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log-Lévy process, and show that if the investor is only allowed to change his
portfolio at times which are multiples of some positive h, then the effect is
at worst O(h). To make this more precise, we take a discrete-time setting,
where the effect of the delay is to constrain the agent to choose his portfolio
one period h in advance. We then develop an expansion in powers of h
for the delay effect, which we finally confirm by numerical calculations; the
asymptotics derived prove to be very good.

Key words: Asymptotic, binomial tree, optimisation, portfolio choice time-
lag

JEL classification: C61, G11

∗Corresponding author: Department of Mathematical Sciences, University of Bath,
Bath BA2 7AY, UK (phone = +44 1225 826224, fax = +44 1225 826492, e-mail =
lcgr@maths.bath.ac.uk). Supported partly by EPSRC grants GR/J97281 and GR/L10000.

†Supported by EPSRC studentship 95007733. Email = EmilyStapleton@halifax.co.uk

1



1 Introduction

Our goal in this paper is to study the effects of delay in execution of trades
on an agent trying to maximise the expected utility of terminal wealth in
a market in which there is a single risky asset and a riskless asset. We can
interpret a delay in execution as arising from a lack of liquidity in the risky
asset, or perhaps a delay arising between the time an order is submitted
to a broker until the time it is filled. Such delays are commonplace, and
render the problem incomplete, which makes a huge qualitative difference.
To understand the magnitude of this effect, we begin in Section 2 with a
continuous-time problem where the log of the risky asset is a Lévy process
(which includes the familiar log-Brownian model of the Black-Scholes world).
The agent has a fixed time horizon T and aims to maximise the expected
utility of his wealth at time T , where the utility is constant relative risk
aversion (CRRA). If the agent is only allowed to alter his portfolio at times
which are multiples of h = T/N , then he will do less well than an agent who
is allowed to alter his portfolio at any time, and we shall prove that the order
of this effect is at most O(h). This is an interesting and surprising result; if
we took the standard log-Brownian share, the risky asset moves of the order
of h1/2 over a time interval of length h, so why are we not getting a loss of
the order of h1/2 per time period? Indeed, the result shows that in some
sense the loss per time period is O(h2). Moreover, this order of the loss per
period remains correct even for share price processes with jumps, which at
first sight is not obvious.

This result does not of course rule out the possibility that the effect could
be of smaller order, but in Section 3 we go on to investigate a discrete-time
analogue of the log-Brownian model, where we can obtain exact asymptotics,
which turn out to be exactly O(h), with expansions for the efficiency and
optimal policy as power series in h. Although this gives an asymptotic, it
does not tell us how good this asymptotic is; to investigate this, we carried out
exact numerical calculations in Section 5 and compared the values obtained
with those predicted by the asymptotic. We found that the agreement was
virtually perfect. More interestingly, we found that the magnitude of the
loss was extremely small, even for quite big values of h; as a consequence,
there seems to be little motivation for the constant rebalancing required of
the pure Merton solution.
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Section 4 contains the asymptotic expansion results for a slightly different
discrete-time lag problem from that considered in Section 3, and the final
section, Section 6, concludes.

The basic problem of an agent trying to maximise the expected utility of
terminal wealth was treated in discrete-time by Samuelson (1969) and in
continuous time by Merton (1969). One of the most memorable conclusions
of the analysis is that if the agent’s utility is CRRA (constant relative risk
aversion), then the agent will at all time keep a fixed proportion (the Merton
proportion) of wealth in the risky asset. Though we speak of the Merton
proportion, there is nothing preventing this being outside [0, 1] in general.
However, we shall throughout the paper assume that the Merton proportion
is in [0, 1]. Cases where this does not hold have little economic reality.

The literature on delay problems of this type is not extensive. Ehrlich and
Hamlen (1995) take an asset which follows exponential Brownian motion,
and consider the optimal deterministic precommitment to investment and
consumption strategies for a fixed time horizon. Rogers (1998) considers the
situation of a risk-free asset and an asset which follows exponential Brownian
motion, where the agent must choose at equally spaced times how much
wealth to set aside for consumption in the next time period, and how to
divide the remainder between the two assets. Rogers and Zane (1998) deals
with a similar problem where the revision times are the times of a Poisson
process, rather than being equally spaced. The methods are quite different,
but there are clear similarities in the conclusions, in that (as in this study)
the effects of the time lag (or precommitment) are actually quite small, and
can be accurately approximated. A one-period time delay features in a very
different type of study by Benninga and Proptopapadakis (1988), where a
two-nation model is considered, with a shipping delay between the ordering
of the other nation’s good and its arrival for consumption.

2 The continuous-time problem

In this Section, we shall consider an economy with just two assets, a riskless
asset with constant rate of return r, and a risky asset whose price at time t

3



is given by
St = S0 exp(Zt),

where Z is a Lévy process of the form

Zt = σWt + at + Jt, (1)

where σ and a are constants, W is a standard Brownian motion, and J is
a compound Poisson process, consisting of independent jumps with common
distribution function F coming at the points of a Poisson process of rate λ.
This is not the most general Lévy process possible, but all Lévy processes are
limits of such processes, and these assumptions make the proof technically
simpler; for the general Lévy process, we would have to consider separately
the big jumps and the little jumps, where big and little are defined in terms of
the step size h. Note that the standard log-Brownian share model is covered
by our assumptions.

