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FAST ACCURATE BINOMIAL PRICING

L C G Rogers & E J Stapleton

University of Bath

Abstract. We discuss here an alternative interpretation of the familiar binomial lattice
approach to option pricing, illustrating it with reference to pricing of barrier options, one-
and two-sided, with fixed, moving or partial barriers, and also the pricing of American put
options. It has often been observed that if one tries to price a barrier option using a binomial
lattice, then one can find slow convergence to the true price unless care is taken over the
placing of the grid points in the lattice; see, for example, the work of Boyle & Lau [2]. The
placing of grid points is critical whether one uses a dynamic programming approach, or a
Monte Carlo approach, and this can make it difficult to compute hedge ratios, for example.
The problems arise from translating a crossing of the barrier for the continuous diffusion
process into an event for the binomial approximation. In this article, we show that it is
not necessary to make clever choices of the grid positioning, and by interpreting the nature
of the binomial approximation appropriately, we are able to derive very quick and accurate
pricings of barrier options. The interpretation we give here is applicable much more widely,
and helps to smooth out the ‘odd-even’ ripples in the option price as a function of time-to-go
which are a common feature of binomial lattice pricing.

AMS 1991 Subject Classifications: 60J65, 60J15, 90A09
JEL Subject Classifications: G12, G13
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1 Introduction

We shall give in this paper a different interpretation of the standard binomial lattice approach
to pricing of contingent claims written on an asset whose log price X is a Brownian motion
with constant variance and constant drift, in the presence of a constant interest rate. This
interpretation leads to eflective methods for pricing barrier and other options; for now, we
shall concentrate on the pricing of double barrier European call options, but it is important
to realise that the approach described can be applied to a range of other path-dependent
options involving the supremum or infimum of the path.

The pricing of barrier options has been widely studied; see, for example, Boyle & Lau [2],
Broadie, Glasserman & Kou [3] and [4], Carr [5], Chance [6], Cheuk & Vorst [ 7], Heynen &
Kat [12] and [13], Kunitomo & Tkeda [16], i & Lu [17], Rich [21] and [22], Ritchken [23],
Rogers & Zane [25], and Rubinstein & Reiner [26].



It is well known that the price of the option can be computed by solving a second-order
partial differential equation (PDE). The binomial pricing method can be interpreted as a
finite-difference approximation to this PDE, but it is actually more helpful to think of the
binomial pricing method as being an ezact calculation relative to a discrete-time discrete-
state Markov process which approximates the log-price process. This approximation is a
random walk which jumps at the times At,2A¢,.... At each jump, the random walk moves
either up by Az or down by Az; the probabilities of these two alternatives, and the size of
the jump, are chosen to make the local drift and variance of the random walk match those of
the diffusion, so that as At tends to zero the random walk converges weakly to the diffusion.

This is the conventional interpretation of the approximation of the log Brownian motion by
the random walk, but we can usefully think of another approximation, namely, we fix some
Az > 0, and view the diffusion only at the discrete set of times at which it has moved by
Az from where it was when we last observed it; formally,

70=0, Tpp1 =inf{t > 7, | X () — X(7)| > Az}, n>0.

The (discrete-time) process that arises is now a random walk approximating the underlying
diffusion X uniformly closely (at least after the appropriate adjustment of the time scale).
What we shall do in this article is to approzimate (Xt)ogth by the random walk (fn)OSnSy,
where v = sup{n : 7, < T'}, and T is the expiry of the option.

Routine scale function calculations lead us to the probability of an upward step. When we
think of the random walk approximation in this form, it is easy to see how we should handle
the barrier condition. It is not necessary to place the upper barrier b* at some grid point;
all we need is that if = is the grid point immediately below 6*, then we modify the jump
probabilities from z. More precisely, the probability of a down step from = to = — Az will
be the probability that the diffusion X, starting from z, reaches + — Ax before b*, and with
the complementary probability the barrier will be crossed and the option knocked out.

