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1 Introduction

Any academic working in mathematics, physics or engineering will know exam-
ples of bright PhD students who have turned their backs on the profession that
nurtured them, and sought out instead the more uncertain but more lucrative
world of financial services. What do they find themselves doing when they get
there? This largely depends on the job they get (for a large investment bank is a
diverse employer, with many different roles and required skills), but most often
banks are employing people with outstanding quantitative skills because those
are the skills they need.

In particular, a big part of the business of an investment bank is in making
and selling various derivatives1. A very simple example is a (zero-coupon) bond,
where the seller undertakes to pay 1 at a fixed time T in the future, in return
for a payment (typically less than 1!) made by the buyer at time 0. In more
complicated examples, the amounts to be paid can be random, as in a European
put option, which gives the buyer the right to sell one unit of a named stock at a
specified time (the expiry of the contract) for a specified price (the strike price).
However, the holder is not compelled to exercise this right, so he will clearly do
so at expiry if and only if the stock is trading for less than the strike, because
he is then able to buy the stock, and pocket the difference between the current
price and the strike price he gets by selling it to the option writer. The timings
of payments can also be random, as in an American put, where the holder of
the option is allowed to sell the stock for the strike price at any time before the
expiry of the option.

What should be the price the bank charges for a derivative? At one level, the
answer is ‘As much as the market will bear!’ but competition precludes arbitrary

1A derivative is a well-defined financial deal between two parties where the timings and
amounts of payments to be made are specified in the contract.
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profit, and the bank needs to have some idea of how cheaply they can sell the
derivative and still make a profit. Quite viable models and methods exist to help
banks answer such questions, and the job of a quant (as your former PhD student
is now known) is to use such models to come up with prices, and to extend
them to deal with the novel derivatives that are often requested by clients. Such
models will be used to find lower bounds for the prices the banks will charge.
In very liquid (active) markets, the actual price charged may be very close to
that computed in the model, but in less liquid markets it will typically be a lot
higher. This is because the bank does not simply sell a derivative and then wait
for events to determine what their part of the deal is going to cost them; they
engage in hedging, which is to say they take some offsetting position in other
financial assets so as to cancel out (as best they can) any gains and losses to be
made on the derivative. If the market is highly liquid, they are better able to do
this than in an illiquid market, and the price charged reflects this. Indeed, it is
largely true that the price a bank will charge for a derivative is the cost they face
in hedging it, rather than anything that a model tells them.

So pricing and hedging forms a large part of the work your former PhD student
will be doing. In this introductory paper, we will see in Section 2 some of the
basic notions of pricing developed from a perfectly plausible (though slightly un-
conventional) axiomatic standpoint; and we will see in Section 3 how the resulting
expressions suggest an approach to modelling asset prices. This approach (known
as the potential approach) is again rather unconventional, but has overwhelming
advantages in the modelling of complex cross-currency derivatives (for example),
that more conventional approaches struggle with; Section 5 explains why. The
potential modelling approach is actually extremely general, and specific choices
have to be made to apply it in practice - these are discussed in Sections 4 and 6.
We discuss how such models can be calibrated in Section 7, and present the results
of such a calibration in Section 8. As befits an unconventional approach, the form
that hedging takes (explained in Section 9) is also unconventional, but perfectly
tractable. Section 10 concludes and presents further directions for research.

Very little that is in this paper is new; indeed, most of it is in one or more of
[5], [6], [7], [8], [9]. I have said that the potential approach is unconventional,
and it is; for fine expositions of the conventional approach to derivative pricing
and hedging you can consult Baxter & Rennie [1], Karatzas & Shreve [4], Dana
& Jeanblanc [2] (for an account with more emphasis on the economic origins),
or many others - there are plenty. These accounts will tell you a lot about how
pricing and hedging is done today; this account will tell you a little about how it
may well be done tomorrow.
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2 Generalities about pricing

We put ourselves in a filtered probability space (Ω, (Ft)t≥0,P) and considermarket
pricing operators (πtT )0≤t≤T for contingent claims

2:

πst : L
∞(Ft)→ L∞(Fs) (0 ≤ s ≤ t).