Within this economy, we shall consider the situation of an investor who acts
as a price-taker, investing in the two assets without transaction costs. His
wealth at time t, wt, satisfies the equation

dwt = rwtdt + θt

[
dSt

St−
− rdt

]
, (2)

where θ is the (previsible) portfolio process. The investor has a fixed time
horizon T > 0, and his goal is to maximise his expected utility EU(wT ) of
wealth at the time horizon, where his utility is CRRA:

U(w) =
w1−R

1−R
,

where R > 0 is different from 1. The case R = 1 corresponds to log utility,
and could be treated similarly, but we leave the details to the interested
reader. We shall assume throughout that the asset price process has finite
second moment, which is equivalent to∫

e2xF (dx) < ∞. (3)

We shall also insist that the agent is only allowed to choose admissible port-
folio processes, which are those for which w remains non-negative for all time;
this is to prevent ‘doubling’ strategies.
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If we were to work with the discounted wealth process w̃t = e−rtwt, then (2)
becomes

dw̃t = θt dS̃t/S̃t−,

where S̃t = e−rtSt, and the agent’s problem is equivalent to maximising
EU(w̃T ). Thus we may (and for this Section shall) assume that r = 0, so
that the wealth equation is simply

dwt = θt
dSt

St−
. (4)

Our first result is the generalisation of the familiar Merton result.

Proposition 1. The value function V (t, w) for the agent, defined by

V (t, w) ≡ sup E[U(wT )|wt = w] (0 ≤ t ≤ T )

takes the form
V (t, w) = eα(T−t)U(w), (5)

where α satisfies

α

1−R
= sup

z

[
(a+σ2/2)z−σ2Rz2

2
+

1

1−R

∫
((1+z(ex−1))1−R−1)ν(dx)

]
,

(6)
where ν ≡ λF is the Lévy measure of the jumps. The optimal policy for the
agent is to take always

θt = π∗wt−, (7)

where π∗ is the value of z achieving the sup in (6).

Proof. See Appendix.

Notice that when there are no jumps, we recover the familiar Merton solution,
with π∗ = (a + σ2/2)/(σ2R). The function of z on the right-hand side of (6)
is strictly concave in z, so the sup is unique and is attained. Notice also
that if the support of F were not bounded above or below, then it must
be that π∗ is in [0,1], otherwise the integral expression in (6) would be −∞
(by convention, we assume that U is defined on (−∞, 0) so as to be concave
on the whole real line, thus U(x) = −∞ if x < 0). This accords with our

5



expectations; if the stock could fall arbitrarily low in a single unpredictable
jump, we would never borrow cash to buy the stock, for example.

We are now going to consider what happens to an investor who is not able to
change his portfolio continuously; we shall suppose that he is able to choose
his portfolio at N equally-spaced time points 0, h, 2h, . . . , (N − 1)h, where
h = T/N . We call this investor the h-investor. Clearly, this investor cannot
do as well as the unconstrained (Merton) investor whose optimal policy was
determined in Proposition 1, and what we shall do is to show that his loss
relative to the Merton investor is O(h). To do this, we define the relative
efficiency of two investment strategies.

Definition 1. Suppose that investor j (j = 0, 1) starting with unit wealth and
following investment strategy Πj achieves expected utility of terminal wealth
Cj. Then the efficiency of the strategy Π0 relative to the strategy Π1 is defined
to be

Θ ≡
(
C0/C1

)1/(1−R)

. (8)

The interpretation of the efficiency of strategy Π0 relative to strategy Π1 is
that it is the level of initial wealth that agent 1 would need in order to achieve
the same payoff (using strategy Π1) as agent 0 achieves (using strategy Π0)
starting from wealth 1.

Our next result compares the performance of Agent 0, who uses a propor-
tional policy (that is, chooses θt = pwt− for some p ∈ (0, 1)), with the
performance of Agent 1, who is an h-investor following a proportional policy
with the same value of p (that is, at each of the decision times kh chooses
to put a proportion p of his current wealth into the risky asset). We do
not claim that this policy is optimal for Agent 1 (in general it is not), but
what is clear is that Agent 1’s payoff using this policy is a lower bound for
his optimal payoff. The result says that the efficiency of Agent 1 relative to
Agent 0 is 1−O(h).

Proposition 2. Agent 0 starting with initial wealth 1 who uses the policy

θt = pwt− (9)

for some p ∈ (0, 1) will achieve payoff

C0 ≡ EU(wT ) = exp(βT )U(w0), (10)
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where

β = (1−R)

[
(a+σ2/2)p− σ2Rp

2
+

1

1−R

∫
((1+ p(ex− 1))1−R− 1)ν(dx)

]
.

(11)
Agent 1, who is an h-investor starting with initial wealth 1 and using the
proportional policy with the same p, achieves a payoff C1 which satisfies

Θ =
(
C0/C1

)1/(1−R)

= 1 + O(h)

as h ↓ 0.

Proof. See Appendix.