This explains the dynamics of our random walk with the barrier condition, but how should
we account for the number of steps taken? In contrast to the usual approximation, the
number v of steps taken is random. However, as we argue in Section 2, the path followed
by the random walk is independent of v. The price of the option depends on the number of
time-steps to go, and we simply compute the price for all (or enough) values of time-steps
to go, and mix over the distribution of the number v of time-steps. To be more precise,
the law of v is not easy to describe in closed form, but we use approximations based on
classical renewal theory. In Section 2, we compute the price of the standard European call,
the down-and-out European call, and a double barrier European call by various different
methods:

(i) exact (Black-Scholes-like) formula;
(ii) numerical integration;

(iii) the conventional binomial approximation ;
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(iv) the conventional binomial approximation with averaging correction;

(v) the binomial approximation developed here;

Of course, method 1 is not available for the double barrier option. We report on the speed
and accuracy of the numerical methods.

One virtue of the approach proposed here is that we are actually considering the true price
process, viewed at a discrete (random) set of time points. Thus there are essentially only
three places where errors could arise:

(a) on the last time interval, during which 7' falls;
(b) in the approximation of the distribution of the number of time steps to be used,;

(c) when the random walk visits a grid point next to a barrier, the time taken to reach
the next grid point given that the barrier is not breached will be stochastically smaller
than for a grid point in the middle of the ‘live’ region.

We have corrections to deal with (a) and (b); the correction for (a) is established in an
appendix, and the procedure for (b) is given in 2. We investigated a correction for (c),
but this was cumbersome and did not improve the results significantly, so we omit further
discussion of it. The results reported are sufficiently good that corrections are not crucial.

Section 3 presents and discusses the numerical results for fixed one- and two-sided knockout
barriers on a Furopean call option. It turns out that the modified binomial method which
is the subject of this paper outperforms the standard binomial method easily. It is not as
good as numerical integration, though. This is not surprising, in that exact or quasi-exact
analytic methods are most likely to win when they are available. But the approach given
here is robust, as we demonstrate in Section 4, where we apply the method to moving barrier
options, to partial barrier options, and finally to American options. There are some rather
crude assumptions linking the random timescale of the approximation we consider and the
actual timescale, but it turns out that, using some interpolation where necessary, we can
obtain quite good results. Section 5 concludes the paper.

2 Modifying the binomial random walk approximation.

The asset price S is a log Brownian motion, so that

X =logS; = oW, + (r — o?/2)t = oW, + pt, (1)

where W is a standard (one-dimensional) Brownian motion, and o is the volatility of S, and
r is the riskless rate of return, both constants.



We consider a European call option with expiry 7' and strike K, knocked out if ever the
log-price rises above b*, or falls below b,; arbitrage pricing theory gives its price as
B e (Sr— K)H (> T, (2)

where ( = inf{t > 0: X; > b* or X; < b.}. It is not hard to show that the price function

p(t,z)=F [e“T(T_t)(ST — K (>T]S = ex] (3)
satisfies a second-order partial differential equation

0
8_f +Gp —rp =0, SO(T’ x) = (em - I(>+a @(t’ b*) = @(t’ b*> =0,

where

d

g 1028_2+ -
2 0x? ﬂ@x'

We do this by fixing some Az > 0, and considering the times
70 =0, g1 =inf{t > 7, : | X(t) — X(7,)| > Az}, n>0.

The process (€n)n>0 = (X(70))n>0 is now a random walk with values in the lattice A =
Xo + (Az) Z, and it approximates the underlying diffusion X uniformly closely (at least
after the appropriate adjustment of the time scale). We approximate (X;)o</<7 by the
random walk (&,)o<n<y, Where v = sup{n : 7, < T}. Routine scale function calculations
lead us to the probability p of an upward step:

_ 3(0) — 3(—A$) B eQCA:I: _ 1
P= S(A.f) — 5(—A$) - eZCA.Z‘ _ e—ZCAz‘ (4)

where s(z) = —exp(—2puz/0?) = —exp(—2cz).

