess - in other words, we are forced to consider doubly-recursive schemes
even if trying the conventional dynamic-programming approach. An obvious candidate is
policy improvement; at each stage, we have a policy, and we could use the law of the process
under the current policy as the reference measure to determine where to place points, as in
the stochastic mesh method of Broadie & Glasserman [3]. This approach is not obviously
hopeless, though as Broadie & Glasserman emphasise, the generation of the stochastic mesh
needs careful handling; and many of the components of this approach are common to the
alternative methodology presented in this paper.

Even assuming we have made good choices of the evaluation points, the numerical inte-
gration is still an issue. If we are storing V,, at a finite set of points, the integration will
involve the calculation of weights, which will be different for each  and a, and this may be
quite a time-consuming business. An alternative is to approximate V,, by some member of a
parametric family of functions, and holds out more hope; if we can find ‘nice’ functions (-, 6)
for which the expectation

E*[QD(CL‘,XI;CL)I/)(Xl,HﬂXo = x] = Piﬁ(%% 9)

can be given explicitly, then the integration in (25) becomes a function evaluation. While it
may be asking a lot for there to exist such a family of basis functions, if we are working in a
large space X without some such strong regularity, then we will not have a chance of finding
the solution; this assumption is implicit in the approach of Carriere [4]*, for example.

Let us now compare with the numerical approach that would come from the Lagrangian
theory of this paper; for concreteness, we discuss the finite-horizon situation of Theorem 1.
The lesson of Andersen & Broadie [1] in the context of optimal stopping is that in order to find
good dual solutions it is important to consider good primal solutions at the same time. With
this in mind, Proposition 1 suggests a recursive approach; in outline, the algorithm would run
as follows:

STEP 0: Set k = 0;
STEP 1: Set reference measure P*) ( = P* for k = 0);

4This approach was rediscovered and popularised by Longstaff & Schwartz [9].
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(k)

STEP 2: Propose hnk (k)

, approximations to (V5 );

STEP 3: Simulate‘N paths, and optimise pathwise - at each time n, we obtain an approxi-
mation Vékﬂ)(Xy(Lj)) to Vékﬂ) at each of the points Xy(Ll), . ,X,gN) visited by the simulated
paths;

STEP 4: Regress approximate values onto basis - find some linear combination of basis func-
tions (-, ) that matches the values Vn(kJrl)(X,(lj)) at the points X,gj);

STEP 5: Make up P*1. In more detail, the transitions from position z at time n will be
determined by selecting a point Xy(Lj ) from {Xy(Ll), . ,X,SN)} at random, points nearer to x
being chosen with higher probability, and then jumping from the chosen point according to
the transition function for the action a which was optimal for the pathwise optimisation of

that jth path at that time;
STEP 6: k =k + 1; goto Step 3.

While many of the more computationally-intensive elements of this plan are common to the
numerical approach to the Bellman equation®, the selection of the points at which the value
function is to be well approximated is done naturally, and using our current best idea about
where the optimally-controlled process should be.

6 A numerical example.

We shall illustrate the methodology presented by considering a controlled Markov process on
the unit circle T = [0, 27], whose dynamics are given by

X1 =Xe+ e +ag (mod 271') (26)

and where the g4 have density proportional to cos(z). The control a lies in T, and the objective

to be maximised is
T

Z B [cos(X¢) + cos(ay)]. (27)

t=0
For the results reported, we took T'= 15, § = 0.9, and discretised the circle into 40 equally-
spaced points. Approximating the dynamics by the corresponding discretisation gave a con-
trolled Markov process with 40 states and 40 possible actions. We then applied the algorithm
outline of Section 5. The initial paths were generated using ¢ = 0, and our first guess at
the value function was the value of using this null policy. Simulating 800 paths at each pass
through the algorithm, we performed the pathwise optimisations and stored the actions used
at each step along each path, as well as the values obtained. This information was then used to
determine the path law for the next simulation, and the next approximation to the value. We
display the results in Figure 1; the true values are displayed as continuous curves (one plotted
for each value of time-to-go), and the values computed by the algorithm are superimposed

Sin particular, the step-by-step optimisation over a, and the optimisation over @ in approximating the value
functions
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as crosses. As is apparent, the agreement is effectively perfect. The calculation took 21s in
Scilab on a 3.4GHz Pentium 4 processor. Of course, the calculation by standard dynamic
programming took only a tiny fraction of this time, but that is not the point; the point is that
we have shown that at least in a very simple example the Monte Carlo implementation of the
algorithm suggested by the main result of this paper actually does work correctly.
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Figure 1: True value function, with MC results superimposed

7 Conclusions.

This paper has presented a novel strategy for solving stochastic optimal control problems, using
duality ideas. This approach is completely general, but is particularly well suited to problems
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where the statespace is so large that it is hard to determine where the value function should
be approximated closely. The methodology involves modifying the objective by adding in
appropriate martingale differences, and then carrying out a pathwise optimisation, an approach
that is well suited to Monte Carlo evaluation. We have shown that under suitable regularity
conditions a recursive method for improving the martingale difference sequence converges to
the true solution.

Choosing the martingale difference sequence well is of course key to the success of the
method, but we have shown how the characterisation of the solution leads naturally to a
Monte Carlo algorithm for computing the value, and have demonstrated on a very simple
example that this algorithm works correctly.

There remains much work to be done in exploring the usefulness of this approach in more
challenging examples.
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