We see from Proposition 2 that if π∗ ∈ (0, 1) then the h-investor, Agent 1,
loses efficiency of at most O(h) relative to the optimal investor, Agent 0.
The assumption is crucial however, because the h-investor will never borrow
to buy shares, or sell shares short to invest in the riskless asset; in any time
period of length h, the value of the risky asset could with positive probability
climb unboundedly, or fall arbitrarily far, and such moves would push the
investor into negative wealth (and therefore utility −∞) if the proportion of
wealth invested in the risky asset were not in (0, 1).

3 Asymptotics for the discrete-time model

We have now established that the effect of a time delay h on changes of
portfolio is at worst O(h), but is it perhaps of smaller order? What can we
say of the small-h asymptotics of the efficiency? In this Section, we shall
formulate these questions in a discrete-time context and solve them.

As in the previous Section, we have in mind an agent who is investing to
maximise his expected utility of wealth at the fixed time horizon T > 0, but
who now is investing in two discrete-time asset processes, one risky and the
other riskless. The risky asset is the discrete-time analogue of the continous-
time share price process St satisfying

dSt = St(σdWt + µdt) (12)
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for some constants σ and µ, and the riskless asset is the discrete-time ana-
logue of a savings account yielding interest at a continously-compounded rate
r. We approximate the asset price dynamics (12) by a binomial asset price
process, which moves in discrete time steps of size h = T/N , stepping either
up from s to sa > s, or down to s/a with respective probabilities p and 1−p.
This way, we cut up the continuous-time parameter interval [0, T ] into N
equal pieces. In order to match the first two moments of S, we choose

a =
β

2
+

√
β2 − 4

2

and

p =
aeµh − 1

a2 − 1
.

Here, β = e−µh + e(µ+σ2)h. The riskless return over one period is

ρ = erh;

obviously we need a > ρ > a−1 to preclude arbitrage.

We are going to compare the performance of the Merton investor (who
chooses his holding of the share in period n knowing the share price at the
end of period n− 1) with an h-investor whose holding of the share in period
n is decided at the end of period n−2. Let us begin by recording the optimal
behaviour of the Merton investor in the following result before turning to the
more complicated study of the h-investor.

Proposition 3. The Merton investor chooses at each stage to invest a pro-
portion

π(h) ≡ ρ(λ− 1)

a− ρ + λ(ρ− a−1)
, (13)

of his wealth in the share, where

λ =

(
(a− ρ)p

(ρ− a−1)(1− p)

)1/R

.

His maximised expected utility of wealth after N steps starting from initial
wealth w is

αNU(w), (14)
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where

α ≡ (pλ1−R + 1− p)

(
ρ(a− a−1)

a− ρ + λ(ρ− a−1)

)1−R

. (15)

Proof. If vn(w) ≡ sup E[U(wN)|wn = w] is the value function for the Merton
agent, then vn satisfies the Bellman equation

vn(w) = sup
x

[
pvn+1(ρw + x(a− ρ)) + (1− p)vn+1(ρw + x(a−1 − ρ))

]
with the initial condition vN(w) = U(w). The variable x is interpreted as
the amount of current wealth invested in the risky asset. By induction, we
prove that vn(w) = cnU(w) for some constants cn:

vn(w) = cn+1 sup
x

[
pU(ρw + x(a− ρ)) + (1− p)U(ρw + x(a−1 − ρ))

]
= cn+1w

1−R sup
t

[
pU(ρ + t(a− ρ)) + (1− p)U(ρ + t(a−1 − ρ))

]
= cn+1U(w)α

by routine calculus.

Let us now set up some notation, and specify the problem of the h-investor
precisely. The investor enters the nth time period (nh, nh + h] with total
wealth wn, committed to investing xn in the risky asset that period, and
knowing the current price sn of the risky asset. He next chooses the number
θn+1 of units of the risky asset which he is going to hold during the (n+1)th
period; then the price sn+1 = snZ of the risky asset for the (n + 1)th period
is revealed, where the random variable Z takes the value a with probability
p, and the value 1/a with probability (1 − p). Thus at the end of the nth
period, the investor’s wealth wn+1 and the value xn+1 to be assigned to the
risky asset in the (n + 1)th period can be calculated:

wn+1 = ρwn + (Z − ρ)xn, xn+1 = θn+1snZ ≡ θn+1sn+1. (16)

Thus the evolution of time period n can be summarised as follows:

• At time nh+: wn, sn, xn are known; choose θn+1:

• At time nh + h: sn+1 = snZ revealed, wn+1 and xn+1 calculated.
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At first sight, the effect of this one-step delay is to alter the distribution of
returns; an investment choice leads to 4 possible outcomes after 2 time steps,
instead of 2 after one time step, and so we should be able read off the change
in efficiency simply by making the appropriate perturbation of the volatility.
However, this interpretation is not correct, because the 2-period returns are
not independent, and a computation of the efficiency using this idea does
indeed lead to the wrong answer.