When we think of the random walk approximation in this form, it is easy to see how we
should handle the barrier conditions. It is not necessary to place the barriers b, and b* at
grid points; all we need is that if £* is the grid point immediately below b*, and z, is the
grid point immediately above b,, then we modify the jump probabilities to

Pl =2 - Al =0 = 20 5)

s(+) = 5(bs)




and with the complementary probability the barrier will be crossed and the option knocked
out.

The price of the barrier option for this approximating process is computed by solving the
dynamic-programming equation

P(0,2) = (e — K)* (7)
p(n+1z) = pla)p(n,z+ Az)+ q(z)p(n, 2 — Azx)

for all b, < < b* in the grid A and all n > 0. The probability p(z) is given by (4) for
all z except z* and z, (for which p(z*) = 0, and ¢(z,) = 0), and ¢(z) = 1 — p(z) for all
z, < & < z*, with finally ¢(2*) and p(z.) being given by (5) and (6).

Solving (7) does not answer our original problem of pricing the barrier option, but it is very
close. The missing piece is provided by this little result.

PROPOSITION 1. The random variables (1,41 — Tn)nzo are independent and identically
distributed, with distribution given by

cosh po™*Az cosh(cAx)
#(V) [exp(=An)] cosh vAx cosh(yAz)’ (®)

where v = \/u? + 2X02/o?. The common mean is

A
Eln] = 2% fanheAz (9)
i
and common second moment is
9 .,  O’Azx Az’
I [7’1] = 2(E[7'1]) + - tanhcAz — [ — ] . (10)
g "
Moreover, they are independent of the random walk ¢.
Proof. To obtain (8), we have to solve
Gf=Ar=0 (11)

in the interval [-Axz, Az| with boundary values 1 at each end of the interval, and then take
©(X) = f(0). The routine calculations leading to (8) do not need to be spelled out, and two
differentiations get from (8) to (9) and (10).

What may be a little less obvious is the final statement, namely, the independence of the
times 7; and the random walk £. But if we compute E [exp(—Ary) : X (1) = —Axz] by solving
(11) with boundary conditions 0 at Az and 1 at —Az, we obtain
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1
2ecA7 cosh yAx

Elexp(=Am): X(n) = —Az] =

Now it is easy to calculate from this that

cosh cAx
Elexp(=An)|X(m) = —Az] = m ,
which is unchanged if we replace ¢ by —¢. However, a moment’s thought shows that when
we replace ¢ by —¢, we are actually calculating F [exp(—A71)| X(71) = Az], and we conclude
that the law of 71 conditional on X(71) = —Auw is the same as the law of 71, and is the same
as the law of 7 conditional on X (1) = Az. In other words, 7 is independent of X(7), as
was claimed.

It now follows from Proposition 1 that the price of the barrier option can approximated by

Z P(v =n)Y(n, ), (12)

n>0

where zg € A is the starting value of X. The dynamic programming recursion (7) allows
us to compute 1, so we only need to calculate P(v = n) for all n. It amounts to the same
thing to compute P(v > n) = P(r, < T), and this is made much easier by the fact that the
increments of the sequence (7,) are independent with the same law, characterised by (8). If
we abbreviate m(A) = E[r] and o(A)? = var (1), then by the Central Limit Theorem we
shall have that approximately

(1 —mm(A) - no,1),
=INNT
However, this approximation turns out to be rather too crude, and a refinement of the Central
Limit Theorem is required. Fortunately, such refinements are well developed; Petrov [20],
Chapter 5, gives a good account of expansions of the Central Limit Theorem. In particular,
Theorem 5.22 of Petrov states the following:

2\, —x%/2

—

P (M as(l = 7)e + o(n_1/2),

~(A)/n SJJ)ZCD(J;)—{- N

where




is the third moment of the centred and scaled random time-step. Higher order terms in
the expansion are available, but we found that they made no appreciable difference to the
accuracy of the results, so have omitted them entirely. A more sophisticated approach to the
approximation of the probabilities P(7, < T') would be to use a saddlepoint approximation
(see, for example, Daniels [10] or Wood, Booth & Butler [27] for clear accounts of the main
results, and Jensen [15] for a thorough treatment). Nonetheless, the expansion used here
was accurate enough for all practical purposes. Clearly, we can compute the value of as
explicitly from (8); we obtain

Az[A+ B - (]
Aob(s(Ax)—1)3

where

A = 12cAz[s(2Az) + s(Ax)]
B = 8c(Ax)’[s(Ax) — s(2Az)]
C = 31+ S(A;v) — S(QALU) + S(SA;U)]

This was how we computed the values P(v > n) = P(1, < T) to get to (12).