The idea is that if Y is some bounded random variable which is Ft-measurable,
then the time-s market price of Y is πst(Y ), again a random variable (because
what we had observed up to time s would affect what we thought this contingent
claim was worth), and again bounded - obviously.

We shall assume that the pricing operators (πst)0≤s≤t satisfy certain axioms:

(A1) Each πst is a bounded positive linear operator from L∞(Ft) to L
∞(Fs);

(A2) If Y ∈ L∞(Ft), Y ≥ 0, then

π0t(Y ) = 0 ⇐⇒ P (Y > 0) = 0.

(no arbitrage)

(A3) For 0 ≤ s ≤ t ≤ u, Y ∈ L∞(Fu), X ∈ L∞(Ft),

πsu(XY ) = πst(Xπtu(Y ))

(intertemporal consistency)

(A4) If (Yn) ∈ L∞(Ft), |Yn| ≤ 1, Yn ↑ Y then πst(Yn) ↑ πst(Y ) (continuity)

Remarks. Axiom (A1) says that the price of a non-negative contingent claim
will be non-negative, and the price of a linear combination of contingent claims
will be the linear combination of their prices - which are reasonable properties for
a market price. Axiom (A2) says that a contingent claim that is almost surely
worthless when paid, will be almost surely worthless at all earlier times (and con-
versely) - again reasonable. The third axiom, (A3), is a ‘consistency’ statement;
the market prices at time s for XY at time u, or for X times the time-t market
price for Y at time t, should be the same, for any X which is known at time t.
The final axiom is a natural ‘continuity’ condition which is needed for technical
reasons.

Theorem 1. Assuming Axioms (A1)–(A4), there exists a strictly positive process
(ζt)t≥0 such that the pricing operators πst can be expressed as

πst(Y ) =
Es

[

ζtY
]

ζs
(0 ≤ s ≤ t). (2.1)

2A contingent claim is local jargon for a random variable.
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If we also assume

(A5) For all 0 ≤ s ≤ t, πst(1) ≤ 1

(where 1 denotes the constant function identically equal to 1) then ζ is a positive
supermartingale:

ζs ≥ Esζt (0 ≤ s ≤ t)

Remarks. This result is the famous ‘Fundamental Theorem of Asset Pricing’
(FTAP) - or at least its conclusion is the same as that of the FTAP, though its
hypotheses are quite different. The FTAP is proved from the hypothesis that
the market does not admit any arbitrage3. This is a perfectly sensible axiomatic
staring point, but not the only one possible, and the approach taken here shows
that if we adopt the equally-sensible axioms (A1)–(A4) (which need no subtle
modification for a continuous-time setting), then we harvest the conclusion of
the FTAP using little more than basic measure theory. Notice how short the
proof is!

Proof. Firstly, for any T > 0, the map

A 7→ π0T (IA)

defines a non-negative measure on the σ-field FT , from the linearity and positivity
(A1) and the continuity property (A4). Moreover, this measure is absolutely
continuous with respect to P, in view of (A2). Hence there is a non-negative
FT -measurable random variable ζT such that

π0T (Y ) = E[ζTY ]

for all Y ∈ L∞(FT ). Moreover, P[ζT > 0] > 0, because of (A2) again. Now we
exploit the consistency condition (A3); we have

π0t(XπtT (Y )) = E[XζtπtT (Y )] = π0T (XY ) = E[XY ζT ].

Since X ∈ L∞(Ft) is arbitrary, we deduce that

πtT (Y ) = Et[Y ζT ]/ζt,

as claimed. The final statement that ζ is a positive supermartingale under (A5)
is now immediate.

3The intuitive idea of an arbitrage as ‘something for nothing’ is easy to formalise mathe-
matically in discrete time, but the exact definition for a continuous-time setting was elusive
and subtle, and was indeed a key part of the difficulty experienced in proving this celebrated
result. See Delbaen-Schachermayer [3] for the definitive form.
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Remarks. (i) The form (2.1) shows that if we write Yt ≡ πtT (Y ) for some fixed
Y ∈ L∞(FT ) then

ζtYt = Et[ζTY ] is a martingale.

