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Abstract

This paper is concerned with systemic risk in the interbank market. We model this market as a
directed graph in which the banks represent the nodes and the liabilities between the banks represent
the edges. Our work builds on the modelling paradigm of Eisenberg and Noe (2001), extending it by
introducing default costs in the system. We provide a rigorous analysis of those situations in which
banks have incentives to bailout distressed banks. Such incentives exist under very mild conditions.
We illustrate our results with some simple examples, and go on to discuss possible measures of
soundness of a financial system, together with possible policy implications for resolution of distress.

1 Introduction

Over the last ten or so years, there has been a growth of interest in the general phenomenon of the spread

of bank failure through a network of interbank obligations. As the Asian banking crisis of the late 90s,

and the more recent banking crisis of 2007-8 have shown, the banking system generally can be very

vulnerable to deterioration of assets, loss of liquidity and loss of confidence. The modelling effort to date

is largely restricted to static models, reflecting the urgent nature of the crises; traditional solutions such

as the issuance of new equity or bonds cannot be achieved in the timescales available, typically just a few

days. Among such studies of static failure models, there are two main types. The first, see for example

Eisenberg and Noe (2001), Cifuentes et al. (2005), supposes that the network of interbank obligations is

given to us, and then attempts to understand how it might fail, where it is weak, and what steps could be

taken to strengthen it. The second, see for example Nier et al. (2007) and Beyeler et al. (2007), supposes

some regular or symmetric structure1 for the network of interbank obligations, and tries to derive general

results for such a network. While the second approach lends itself better to elegant theory, we view its

value as being largely indicative; in practice, we are not sampling from some distribution of possible

bank networks, nor are we working with a symmetric network of interbank obligations - there is an

actual network to be saved, and it will be a complicated ugly object.
∗University of Cambridge, Statistical Laboratory, Wilberforce Road, Cambridge, CB3 0WB, UK
†London School of Economics, Department of Mathematics, Houghton Street, London WC2A 2AE, UK
1The regular structure may be stochastic in nature, as in Nier et al. (2007)
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1.1 Related Literature 1 INTRODUCTION

Our contribution therefore will be of the first type, modelling the system as a directed graph with

edge weights, representing the indebtedness of each bank to the others. Each bank is owed money by

external borrowers, and initially all banks are solvent, but the value of the banks’ loan portfolio is subject

to variation, and it may come about that one bank’s loan portfolio falls in value so that the bank is

technically insolvent. We investigate the consequences of such a default on the system.

The model we present here is an extension of a model proposed by Eisenberg and Noe (2001). They

assume that a defaulting bank calls in its loans, realising 100% of their face value. However, this must be

treated with care. It is more likely, that in such a default situation the bank will only realise some fraction

and not 100% of the face value. Allowing for this makes the model much more realistic as we will see.

When a bank defaults it does not repay its obligations in full which may precipitate other collapses.

We are particularly interested in situations in which banks have incentives to form rescue consortia.

We provide analytic results for the existence of these rescue consortia.

The outline of our paper is as follows. In Section 2 we describe the model for the interbank market

which extends the model by Eisenberg and Noe (2001) by introducing default costs.

In Section 3 we study how the default of one bank affects the system and we show the existence

of a clearing vector which represents a vector of payments to settle all liabilities in the system within

a simultaneous clearing mechanism. Moreover we propose an algorithm which allows us to compute

clearing vectors very efficiently.

Section 4 contains the main theoretical results of this paper on merger decisions in the interbank

market. We show in Theorem 4.10 that, on the one hand, if there are no default costs, there is no

incentive for rescue consortia to form. On the other hand, in Theorem 4.11, we prove that if there are

strictly positive default costs and some mild regularity conditions are additionally satisfied, then rescue

consortia do exist. This shows that there is almost always benefit to be derived from the solvent banks

in a system rescuing the insolvent banks, and it is indeed in the interests of the solvent banks to do so.

Why then does it seem so difficult in times of crisis for the system to act in its own interest and mend

itself? There are of course many aspects to this question: How is a rescue to be coordinated? Would a

rescue consortium be able to satisfy itself as to the risks involved in a rescue? Why would a bank join a

rescue consortium and thereby take on losses if by waiting other banks might take the losses instead? In

Section 6 we discuss some of these questions, and present some measures which can be used to assess

the state of a financial system and particular its risk of contagion. In Section 5 we provide some examples

and illustrate our theoretical results in these situations. Section 7 concludes. The Appendix contains all

proofs of the theoretical results.

1.1 Related Literature

Contagion in financial networks has been frequently studied in the past, see e.g. Diamond and Dybvig

(1983), Rochet et al. (1996), Allen and Gale (2000), among other papers and the survey by DeBandt

(2000).

Once bankruptcy of one or several financial institutions has occurred or is imminent, the natural

question is whether these institutions should be bailed-out and if yes, by whom?