The value function

Vn(w, x) ≡ max E

[
U(wN)|wn = w, xn = x

]
of this problem solves the Bellman equations

Vn(w, x) = max
θn+1

[
pVn+1(ρw + x(a− ρ), θn+1sna)

+(1− p)Vn+1(ρw + x(1/a− ρ), θn+1sn/a)

]
= max

ξ

[
pVn+1(ρw + x(a− ρ), ξa)

+(1− p)Vn+1(ρw + x(1/a− ρ), ξ/a)

]
(17)

together with the boundary condition

VN−1(w, x) = pU(ρw + x(a− ρ)) + (1− p)U(ρw + x(1/a− ρ)).

It is easy to see that for each n the function Vn is concave as a function of its
two arguments. Indeed, this is obvious for n = N − 1, and then by induction
we deduce the concavity of Vn from the concavity of Vn+1 using the Bellman
equations.

It is also easy to see that the value function must have the scaling property

Vn(λw, λx) = λ1−RVn(w, x) (18)

for any λ > 0. Let us therefore define

gn(.) ≡ Vn(1, .),
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which is a concave function by the concavity of Vn. Now substituting t = x/w,
η = ξ/w reduces the problem to a single variable:

gn(t) = max
η

[
p(ρ + t(a− ρ))1−Rgn+1

(
ηa

ρ + t(a− ρ)

)
+(1− p)(ρ + t(1/a− ρ))1−Rgn+1

(
η/a

ρ + t(1/a− ρ)

) ]
(19)

with boundary condition

gN−1(t) =
p(ρ + t(a− ρ))1−R + (1− p)(ρ + t(1/a− ρ))1−R

1−R
. (20)

Finally, the maximised expected utility is given by

V0(w0, x
∗) = w1−R

0 g0

(
x∗

w0

)
= w1−R

0 g0(t
∗)

where t∗ is simply the value of t which maximises g0(t).

Explicit solution of the Bellman equations (19) and (20) is impossible, but
we can make progress by studying the asymptotics of the problem as h ↓ 0.

When we examine the expression on the right-hand side of (19), the variable
η over which we maximise appears in the argument of gn+1 two times. In the
first occurrence, we see argument

x1 =
ηa

ρ + t(a− ρ)
= η

[
1 + σ(1− t)

√
h + O(h)

]
and in the second occurrence we see argument

x2 =
η/a

ρ + t(1/a− ρ)
= η

[
1− σ(1− t)

√
h + O(h)

]
.

Since gn+1 is concave, it is unimodal, with maximum at αn+1, say; and there-
fore it is clear that the maximising choice of η must have the property that
the two arguments x1 and x2 lie on either side of αn+1. Thus the maximising
value of η will be within about αn+1σ(1 − t)

√
h of αn+1; it will be close to

αn+1 for a wide range of t. The optimal value αn+1 we expect to be close
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to the Merton proportion π = (µ− r)/σ2R, and so if we are approximating
the function gn+1 well enough in a neighbourhood of π, we should be able
to identify the asymptotic effect of the delay h. How well do we need to
approximate gn+1 near π? We know that we are looking for an overall effect
of magnitude at most O(h), which will be made up of an effect for each of
the N = T/h time-steps in the problem. Therefore if we have got each of
these one-step effects correct to order O(h2), we should have the correct O(h)
effect overall. Since the range of η values we are interested in is O(

√
h), this

tells us that we need to carry round the Taylor expansion of gn+1 up to order
M = 4. In fact, we performed the calculations up to order M = 6 so as to
obtain the term in h2 in the expansion.

To study this directly, we define (recalling the definition of efficiency)

g̃n(t) ≡ αn−Ngn(t),

which modifies the Bellman equations (19) to

g̃n(t) = max
η

[
p(ρ + t(a− ρ))1−Rα−1g̃n+1

(
ηa

ρ + t(a− ρ)

)
+(1− p)(ρ + t(1/a− ρ))1−Rα−1g̃n+1

(
η/a

ρ + t(1/a− ρ)

) ]
(21)

The route followed now is to express

log((1−R)g̃N−n(π + u)) +
M∑
i=0

si

M∑
j=0

bij(n)uj,

where s ≡
√

h. ‡ Next we assume that the optimal η in (21) can be expressed
as a power series, which we truncate to π+

∑M
k=1 ck(n+1)sk. The coefficients

ck(n + 1) are computed from the optimality condition on the right-hand side
of (21), and then by substituting back into the right-hand side of (21) we
have an expression for g̃n(t), which we then expand to obtain the coefficients
bij(n). The expansion was done using Maple; the results are recorded in the
following Proposition.

Proposition 4. Defining b̃ij(n) ≡ bij(n)/(1 − R)R, the matrices b̃(n) have
the following structure.