Conventionally, the process ζ (known as the state-price density process) is repre-
sented as

ζt = exp(−

∫ t

0

rsds)Zt,

where rt is the instantaneous rate of interest at time t, and Zt is a positive martin-
gale, which is interpreted as a change of measure, from the reference probability
P to some new ‘pricing’ probability, also referred to as an equivalent martingale
measure, because it is equivalent to the original measure (both have the same
null sets), and because in the new measure the discounted prices of all traded
assets become martingales.

(ii) Though we have looked at pricing systems which are linear in the contingent
claim, there is good reason not to restrict exclusively to this property, because
individual agent’s prices for contingent claims are generally concave - you might
be prepared to pay $2 for 1l of icecream, but does this mean you would be
prepared to pay $200 for 100l of icecream?! Taking this into account leads us
into ideas of economic equilibrium; often, the anaylsis of an equilibrium can be
enormously complicated, and the equilibrium prices arrived at will depend on the
nature of all the agents in the market. However, the equilibrium prices, being
marginal prices, will be linear in the contingent claim.

3 The potential approach

Theorem 1 and the form (2.1) of the price of a contingent claim suggests a simple
and natural approach to modelling (and pricing) in a financial market: model ζ!

The process ζ is a positive supermartingale (if we make the natural further as-
sumption A5). The expression (2.1) allows us to write down the price B(t, T ) at
time t of a zero-coupon bond maturing at later time T ; in this case, Y ≡ 1, so
we have

B(t, T ) = Et[ζT ]/ζt. (3.2)

If we make the further assumption (financially very natural) that as the maturity
T of the bond tends to infinity the current value of it tends to zero, we see that
the positive supermartingales ζ that we are considering have to satisfy the further
condition

lim
T→∞

EζT = 0; (3.3)
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a positive supermartingale satisfying this condition is called a potential, whence
the name of this approach. Under a mild further condition4 a potential can be
represented as

ζt = Et[A∞ − At] = Et(A∞)− At (3.4)

for some previsible increasing integrable process A. The potential approach there-
fore requires us to find tractable forms of previsible increasing process to build
models. We do not need to look very far; by (2.1), prices are to be expressed
in terms of conditional expectations of random variables whose values are yet to
be revealed, and for tractability we will want such conditional expectations to
be expressible simply in terms of a few variables. Thus we are inevitably drawn
towards modelling in the context of Markov processes.

4 Markov processes and potentials

If (Xt) is a Markov process on a statespace X , and f : X → [0,∞), then for any
α > 0 we may consider the increasing process

At =

∫ t

0

e−αsf(Xs) ds. (4.5)

This is adapted and continuous (therefore previsible), and under mild conditions
on f (uniform boundedness will be sufficient but far from necessary) it will also
be integrable. From the discussion of Section 3 we can use this to build a pricing
model; we find that

ζt = Et

[

∫ ∞

t

e−αsf(Xs)ds
]

= e−αtRαf(Xt), (4.6)

where (Rα)α>0 is the so-called resolvent
5 of the Markov process.

Though this is not by any means the only way that we could use a general Markov
process to build a potential pricing model (see [5] for other ideas), it is sufficiently
explicit for us to appreciate immediately how flexible and simple this modelling
methodology will be:

(i) We can choose any non-negative function f on the statespace, and any positive
α.

(ii) The decomposition (3.4) of ζ into a martingale less an increasing process takes
a very simple form. If we make the usual interpretion of the supermartingale ζ

4Explicitly, that the process ζ should be of class (D) - see, for example, [10].
5Equation (4.6) is the definition of the resolvent. This is an important and familiar concept

from the theory of Markov processes; see, for example, [10].
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as the product of a positive change-of-measure martingale Z times the discount
factor exp(−

∫ t

0
rsds), then we have two decompositions of ζ using Itô’s formula:

dζt = ζt(dMt − rtdt)

= dNt − e−αtf(Xt)dt,

where M and N are two local martingales, so equating the finite-variation parts
gives us

rt =
f(Xt)

Rαf(Xt)
, (4.7)

an explicit expression for the spot-rate process r as a function of the underlying
Markov process X.