3 Numerical results.

The computations reported here were performed on a Sun Sparcserver 1000E. We computed
the values of a European call option with expiry 1 year, volatility 25 %, interest rate r at 10
%, strike of 100 and initial price of 95. The parameter values chosen allow comparison with
the results of Boyle & Lau [2]. First we computed the values for the standard European call,
then for the down-and-out barrier option with barrier at 90. Finally for the double barrier
knockout option we computed prices for three sets of parameter values, corresponding to
those used in Geman & Yor [11]. We report the results for the three methods: standard
binomial, averaged binomial (where the price is taken to be (V(n—1)+2V(n)+V(n+1))/4,
with V(n) being the price of the option with n steps to go), and the modified binomial
method of this paper.

The speed and accuracy depend on n, the number of timesteps taken; for the modified
binomial method, this is interpreted as the average number of time steps taken, which is
determined by the choice of grid spacing. We also calculated the prices using the Black-
Scholes formula, and numerical integration. The speed and accuracy of the modified method
is superior to the other binomial methods presented; for the standard call, the price is
accurate to one part in 1000 with n=>50, requiring 0.02 seconds, as opposed to n=800 for
the standard binomial method, requiring 0.77 seconds. With the down-and-out call, the
modified method gets within one part in 1000 using 75 timesteps on average, which requires



a time of 0.08 seconds; even with 3200 timesteps, the other binomial methods are out by
three parts in 100, an order of magnitude worse. For the double-barrier option, the modified
method achieves accuracy of one part in 1000 when n=800, taking time 0.043 seconds; the
binomial method with 3200 steps takes 0.2 seconds, and even then is out by 3 %, thirty
times as bad!

In all these cases, the numerical integration method appears to be faster and more accurate,
but for the double barrier situation we see that it is only about 5 times faster.



Table 1: Standard European Call

Standard Averaged Modified

n Binomial Binomial Binomial

25 11.3614 11.2725 11.5994

(0.0083) (0.01)

50 11.4817 11.4859 11.6497

(0.01) (0.02)

75 11.5219 11.5387 11.6480

(0.014) (0.03)

100 11.583 11.5626 11.6443

(0.02) (0.073)

150 11.5999 11.6003 11.6549

(0.03) (0.077)

200 11.6019 11.6110 11.6519

(0.048) (0.12)

400 11.6387 11.6342 11.6546

(0.14) (0.38)

800 11.6478 11.6461 11.6564

(0.77) (1.05)

1600 11.6526 11.6518 11.6569

(1.83) (3.46)

3200 11.6548 11.6547 11.6572

(4.9) (11.0)

Accurate values:
Method Price Time taken

Black-Scholes 11.65735 0.001
Numerical Integration 11.65737 0.001
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Table 2: Down and Out Barrier Option

With lower barrier set at: 90

Standard Averaged Modified

n Binomial Binomial Binomial
25 9.6114 9.5830 5.9810
(0.006) (0.03)

50 7.5028 7.5023 5.9852
(0.007) (0.05)

75 6.4382 6.4415 5.9921
(0.0087) (0.08)

100 7.6536 7.6485 5.9932
(0.012) (0.13)

150 6.6374 6.6377 5.9945
(0.018) (0.24)

200 7.2923 7.2945 5.9957
(0.025) (0.34)

400 6.6817 6.6808 5.9960
(0.06) (0.96)

800 6.6193 6.6189 5.9966
(0.196) (2.64)

1600 6.1794 6.1792 5.9967
(0.53) (3.63)

3200 6.2705 6.2705 5.9968
(1.54) (19.21)