2



2 DEFINITION OF THE FINANCIAL SYSTEM

Aghion et al. (1999) discuss exactly such a bailout problem and show how and when a bailout should

be done. Cordella and Yeyati (2003) show that bailing out banks under certain conditions can outweigh

possible moral hazard effects. The main problem generally is that if a lender of last resort is present

this might increase the risk appetite of financial institutions. If there is not such a lender of last resort

the resulting contagion effects and loss of confidence could seriously affect the financial system. Perotti

and Suarez (2002) consider the possibility of solvent banks taking over distressed banks and further show

how this can stabilize the financial system. More recent approaches to optimal resolution of bank failures

are provided in Acharya and Yorulmazer (2007) and Acharya and Yorulmazer (2008).

Acharya et al. (2011) focus on the related problem, namely the banks’ choice of liquidity and how

this depends on the resolution mechanism. They particularly provide evidence for the fact that providing

liquidity support to failing banks can make them more likely to hold less liquidity in the first place.

Besides theoretical results on bank failure and contagion, there is also a wide range of empirical

studies such as e.g. Iyer and Peydro (2011). Many authors have also considered stress testing in financial

networks, e.g. Amini et al. (2011) or general simulation studies like Upper and Worms (2004), Upper

(2007), Elsinger et al. (2006). Many of those are built on the modelling paradigm of Eisenberg and Noe

(2001).

Our paper complements the literature on dealing with financial networks under stress and bank

merger decisions. Its spirit is closest to work by Leitner (2005) who particularly investigated the role

of linkage in interbank networks as a reason for private sector bailouts. Leitner (2005) considers also

optimal networks in the sense that they provide an optimal tradeoff between risk sharing and the collapse

of the system. We do not consider optimal designs but just take a network as given and provide condition

when rescue consortia exist. Our analysis can therefore in principle be applied to all financial networks

(assuming that the liabilities structure can be observed). We also show that banks in such a network very

often have incentives to rescue other banks and hence a lender of last resort is not required for the bailout

itself but for insuring an appropriate coordination mechanism. The role of the regulator in our paper is

therefore very similar to the one considered by Leitner (2005).

2 Definition of the Financial System

We use a model similar to Eisenberg and Noe (2001), though we modify their notation slightly. We

consider a market with n banks with indices in N := {1, . . . , n} which we represent by nodes in a

network. Each bank has liabilities to other banks in the system. We represent these liabilities in terms of

a matrix.

Definition 2.1 (Liabilities Matrix).
The liabilities matrix is given by L ∈ Rn×n, where the ijth entry Lij represents the nominal liability of

bank i to bank j. We assume that Lij ≥ 0 ∀i, j and Lii = 0 ∀i.

Those nominal liabilities that are strictly positive represent the directed edges of the network.

Definition 2.2 (Obligations).
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2 DEFINITION OF THE FINANCIAL SYSTEM

The total nominal obligations of bank i to all other banks in the system are given by L̄i =
∑n

j=1 Lij and

L̄ is the corresponding vector of the total nominal obligations.

Definition 2.3 (Relative Liabilities Matrix).
Let L be a liabilities matrix and L̄ the corresponding vector of total nominal obligations. The relative

liabilities matrix Π ∈ Rn×n is defined by

πij :=

{
Lij/L̄i if L̄i > 0,

0 otherwise.

Hence the rows of Π all sum up to 1 if L̄ > 0. If for some i ∈ N the total liabilities L̄i = 0, then the

corresponding row of Π sums up to 0.

Definition 2.4 (Net Assets).
We denote by ei ≥ 0 the net assets of bank i from sources outside the banking system2. The correspond-

ing vector of net assets is denoted by e.

Definition 2.5 (Financial System).
Let e be a vector of net external assets. We consider two constants α, β ∈ (0, 1], where the constant α

is the fraction of the face value of net external assets realized on liquidation, and the constant β is the

fraction of the face value of interbank assets realized on liquidation. Then we define a financial system

as a quadruple (L, e, α, β), where L is a liabilities matrix.

Once a financial system (L, e, α, β) is specified one can immediately derive the corresponding rel-

ative liabilities matrix Π and the vector of total obligations L̄. Similarly, if we start with a vector of

total obligations L̄ and a relative liabilities matrix Π we can derive the corresponding liabilities matrix

L. This leads to equivalent definitions of a the financial system which we will use interchangeably as it

is convenient.

Next, we introduce the clearing vector. A clearing vector specifies payments between the banks in

the system which are consistent with some rules. The rules considered are the three rules proposed by

(Eisenberg and Noe, 2001, p. 239):

1. Limited liabilities: Each node never pays more than its available cash flow.

2. Priority of debt claims over equity: Paying off the liabilities Lij has priority, even if the external

assets ei have to be used for that.

3. Proportionality: If default occurs the defaulting bank pays all claimant banks in proportion to the

size of their nominal claims on the assets of the defaulting bank.