(iii) There are few examples where the resolvent of a Markov process can be
written in closed form (though see Section 6). Nevertheless, using the relation

Rα = (α− G)
−1

between the resolvent and the infinitesimal generator G of the Markov process,
we may build examples by firstly choosing g ≡ Rαf and then recovering f by
the recipe f = (α − G)g. There is no guarantee that the f so constructed will
be non-negative, but choice of α allows considerable leeway here. See [5] for this
approach in use in a number of examples.

Before we take up the theme of explicit construction of models based on Markov
chains, we digress to point out how simply foreign exchange (and more general
asset classes) can be incorporated in the potential approach.

5 Foreign exchange in the potential approach

Suppose now that we wish to consider the pricing of assets in many countries
at once, each asset’s price being expressed in the currency of its home country.
This kind of problem arises quite frequently in practice; we may be asked to
price a swap which swaps floating USD interest payments for fixed EUR inter-
est payments. In a conventional approach to such a problem, one would firstly
build a model for the interest rates in the US, then a a model for the interest
rates in Euroland, and then try to model the USD/EUR exchange rate. Even
using extremely simple models, a conventional approach would need one driving
Brownian motion for the USD yield curve, one for the EUR yield curve and one
for the exchange rate - three Brownian motions in total. Bearing in mind that a
pricing calculation is in effect an integration, we are beginning to hit problems of
dimensionality; a pricing calculation is an integration over three dimensions, and
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a pricing calculation for an American-style option is an optimal stopping problem
in three dimensions. Add to this the facts that no-one would use a one-factor
model to model the USD yield curve (unless forced to by tractability considera-
tions); and that there might well be some knockout feature based on some other
exchange rate, and the complexity of pricing such an asset becomes very real.

Or at least it does if you want to use a conventional approach. But let’s see
how easy it becomes using the potential approach. To introduce some notation,
suppose that

1 unit of currency j = Y ij
t units of currency i

Now if (Sj
t ) is a traded asset in country j, then

ζjt S
j
t is a martingale;

also, by converting its currency-j price into currency i, it becomes a traded asset
in country i, and so

ζ itY
ij
t Sj

t is a martingale.

Therefore

N ij
t ≡

ζ itY
ij
t

ζjt

is a martingale orthogonal to the space of martingales of the form ζ jSj. Thus we
can express the exchange rate Y ij as

Y ij
t =

N ij
t ζ

j
t

ζ it
.

In a complete market, N ij must be constant, so we have the simple and appealing
result that in a complete market, the exchange rate between two countries is the
ratio of the state-price densities in the two countries. More generally, there is
the possibility of some exchange-rate risk not hedgeable through other assets,
represented by the martingale N ij.

The beauty of the potential approach based on Markov processes is that adding
another country does not mean adding extra sources of randomness; we simply
need to build another state-price density over the same Markov process, which
requires us only to choose a new f and α. Thus adding extra countries to the
model deos not need to cause problems of dimensionality (though one may well
find that the treatment of the martingales N ij needs to be handled cleverly so as
not to lose the simplicity of the methodology.)
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6 Markov chain potential models

What makes a good model for an academic is not the same as what makes
a good model for a practitioner. The academic is looking for something with
simple features and closed-form expressions for basic derivatives, whereas the
practitioner recognises that most derivative prices and hedges will have to be
computed numerically, so demands quick and accurate numerical algorithms for
doing these calculations, and a decent fit to market data. It seems in general that
the better a model is for one purpose the worse it is for the other!

When it comes to using the potential approach and a Markovian model, we see
from (2.1) that any pricing calculation is an integration, and that if we are to do
this numerically then we have somehow to compute a finite weighted sum over
the statespace of the Markov process. Since this is so, it seems natural to work
from the start with a Markov process with a finite statespace, that is, a Markov
chain!