‡We choose to take logs because the effect per period is multiplicative.
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(i) b̃ij(n) = 0 for all j = 0, . . . , 6 if i = 0, 1, 3, 5;

(ii) b̃2j(n) = −σ2δj2/2;

(iii) for i = 4 we have for n ≥ 2

b̃4,0(n) = −(n− 1)σ4π2(1− π)2/2

b̃4,1(n) = −σ2π(3σ2 + 6rRπ + 8σ2π2 + 6σ2Rπ + 6rπ + 4σ2R2π2 − 9σ2π)/6

b̃4,2(n) = −σ2(4rRπ + 4σ2π2 + 4πr + 2σ2π2R2 + 2σ2Rπ − 2σ2π + σ2)/4

b̃4,3(n) = −(1 + R)σ2(2r − σ2 + 2σ2π)/6

b̃4,4(n) = σ4(R2 − 3R− 1)/12

b̃4,5(n) = b̃4,6(n) = 0

(iv) for i = 6 we have for n ≥ 2

b̃6,0(n) = −(n− 2)σ4Rπ2(1− π)(2σ2π3R2 + 2σ2R2π2 + 6σ2π2R + 6rRπ + 7σ2π3

−17σ2π2 + 15σ2π + 6πr − 3σ2)/6

− 1

72
(48 rσ2R3π3 + 96 σ2π3rR− 108 σ2π2rR + 36 σ4Rπ + 90 σ4π

−27 σ4 − 75 σ4π2 + 84 σ4R2π2 + 16 σ4R4π4 − 72 σ4π3R2

+108 σ2π r + 48 σ4R3π3 + 108 rσ2Rπ − 180 σ2π2r + 96 σ2π3r

+72 rσ2R2π2 + 48 σ2π3rR2 + 36 r2R2π2 + 16 π4σ4 + 36 π2r2

+24 σ4Rπ3 − 36 σ4Rπ2 + 40 π4σ4R2 + 72 π2r2R)σ2π2. (22)

Moreover, for each j = 1, . . . , 6, b̃6,j(n) = b̃6,j(3) for all n ≥ 3.

(v) For n ≥ 4, the coefficients of the series expansion of the optimal choice
of η satisfy c1(n) = 0 and

c2(n) = −π

6
(4σ2R2π2 + 6rRπ + 6σ2Rπ − 21σ2π + 9σ2 + 14σ2π2 + 6πr)

+σ2π(1− π)(R + 2)u− σ2(1 + R)πu2 + O(u3)

To obtain the asymptotics of the efficiency, we consider maximising over u
the expression

exp(

∑M
i=0 si

∑M
j=0 bij(N)uj

1−R
)
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which gives the approximation to Θ up to order h2 (in this instance - by
including further terms in the expansion we could of course obtain higher-
order terms). What we obtain in the end is the following result.

Theorem 1. The efficiency Θ(h) has the expansion

Θ(h) = 1− 1

2
σ4π2(1− π)2RTh−Rh2π2σ4(1− π)

[
1

2
(π − 1)

+
1

8
σ4Rπ2 (π − 1)3 T 2 + (

7

6
π3σ2 + rRπ − 1

2
σ2 +

1

3
σ2R2π3

+
1

3
σ2R2π2 +

5

2
σ2π + σ2π2R− 17

6
σ2π2 + π r)T

]
+ O(h3)(23)

It is also interesting to compare this result with the result of Rogers (2000),
Theorem 2. The situation there is considering the difference between the
(continuous-time) Merton investor, who adjusts his portfolio continuously
during the time interval [0, h], and an investor who divides his wealth op-
timally at time 0 between the share and the riskless asset, and makes no
adjustments to the portfolio thereafter. The efficiency of the latter investor
is shown to be

1− 1

4
σ4π2(1− π)2Rh2 + O(h3). (24)

It is shown that the efficiency of an investor who invests throughout the
interval [0, T ] making portfolio changes only at times which are multiples of
h will be

1− 1

4
σ4π2(1− π)2RhT + O(h2).

Notice that this is higher than the efficiency obtained in Theorem 1, but this
is not contradictory, as the problems are different, even though in some sense
they become the same as h ↓ 0. In the situation of Rogers (2000), Theorem
2, the investor achieves a continuous return distribution, as opposed to the
two-point return distribution obtained in the problem considered here. It is
intuitively natural that the continuous return distribution should do a better
job of approximating the return for the Merton investor, and this is reflected
in the difference in the results.
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4 The asymptotics of the delay effect, II

In this Section, we record the analogous results if the h-investor must pre-
commit the cash value of his holding in the share, rather than the number of
shares, as was considered in the previous Section.

The analysis is very similar. The Bellman equations are modified to

Vn(w, x) = max
θn+1

[
pVn+1(ρw + x(a− ρ), θn+1) (25)

+(1− p)Vn+1(ρw + x(1/a− ρ), θn+1)

]
,

the scaling property (18) again holds, so the reduced form of the Bellman
equations becomes

gn(t) = max
η

[
p(ρ + t(a− ρ))1−Rgn+1

(
η

ρ + t(a− ρ)

)
+(1− p)(ρ + t(1/a− ρ))1−Rgn+1

(
η

ρ + t(1/a− ρ)

) ]
.(26)

The boundary condition (20) is as before.

Proposition 5. Defining b̃ij(n) ≡ bij(n)/(1 − R)R, the matrices b̃(n) have
the following structure.