Accurate values:

Method Price  Time taken
Black-Scholes type formula 5.99684 0.002
Numerical Integration 5.99684 0.02
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Table 3: Double Barrier Option (a)

With parameters:

ag
r

T
So
K

Lower barrier
Upper barrier

0.5
0.05
1.0
100.0
100.0
75.0
150.0

Standard Averaged Modified

n Binomial Binomial Binomial

25 1.7040 1.6322 1.0836

(0.005) (0.009)

50 1.3097 1.2132 0.9253

(0.005) (0.01)

75 1.3299 1.3908 0.9512

(0.006) (0.01)

100 1.3392 1.3566 0.9365

(0.008) (0.015)

150 1.0746 1.0454 0.8921

(0.007) (0.019)

200 1.2289 1.2056 0.9089

(0.008) (0.024)

400 1.1391 1.1430 0.9030

(0.015) (0.048)

800 0.9550 0.9567 0.8927

(0.03) (0.043)

1600 1.0227 1.0236 0.8949

(0.08) (0.24)

3200 0.9227 0.9215 0.8930

(0.2) (0.6)

Accurate value:
Method Price  Time taken
Numerical Integration  0.8929 0.03
Geman and Yor 0.89 -
MC 0.955 -

12



Table 4: Double Barrier Option (b)

With parameters:

ag
r

T
So
K
Lower barrier
Upper barrier

0.5
0.05
1.0
100.0
87.5
50.0
150.0

Standard Averaged Modified

n Binomial Binomial Binomial

25 5.8405 5.5312 4.2776

(0.005) (0.009)

50 4.0824 3.9173 3.8872

(0.005) (0.013)

75 4.8993 5.0056 3.9605

(0.007) (0.013)

100 4.6836 4.7600 3.9208

(0.007) (0.017)

150 3.7897 3.7605 3.8132

(0.008) (0.02)

200 4.2326 4.1926 3.8502

(0.01) (0.028)

400 4.2344 4.2529 3.8354

(0.02) (0.06)

800 3.8182 3.8252 3.8098

(0.044) (0.13)

1600 3.9700 3.9745 3.8142

(0.1) (0.35)

3200 3.8353 3.8342 3.8090

(0.3) (0.81)

Accurate value:

Method Price  Time taken

Numerical Integration  3.8086

0.03

Geman and Yor

3.8075

MC

3.86
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3.1

With parameters:

o 0.2
r 0.02
T 1.0
So 100.0
K 100.0
Lower barrier  75.0
Upper barrier 125.0

Table 5: Double Barrier Option (c)

Standard Averaged Modified

n Binomial Binomial Binomial

25 2.0222 2.2028 2.1472

(0.006) (0.007)

50 2.0836 1.9935 2.0518

(0.005) (0.0095)

75 2.0957 2.1578 2.0788

(0.006) (0.01)

100 2.4693 2.4213 2.0984

(0.014) (0.012)

150 21774 2.1461 2.0670

(0.019) (0.02)

200 2.1228 2.0994 2.0591

(0.027) (0.025)

400 2.2094 2.2124 2.0642

(0.021) (0.047)

800 2.1315 2.1256 2.0578

(0.05) (0.11)

1600 2.0970 2.0978 2.0558

(0.13) (0.3)

3200 2.1342 2.1328 2.0558

(0.38) (0.82)

Accurate value:

Method Price  Time taken

Numerical Integration 2.0544

0.03

Geman and Yor

2.055

MC

2.125
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4 Other types of options

Having seen that this method works well on the standard single and double barrier cases,
we next tested it on more complicated barriers. Firstly, we took the case of moving barriers,
both one- and two-sided, where the barrier moved linearly in the log-price scale. This choice
of barriers was made to allow comparison with the results of Kunitomo & Ikeda [16]; for a
completely different approach, see Rogers & Zane [25]. Secondly, we considered the case of
partial barriers, where the barrier is effective only for part of the interval. We took just a one-
sided example here, where the barrier was effective only for the first half of the interval. This
allows us to compare with the quasi-analytic result expressing the price as a one-dimensional
integral. And finally we priced the American put, to demonstrate the use of the method on
a non-barrier example; we were able to compare with results of Ait-Sahalia & Carr [1].