Making the assumption that the statespace X is a finite set of size N has several
very clear advantages:

(i) the generator of the chain is a N×N matrix Q, in terms of which the transition
semigroup can be expressed as

(pt(x, y))x,y,∈X = exp(tQ);

(ii) all calculations reduce to calculations with finite matrices, and are therefore
fast;

(iii) no splining of functions onto some finite subset of X will ever be needed;

(iv) pricing of American-style options becomes an optimal-stopping problem for
a finite Markov chain, which is easy to handle;

(v) we are not restricted to possibly irrelevant propoerties of the underlying
process (such as path continuity in the case of a diffusion).

Opposed to this are two disadvantages:

(i) the size of the parameter space is O(N 2), so gets quite large quite quickly;

(ii) a given model will only admit N possible values for the price of any given
asset.

This latter is apparently quite restrictive, because if we were working with a
9-state chain, then the model says that only 9 possible yield curves could ever
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be observed, which is simply incompatible with a casual daily observation of the
interest rates reported in any decent newspaper. Our resolution of this is to
interpret those prices as being in some sense a ‘market average’ of the ‘pure’
prices that would apply if we knew with certainty what state we were in. We
shall explain in more detail how this may be handled in the next Section on
calibration, where we address the key question, ‘ Does this work?’

7 Calibration

The methodology outlined here is very similar to that of [8], with a couple of
important variations that substantially improve the performance of the fitting.
The first is to drop the restriction to symmetrizable Markov chains, used in [8]
to ensure that the diagonal matrices to be computed remain real, and the second
is to allow the constant α of Section 4 to become a function of the state. Thus
inatead of the additive functional A defined at (4.5), we shall be using

At =

∫ t

0

exp(−

∫ s

0

α(Xu)du)f(Xs) ds.

This change was introduced as a result of experience with the calibration pre-
sented in [8]; the goodness of fit seemed to depend quite sensitively on the (pre-
viously assumed constant) value of α, and thus allowing α to depend on state
seemed a natural (and as it turned out helpful) variation to consider.

The model is parametrised by a vector6 θ. On day n we have a vector yn of
observations7. If the model were correct, the value of this observation vector
yn would be exactly equal to the model values Y (Xn, θ), but we suppose that
the log(yn) are log Y (Xn, θ), plus some independent Gaussian noise. We adopt a
Bayesian standpoint, and suppose that the initial law ofX is given by π = (πi)

N
i=1,

and the initial law of θ is given by density f0(θ); conceptually, θ is unchanging
with time, even though our knowledge of it varies8. The notation zn ≡ (z0, . . . , zn)
serves to make formulae more compact.

Based on the assumptions above, and ignoring irrelevant constants, the likelihood

6For us, θ is the stacked vector of the off-diagonal entries of Q, the vector g ≡ (α −Q)−1f

and the vector α for each country involved.
7These observations will be market prices of certain assets.
8We shall soon consider what happens if we modify this assumption.
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Λn of (Xn,yn, θ) is

Λn ≡ Λn(Xn,yn, θ)

= f0(θ) πX0

n
∏

j=1

pXj−1Xj
(sj; θ) exp[−b(yj, Y (Xj; θ))]

(7.8)

where pij(s; θ) = Pθ(Xs = j|X0 = i), and b(y, y′) ≡ 1
2
log(y/y′) · V −1 log(y/y′),

where V is the covariance matrix of the Gaussian errors. We have also used the
notation sj = tj − tj−1 for the time between the (j − 1)th and jth observations.
We shall be more interested in the posterior distribution of (Xn, θ) given yn, so
we introduce the notation

Ln(x,yn, θ) =
∑

Xn:Xn=x

Λn(Xn,yn, θ), (7.9)

and notice that

Ln(x,yn, θ) =
∑

ξ

Ln−1(ξ,yn−1, θ)pξx(sn; θ) exp[−b(yn, Y (x; θ))]. (7.10)

It is clear that for the Markov chain model in mind this expression will be far too
complicated to allow exact analysis, so we make some simplifying assumptions,
specifically we assume that the likelihood Ln has the product form