(i) b̃ij(n) = 0 for all j = 0, . . . , 6 if i = 0, 1, 3, 5;

(ii) b̃2j(n) = −σ2δj2/2;

(iii) for i = 4 we have for n ≥ 2

b̃4,0(n) = −(n− 1)σ4π4/2

b̃4,1(n) = −σ2π(3σ2 + 6rRπ + 8σ2π2 + 6σ2Rπ + 6rπ + 4σ2R2π2 − 3σ2π)/6

b̃4,2(n) = −σ2(4rRπ + 4σ2π2 + 4πr + 2σ2π2R2 + 2σ2Rπ − 2σ2π + σ2)/4

b̃4,3(n) = −σ2(1 + R)(2r − σ2 + 2σ2π)/6

b̃4,4(n) = σ4(R2 − 3R− 1)/12

b̃4,5(n) = b̃4,6(n) = 0
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(iv) for i = 6 we have for n ≥ 2

b̃6,0(n) = σ6(2π2R2 + 7π2 + 6Rπ + 3)π4n

−1

2
(2σ2R2π2 + 4σ2Rπ + 5σ2π2 − σ2π + 2πr + 2σ2 + 2rRπ)

Moreover, for each j = 1, . . . , 6, b̃6,j(n) = b̃6,j(3) for all n ≥ 3.

(v) For n ≥ 4, the coefficients of the series expansion of the optimal choice
of η satisfy c1(n) = 0 and

c2(n) = −π

6
(4σ2R2π2 + 6σ2Rπ − 3σ2π + 3σ2 + 6rRπ + 14σ2π2 + 6πr − 6r)

−σ2π2(R + 2)u− σ2(1 + R)πu2 + O(u3)

Finally, we have the asymptotic expansion of the efficiency, again obtained
using Maple.

Theorem 2. The efficiency Θ(h) has the expansion

Θ(h) = 1− 1

2
σ4π4RTh + Rh2π4σ4

[
1

2
+

1

6
σ2(2R2π2 + 3 + 6Rπ + 7π2)T

+
1

8
π4σ4RT 2

]
+ O(h3) (27)

5 Comparing asymptotics and exact calcula-

tion

As a check of the asymptotic solution derived above, we solved the Bellman
equations (19) numerically for four different examples, with parameter values
given by Table I. The method was to compute the values of gn at a grid
of points, and then interpolate between points using a cubic fit in order
to perform the (numerical) maximisation required for (19). Notice that the
investor must always keep his wealth positive with probability 1, so this forces
him to choose his proportion of wealth in the interval (−ρ/(a− ρ), aρ/(aρ−
1)). Since the effect under study is very small, we needed to work to high
accuracy, and found that it was necessary to put 1500 equally-spaced points
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into this interval. This slowed the calculations down substantially, so we
reduced the interval to an interval of one tenth the size, centred at the Merton
proportion.

From Table (II), we see that the asymptotic and numerical analyses are
in virtually perfect agreement, and that the loss of efficiency (that is, 1 −
efficiency), quoted in basis points, for realistic examples is very small, even
with as few as 4 rebalancings during the year!

6 Conclusions

We have taken a simple model for the effect of delay in execution of trades,
which could be interpreted in several ways: it could represent the effect of
delay in the execution of an order placed through a broker; or it could be
taken as a proxy for the effect of lack of liquidity, where an agent wishing
to change his holding of the asset must wait until there is a counterparty to
trade with. This latter interpretation should be viewed as a first step rather
than a proper explanation, since lack of liquidity is frequently associated
with large price moves, and should more properly be viewed as driven by a
changing of information and perceptions.

We have firstly proved that the effect of a delay h is a loss of at most O(h)
in efficiency, when the agent has a CRRA utility, and the log asset process
is a Lévy process with finite Lévy measure. The fact that inclusion of jumps
does not alter the asymptotic from the Brownian case seems at first sight
surprising, but it arises because neither the h-investor nor the unrestricted
investor is able to anticipate the jumps; both are exposed to the jump risk.

Next, by working in a discrete-time binomial asset model, we are able to
solve the problem by dynamic programming, though no closed-form solutions
exist. Nonetheless, we have developed an asymptotic for the effect, and
have compared this with exact values obtained by numerical solution of the
Bellman equations. It turns out that

• the effect of a delay is small;

• the effect is well approximated by the asymptotic expression.
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It should perhaps come as little surprise that the effect is quite small. In the
Bellman equation, we are maximising a concave indirect utility function. If
we make an error ε in the maximising value, the change in the maximised
value will be O(ε2). If we simply used the optimal rule from the no-lag version
of the problem, we should be investing very nearly the correct proportion of
wealth in the risky asset, so we expect that the true optimal proportion will
be performing well.

The rather surprising message is that the frantic rebalancing required of the
Merton problem is not worth the effort, and a more relaxed approach will
do nearly as well. This is reflected in the work on transactions costs of
Constantinides (1986), Davis & Norman (1990), and Shreve (1995), where a
small proportional transaction cost results in a wide ‘no-transaction’ region.
Indeed, Shreve proves that (for the case 0 < R < 1) if the proportional
transaction cost is δ then the width of the no-transaction interval will be
O(δ1/3), and the cost will be O(δ2/3); see also Rogers (1999). Part of the
reason for this relaxed approach is the same as the reason for the small effect
of delay here - being ε away from the optimal proportion only costs you
O(ε2).

It is a natural question to ask what happens to the Merton consumption
problem under a similar delay in execution; this is tackled in different forms
in Rogers (2000) and Rogers & Zane (1998).
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A Appendix

Here we collect the various proofs from the main text.