An added difficulty is involved in each of the above cases since the time points of our lattice
correspond to random real times, so we do not know exactly where the barrier is at that
lattice time point. Our treatment of this is primitive, but seems to be effective. For the
moving barrier, we had a barrier a + ¢t so we assume the position of the barrier at time
step 7 is a + BiE[r]. Analogously, for the partial barrier we suppose that at time step 7 we
are actually at time ¢E[7] for the purposes of deciding knockout probabilities.

The numerical results which follow show that these approximations worked well.

To price the American put we changed the problem slightly. The classical American put
is an optimal stopping problem, where the decision whether or not to stop is based on the
current time and the current share price. Instead, we supposed that the controller can at
each decision time see the share price, and the number of moves the random walk ¢ has
remaining before the expiry of the option. This leads to the dynamic programming equation
for the value function:

Valz; At) = max{(K —e”)Y Ele™ {pVoyi (2 + Az) + ¢Voga (z — Az)}]}
= max{(K —¢"),0,pE[e™" V1 (z + Az) + ¢E[e7 V11 (2 — Az)}

which involved using our previous calculation of E[e™"7].

The alteration of the problem makes one suspect that the solutions obtained may not be very
accurate, and to correct for possible errors we used a variant of Richardson extrapolation,
where we take a linear combination of three approximate values computed using different
values of n, the number of time steps. The coefficients of the linear combination were picked
to eliminate errors of the form agn™"/? 4 a;n~". Again, the results for this method were very
satisfactory.
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Table 6: Barrier Option Results

Sgle lin  Dble lin  Partial

25 49977 5.2504 6.1391
(0.01) (0.01)  (0.02)

50  4.9508  5.3107  6.1200
(0.02)  (0.015)  (0.03)

75 4.9482 53345 6.1266
(0.03)  (0.018)  (0.05)

100 4.9436  5.3270  6.1296
(0.04)  (0.023)  (0.07)

150 4.9364  5.3539  6.1292
(0.06)  (0.033) (0.1)

200  4.9357  5.3598  6.1322
(0.086)  (0.043)  (0.17)

400  4.9314  5.3602  6.1323
(0.22)  (0.093)  (0.53)

800  4.9296  5.3660 6.1330
(0.6) (0.21)  (1.89)

1600 4.9286  5.3668 6.1329
(1.65) (0.53) (7.4)

3200 4.9281  5.3672  6.1332
(4.7) (1.31)  (29.1)
Accurate  4.9277  5.3679  6.1332
(0.02) (0.05)  (0.02)

The accurate prices at the bottom of the table were calculated using closed form solutions.
The formula for the double-sided moving barrier option was obtained from Kunitomo and

Tkeda (1992).
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Table 7: American Put

The option valued had strike price 100, time to maturity 0.5 years, volatility 0.40 and risk-
free rate 0.06. As an example, three different start prices are shown for an in-the-money,
at-the-money and out-of-the-money option. The values our method is tested against are the

average standard binomial with 1000 steps, the method of lines, and Broadie and Detemple’s
LUBA. The results of all three methods can be found in a paper by Ait-Sahalia & Carr [1].

Initial Modified  Richardson  Time
Stock Binomial Extrapolation
Price
85 25 18.0438 0.0 0.09
50  18.0409 0.0 0.19
100 18.0395 18.0380 0.49
200 18.0382 18.0339 1.47
400 18.0375 18.0370 4.76
800 18.0371 18.0364 16.66
Av Bin 18.0374
Lines 18.0402
BD LUBA 18.0346
100 25 11.7469 0.0 0.09
50 11.4224 0.0 0.19
100 10.8907 8.5750 0.5
200  10.5526 9.8656 1.48
400 10.3432 9.9390 4.81
800 10.2106 9.9431 16.76
Av Bin 9.9458
Lines 9.9417
BD LUBA 9.9466
115 25 5.1275 0.0 0.08
50  5.1272 0.0 0.2
100 5.1264 5.1226 0.49
200  5.1260 5.1254 1.42
400  5.1257 5.1248 4.78
800  5.1255 5.1250 16.89
Av Bin 5.1265
Lines 5.1047
BD LUBA 5.1261