Ln(x,yn, θ) = πn(x,yn) ln(θ,yn). (7.11)

The justification is that if we have seen so much data that we have a pretty good
idea what the values of the parameters must be, then the values of θ will largely
be determined by the long-run historical average behaviour of the system. On
the other hand, the posterior distribution of Xn will be more influenced by recent
history, because of the ergodicity of the Markov chain, and so some approximate
conditional independence is reasonable; recent history tells us all we can know of
Xn, distant history tells us all we can know of θ. We shall further assume that

ln(θ,yn) ∝ exp(−
1

2
(θ − θ̂n) · Sn(θ − θ̂n)) (7.12)

for some positive-definite symmetric matrix Sn. If we think that we have nearly
identified the true value of θ, then such a quadratic approximation to the likeli-
hood is quite natural.

The values θ̂n, Sn, and πn(·,yn) are computed recursively, using (7.11). Supposing
that we know already θ̂n−1, Sn−1, and πn−1(·,yn−1), returning to (7.10) and using
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(7.11) gives

Ln(x,yn, θ) =
∑

ξ

πn−1(ξ,yn−1) ln−1(θ,yn−1)pξx(sn; θ) exp[−b(yn, Y (x; θ))]

∝
∑

ξ

πn−1(ξ,yn−1) pξx(sn; θ) exp[−b(yn, Y (x; θ))]

. exp
[

−
1

2
(θ − θ̂n−1) · Sn−1(θ − θ̂n−1))

]

(7.13)

Sum this expression over x, and numerically pick θ to maximise; the maximising
value is our new estimate θ̂n of θ. By computing the second derivative matrix
with respect to θ at θ̂n we find the value of Sn, and finally we get πn from

πn(x,yn) ∝
∑

ξ

πn−1(ξ,yn−1)pξx(sn; θ̂n) exp[−b(yn, Y (x; θ̂n))].

Strictly speaking, the posterior πn for Xn should be obtained by integrating the
likelihood (7.13) with respect to θ, but we approximate this by assuming that
the posterior distribution for θ can be replaced by the point mass at θ̂n, to avoid
the need to integrate over a large number of dimensions.

As we indicated in the previous Section, this approach was modified in one vital
respect; the model values Y (x; θ) were replaced by averaged values, averaging
with respect to the weights

∑

ξ

πn−1(ξ,yn−1) pξx(sn; θ). exp
[

−
1

2
(θ − θ̂n−1) · Sn−1(θ − θ̂n−1))

]

8 Evidence from bond data

The data used here is daily yield curve data covering the period from 2nd January
1992 to 1st March 19969

For each day we have values of the yield of bonds with maturity 1 month, 3
months, 6 months, 1 year, 2 years, 5 years, 7 years and 10 years. We shall use
daily yield curve data for three currencies; these are sterling (GBP), the US dollar
(USD) and the German Mark (DEM).

This introductory account is not the place to present an exhaustive analysis of
the results of the fit. We simply report that on average the fitted values were

9We are grateful to Dr Simon Babbs for supplying the GBP and DEM data. The USD data
was taken from the website http://www.stls.frb.org/fred/index.html
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within 2-5 basis points10 of the actual values, with extreme bad fits of the order
of 25 basis points for some bonds on some days. The number of states of the
Markov chain used was not large, varying between 5 and 11. What we did find is
that the calibration was good up to a point, and then the methodology we were
using would ‘lose the plot’ - this would typically be after 15-20 days of running
the algorithm. The graph of the mean error per fitted bond price (using N = 9)
indexed by day is given in Figure 1.
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Figure 1: Mean absolute deviation of prices of 8 bonds in 3 countries

We see here two plots, one starting on day 700, which seems to stay close to the
data until about day 718, after which it goes astray. Also plotted is the result of
a fit begun on day 717, which tracks the data well until about day 736, when it
in its turn loses the data. This instability of the fitting process is of course very
undesirable; recent work on improvements of the methodology allow us to track
the data with a mean error per fitted bond of 2-5 basis points over prolonged
periods; we manage to hold this quality of fit over all the subsets of the data that
we have tried (currently up to 150 trading days).