Proof of Proposition 1. Although we have a candidate (5) for the value
function, it appears that there is no proof based on the martingale principle
of optimal control (see, for example, Rogers & Williams (2000), V.15); an
Itô expansion of the candidate value function (5) along the path gives only
a local martingale term, and it appears impossible in general to determine
when this is a supermartingale. In the case 0 < R < 1, the Fatou inequality
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goes the right way, and we can obtain the result we want; but for R > 1, the
Fatou inequality goes the wrong way, and we have to seek another approach.
Such an approach is the following.

We have a candidate for the optimal wealth process, given by taking θt =
π∗wt− (see (7)). If we follow this, we have

dwt = π∗wt−
dSt

St−
(28)

= π∗wt−

[
dZt +

1

2
σ2dt + e∆Jt − 1−∆Jt

]
= π∗wt−

[
σdWt + adt +

1

2
σ2dt + e∆Jt − 1

]
,

which is solved by

wt = w0 exp

[
π∗σWt + π∗(a +

1

2
σ2)t− 1

2
π2
∗σ

2t

]
Πs≤t(1 + π∗(e

∆Js − 1)).

If we follow this wealth process, then the marginal utility of terminal wealth,
U ′(wT ), is proportional to

Y ≡ exp

[
−Rπ∗σWt −Rπ∗(a +

1

2
σ2)t +

R

2
π2
∗σ

2t

]
Πs≤t(1 + π∗(e

∆Js − 1))−R.

If we now introduce a measure P̃ equivalent to P defined by

dP̃

dP
≡ cY,

where c is the appropriate normalising constant, then under the measure P̃ ,
Wt = W̃t−Rπ∗σt, where W̃ is a P̃ -Brownian motion. The law of the jumping
part of the process Z is also modified in a simple way:

Ẽ
[

exp(iθJT )
]

= E
[

exp{iθJT −R
∑
s≤t

log(1 + π∗(e
∆Js − 1))}

]
= exp( λT

∫
(exp{iθx−R log(1 + π∗(e

x − 1))} − 1)F (dx))

∝ exp( λT

∫
(eiθx − 1)(1 + π∗(e

x − 1))−R F (dx) ).
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Thus under P̃ the Lévy measure of the compound Poisson part of Z is

ν̃(dx) = (1 + π∗(e
x − 1))−Rν(dx).

Accordingly, we can conclude that under P̃ , S is a martingale: indeed,

Ẽ[St/S0] = Ẽ[ exp{σWt + at + Jt} ]

= exp

[
1

2
σ2t + at− σ2Rπ∗t + t

∫
(ex − 1)(1 + π∗(e

x − 1))−Rν(dx)

]
= 1,

using the fact that π∗ is the maximising value of z in (6).

To complete the proof, notice that if x is any admissible wealth process with
the same initial wealth w0, then

U(xT ) ≤ U(wT ) + U ′(wT )(xT − wT ),

where w is the candidate optimal wealth process defined by (28); this follows
from the concavity of U . Taking expectations, therefore, we learn that

EU(xT ) ≤ EU(wT ) + cẼ(xT − wT )

≤ EU(wT ) + c(w0 − ẼwT ),

the last inequality being justified by the fact that x is a non-negative P̃ -local
martingale, and therefore a P̃ -supermartingale. The final step is to check
that ẼwT = w0, that is, that w is a P̃ -martingale; but this results from
a calculation similar to that used to prove that S is a P̃ -martingale. In
conclusion, we have proved that among all admissible wealth processes, the
one with the largest payoff is the conjectured optimum, as required.

Proof of Proposition 2. Throughout the proof, V will denote a random
variable with distribution F , independent of the Brownian motion W . We
shall investigate the relative payoffs of the h-investor over one time period
[0, h] and the investor who continuously adjusts his portfolio according to
θt = pwt−. We aim to show that the expansions of both of these up to and
including the term linear in h agree, so that the difference is O(h2). There
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is no difficulty in obtaining the expansion up to order h2 for the second of
these, as it is given by (10); the main effort therefore is devoted to the first.

The investor who starts at time 0 with 1 and then puts proportion p of his
wealth in the risky asset has at time h a wealth

1 + X ≡ 1 + p(eZh − 1).

Thus his payoff at time h is E(1+X)1−R, and it is this that we need to expand
in powers of h, up to the linear term. In outline, we do this by decomposing
the expectation according to the number of jumps made by time h; with
probability O(h2) there will be more than 1 jump, and with probability O(h)
there will exactly one jump, which will have distribution F . If we write Nt

for the number of jumps by time t, we have

E(1 + X)1−R = E
[

(1 + X)1−R; Nh = 0
]
+ E

[
(1 + X)1−R; Nh = 1

]
+E
[

(1 + X)1−R; Nh > 1
]

≡ I + II + III,

say. Taking these in turn, we have

I = e−λhE

[
(1 + p(eσWh+ah − 1))1−R

]
= e−λhE

[N−1∑
k=0

Xk

k!

Γ(2−R)

Γ(2−R− k)
+

XN

N !