For the barrier options, we used the 1 year call option, volatility 25%, interest rate 10%,
strike 100 and initial stock price 95. The upper barrier function f}; and lower barrier
function fj, used (referred to the log-price scale) were chosen as follows. For the single
moving (lower) barrier, we had fi,(¢) = log(90)+0.1¢. For the two-sided moving barrier, we
took f1,(t) = log(90) — 0.1¢, and f,;(t) = log(160) + 0.1¢. For the partial (lower) barrier,
we used [}, () = log(90) for 0 <t < T'/2; = —oo otherwise.

Despite the crude treatment of the issue of the random times, the computed values away
from the money agree with the quasi-analytic ones to one part in a thousand with computing
time of about 0.5 s. At the money, it needs about 10 times as long to achieve this accuracy,
consistent with the results of Rogers & Zane [25].

For the American put, we compared our method with three methods from [1]. Tt is worth
noting that the accuracy of our method compares well with the three methods. It is also
of interest that for American puts which are at the money, the improvement gained by
Richardson extrapolation is considerable, whereas away from the money it appears to be
less important. This is borne out by calculations for other values of the parameters as well.
The speed of our calculations is entirely acceptable for real-time use, though not as good as
problem-specific methods, such as the Broadie-Detemple LUBA method.

5 Conclusions.

We have developed a variant of the binomial pricing algorithm based on interpreting the
random walk on the binomial lattice in terms of the Brownian motion crossing equally-spaced
levels in the log-price variable, rather than equally-spaced intervals in time. The speed and
accuracy of the method for pricing standard European call options, with or without barriers,
is superior to the usual binomial lattice. For these options, analytic solutions, or quasi-
analytic solutions based on numerical integration of the transition density, perform best of
all. For more complex options for which no quasi-analytic solutions are known, the new
method gives good accuracy in acceptable time.

Appendix.
When we embed the random walk in the drifting Brownian motion as described in the

Introduction, and then do the calculation of the option price as in Section 2, we are in fact
computing the value of

e B [(S(rney) — K)'5¢ > vy | S = ¢

where N(T') = sup{n : 7,, < T}. How can we correct for the difference between S(TN(T)) and
St? Observe that the piece of the path of X between 7y(ry and T starts at some point z in
A and gets stopped before it reaches either z + Az or z — Az. For simplicity of exposition,
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assume that z = 0. We may approximate the distribution of the particle in (—Az, Az) when
stopped by the long-run distribution of a process X which diffuses like X in (—Az,Az),
but once it reaches either end of the interval is immediately returned to 0 and starts again.
Clearly, this is a positive recurrent Markov process, and we can compute its invariant law by
finding the law of the process at an independent exponential time 1 with very large mean.
Indeed, for a smooth test function f > 0 we have

LX) = BL[ BeP f(X0)de) + B°le | E[f(X,)]

where p = inf{t : |X;_| = Az}. Rearranging this gives

Iy Be=PLF(X,)dt]

Eo[f(Xnﬂ = EO[l — E0e=P7] ;

and letting 5 | 0 gives in the limit

E°Lf5 f(X:)dl]
Elp]

The Green function for the drifting Brownian motion killed on exit from (—Az, Az) can
be computed quite simply; see, for example, Mandl [18], 1t6 & McKean [14], or Rogers &
Williams [24] for accounts of the methodology. When we finish, we get the distribution to
have density

- e?cAz‘ . 6201? -
(CL) = —AJ;(€2CA$ — ]) s T -~ 0, (13)
e?c(zﬁ+Az‘) -1

= s S (14)

Thus to correct for the last interval, we just replace the terminal value (¢” — K)* for x € A
by the expectation f_AATT h(y)(e”™¥ — K)*dy.
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