This is a remarkably good fit based on an extremely simple model, using only 9
possible states. At one level, it is surprising that such a simple system can do

101 basis point = 10−4.
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such a good job (if we were able to fit to within 1 basis point, then we would have
something that could be traded off). On the other hand, Figure 2 show why this

Figure 2: 1m LIBOR and Bank of England base rate

may not be so surprising; a plot of 1-month LIBOR along with the Bank of
England’s base rate shows close agreement; if 1m LIBOR is really very close to
the base rate, then we should be able to do a good job modelling interest rates
if we had done a good job modelling the base rate, and it is not unreasonable to
consider a model for the base rate that takes only a few possible values - indeed,
we expect that whatever today’s base rate is, the base rate in three months from
now will differ by 25, 50, 75 or 100 basis points!

9 Hedging

In conventional models, the standard way to hedge a derivative is to delta-hedge
it. The idea here is to compute the differential of the price of the derivative
with respect to the prices of the underlying instruments (so in the case of a put
option, we differentiate with respect to the stock price). The differential tells us
how many units of the underlying to hold to protect (to leading order) against
the moves in the underlying. In the case of a complete market, this hedging
methodology is exact, in the sense that if we follow it perfectly, then we will
perfectly replicate the contingent claim we were trying to hedge.
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If we are using a Markov chain potential model, the notion of differentiating
has no meaning, nevertheless the philosophy of immunising our portfolio against
possible changes will work just as well. Suppose that we have a derivative Z, and
hedging instruments z(1), z(2), . . .. Suppose that if the state of the chain at time
t is i and it jumps to j then the value of Z changes by ∆Zij(t). Then what we
will do is to hold wr(t) units of asset r so that

∆Zij(t) +
m
∑

r=1

wr(t)∆z
(r)
ij (t) = 0 ∀j (Xt = i).

Thus whatever jumps of the chain occur, our hedging portfolio will be immune
to them. Of course, we do not in practice claim to be able to know Xt, but this
does not alter the hedging methodology; we would now make a portfolio of more
hedging assets so as to ensure that

∆Zij(t) +
M
∑

r=1

wr(t)∆z
(r)
ij (t) = 0 ∀i, j.

Following this recipe in the case of (say) a 9-state chain would entail taking a
position in 72 different hedging instruments (if that many were available!) So
we see that the practice of this methodology may not be quite so simple as the
theory, but we can expect that the general approach will be as effective as the
delta-hedging methodology is for diffusion-based models.

10 Conclusions and future directions

This brief introduction to the potential approach has shown that this modelling
methodology has clear advantages:

(i) pricing is easy;

(ii) hedging is easy;

(iii) handling many currencies is easy;

(iv) calibration is perfectly feasible.

It is my belief that if there is ever to be a universal modelling methodology, it will
have to look something like this. By ‘universal’ I mean a model that will account
for all the different asset classes that an investment bank deals with - equity,
foreign exchange, fixed income, commodities, credit risks - and the reason that a
bank would like such a model is principally for what is known as risk management
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(though more properly called risk measurement). This refers to the regulatory
requirements placed on the bank to assess the riskiness of their positions, and
this needs to be understood on a firm-wide basis, as well as by business unit.
The potential approach to modelling really can embrace such a wide swathe of
the bank’s business, and even if the calculations may have to be approximate to
deal with such a wide sweep, at least the approach is consistent over the whole,
rather than being some patched-together pastiche of wholly different models.

So far, the potential approach has been tested only on some bond data, and the
next stage of the checking has to be to try to fit other fixed-income derivatives,
then extend to other asset classes, notably equities. The only obstacle here is in
obtaining decent data to work with, as many of the products that are important
for calibration are not traded on exchanges, so price data is hard to come by.
But given such data, we can come closer to the final verdict on the potential
approach: is it simply the right way to model prices, or is it a nice idea that
cannot cope with the full complexity of the real data?
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