Γ(2−R)

Γ(2−R−N)
(1 + θX)1−R−N

]
,

where θ ∈ (0, 1) is some random variable, and X = p(eσWh+ah − 1). We
have proved elsewhere (see Rogers (2000)) that E|X|k ≤ Ckh

k/2, so to get
all terms out to order h2 we have to take N = 4 in the above expansion. The
remainder term is dealt with because

(1 + θX)1−R−4 = (1 + θX)−R−3 ≤ (1− p)−R−3.

Expanding out (using Maple) gives

I = 1 + {(1−R)p(a +
1

2
σ2 −Rpσ2/2)− λ}h + O(h2).
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Turning now to the second term, we have

II = λhe−λhE

(
1 + p(eσWh+ah+V − 1)

)1−R

= λhe−λhE

(
1 + p(eV − 1) + p(eσWh+ah − 1)eV

)1−R

= λhe−λhE

[(
1 + p(eV − 1)

)1−R

{
1 +

peV (eσWh+ah − 1)

1 + p(eV − 1)

}1−R ]
≡ λhe−λhE

[(
1 + p(eV − 1)

)1−R {
1 + Y

}1−R
]
,

say. Thus

II = λhe−λhE

[(
1 + p(eV − 1)

)1−R

{
N−1∑
k=0

Y k

k!

Γ(2−R)

Γ(2−R− k)
+

Y N

N !

Γ(2−R)

Γ(2−R−N)
(1 + θY )1−R−N

}]
.

Taking N = 2, the remainder term in the sum will be bounded by a constant
times

E(q + peV )1−RY 2(1 + θY )−1−R ≤ E(q + peV )1−RY 2(1 − peV

q + peV
)−1−R

= E(q + peV )2Y 2q−1−R

= p2q−1−REe2V (eσWh+ah − 1)2

≤ ch

for all h small enough. Here, q ≡ 1−p, and c is some positive finite constant.
This uses the integrability condition (3). The term k = 1 in the expansion
is easily seen to contribute something at most O(h2) to II, leading us to the
conclusion that

II = λhE

[ (
1 + p(eV − 1)

)1−R
]

+ O(h2).
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Finally, turning to III, we have that

III = E
[
(1 + X)1−R|Nh > 1

]
.P
[

Nh > 1
]

= (1− e−λh(1 + λh))E
[
(1 + X)1−R|Nh > 1

]
= O(h2).

The final expectation E[(1+X)1−R|Nh > 1] is clearly finite when R > 1, and
for 0 < R < 1 we use the inequality (x + y)1−R ≤ x1−R + y1−R valid for non-
negative x and y, together with the integrability assumption (3). Putting all
this together,

E
[
(1+X)1−R

]
= 1+h

{
(1−R)p(a+

1

2
σ2−Rpσ2/2)−λ+λE

(
1+p(eV−1)

)1−R
}

+O(h2),

Comparing this with the expression (10) for the payoff of the agent who is
allowed to rebalance continuously, we see that the two agree to order h. Thus
the efficiency of the investor who follows the proportional investment rule (9)
with horizon h relative to the investor who puts proportion p of his wealth
in the share at time 0 and leaves it until time h will be 1 + O(h2). Hence
the efficiency of the proportional investor relative to the h-investor over the
time horizon T = Nh will be 1 + O(h), as claimed.
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Table I: Parameter Values

Example 1 2 3 4
T 1 1 1 1
w0 1 1 1 1
µ ln(1.15) ln(1.15) ln(1.15) ln(1.15)
σ 0.3 0.3 0.3 0.3
r ln(1.1) ln(1.05) ln(1.1) ln(1.05)
R 2 2 4 4
π 0.246954 0.505399 0.123477 0.252699
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Table II: A comparison of the asymptotic solution with the numerical

1/h Efficiency loss (bp): Efficiency loss (bp):
numerical values asymptotic values

Example 1
4 0.551532307 0.565819157
8 0.314695502 0.316536482
16 0.166441208 0.166674967
32 0.085409202 0.085439165
64 0.043240257 0.043245002
128 0.021752099 0.021753856
256 0.010908295 0.010909767
512 0.005461606 0.005463093
1024 0.002732081 0.002733599

Example 2
4 1.115708975 1.183294932
8 0.603760931 0.612156210
16 0.310160182 0.311205291
32 0.156753644 0.156884442
64 0.078745207 0.078762670
128 0.039457784 0.039461447
256 0.019748655 0.019750751
512 0.009878395 0.009880382
1024 0.004939423 0.004941443

Example 3
4 0.364155216 0.369773302
8 0.210300724 0.211046009
16 0.111965973 0.112062844
32 0.057651546 0.057666382
64 0.029236875 0.029241931
128 0.014719002 0.014723150
256 0.007382902 0.007387121
512 0.003695604 0.003699947
1024 0.001847140 0.001851570

Example 4
4 1.159947339 1.199362587
8 0.655838070 0.660912869
16 0.345119700 0.345764328
32 0.176625421 0.176709137
64 0.089295863 0.0893113121
128 0.044887035 0.0448948419
256 0.022499904 0.0225072174
512 0.011261046 0.0112685578
1024 0.005630322 0.0056380162
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