This leads to the following definition.
2This would be equity plus loans less deposits.
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2 DEFINITION OF THE FINANCIAL SYSTEM

Definition 2.6 (Clearing Vector).
A clearing vector for the financial system (L, e, α, β) is a vector L? ∈ [0, L̄] such that

L∗ = Φ(L∗),

where Φ is the function defined by

Φ(L)i ≡
{

L̄i, if L̄i ≤ ei +
∑n

j=1 Ljπji,

αei + β
∑n

j=1 Ljπji, else.
(1)

Simple but very important properties of the mapping Φ are given by the following result.

Lemma 2.7. The mapping Φ has the following properties:

(i) Φ is bounded above by L̄: for any L we have Φ(L) ≤ L̄;

(ii) Φ is monotone: if L̃ ≤ L then Φ(L̃) ≤ Φ(L).

A proof of these results is provided in Appendix A.

The interpretation of the clearing vector L∗ is that L∗i represents the cash which bank i has available

to pay out to other banks. The value of the assets (external and interbank) available to bank i will be the

sum ei +
∑

j L
∗
jπji, and if this is at least L̄i then bank i is able to meet its obligations. If this inequality

does not hold, then bank i is in default, and must call in its assets; it recovers only a fraction α of the

external assets, and a fraction β of the interbank assets. The two fractions may conceivably be different;

we would typically expect that α would be low, because the bank would be having to sell off its loan

portfolio, probably at a knock-down price. On the other hand, β might be much closer to 1, since an

obligation from a solvent bank would probably be paid in full (though perhaps with some negotiated

discount to compensate for the inconvenience of early repayment). An obligation from a liquidated bank

would also probably be paid in full, since L∗j represents realized cash, but there might also be some

deduction for the costs of receivership.

Thus on default of bank i, there are actual losses of at least

(1− α)ei + (1− β)
n∑
j=1

L∗j πji.

For 0 < α, β < 1, this is a positive amount - bank failure really costs something. This assumption is new

and was not considered in Eisenberg and Noe (2001) who in effect have assumed α = β = 1 throughout.

We will soon see how this extension leads to more realistic behaviour, and more interesting properties.

Remark 2.8. This model can be easily extended by using different fractions αi, βi corresponding to the

different banks 1 ≤ i ≤ n in the model.

We conclude this section by defining the value of a bank.
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3 CLEARING VECTORS

Definition 2.9 (Value of Banks).
The value V of the banks corresponding to a clearing vector L in a financial system (L, e, α, β) is defined

as

V(L, e)i := (Π>L+ e− L)iI{Li≥L̄i}. (2)

Remark 2.10. From Definition 2.9 it is clear that as soon as a bank’s clearing payment is strictly less

than its total liabilities, its value is zero. Moreover, Π>L+e can be interpreted as cash-flow into the bank

and L as cash-flow out of the bank. The value of the bank is then the net cash position after clearing and

this is assumed to be 0 if the bank defaults. A similar concept was considered in (Eisenberg and Noe,

2001, p. 239).

3 Existence and Construction of Clearing Vectors

In the following we show that a clearing vector exists for all 0 < α, β ≤ 1. We also propose an algorithm

to compute a clearing vector. Eisenberg and Noe (2001) only considered the case α = β = 1.

3.1 Existence of Clearing Vectors

Theorem 3.1 (Existence of Clearing Vectors).
For every financial system (L, e, α, β) there exist clearing vectors L∗ and L∗ such that for any clearing

vector L, we have

L∗ ≤ L ≤ L∗ (3)

Proof of Theorem 3.1. Consider a sequence of vectors L(n), n = 0, 1, . . ., defined recursively by L(0) :=

L̄,

L(n+1) = Φ(L(n)) (4)

for n = 0, 1, . . ., where Φ is as at (1). From Lemma 2.7 we have L(1) ≤ L(0) = L̄, and hence for all n,

L(n+1) ≤ L(n)

by induction. Since all the L(n) are non-negative, there is a monotone limit L∗ :=↓ limn→∞ L
(n). Notice

that the set An := {i : L
(n)
i < L̄i} is non-decreasing in n, and therefore is eventually constant. Note that

Φ is continuous from above. Hence it is clear that L∗ satisfies

L∗ = Φ(L∗), (5)

that is, L∗ is a clearing vector.

We may similarly start the recursion from the zero vector L(0) := 0, in which case we obtain an

increasing sequence of vectors, with limit L̂. In contrast to the first situation the limit L̂ does not have to

be a clearing vector unless α = β = 1 (see Example 3.3). This is due to the fact that the function Φ is

not continuous from below. If a bank just becomes solvent with the limit payment vector L̂, one needs to

restart the iteration from L̂ and continue until one reaches the next limit (monotone convergence). Since
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3.1 Existence 3 CLEARING VECTORS

there are at most n banks where that could happen, one has to restart the iteration at most n − 1 times.

We denote the vector which we obtain from this iteration by L∗. This vector is then the least clearing

vector and a fixed point of Φ.

Since L∗ is non-negative, and a fixed point of Φ, monotonicity of Φ implies that L∗ ≥ L∗. Moreover,

since any clearing vector is bounded below by 0 and above by L̄, we have that any clearing vector must

be bounded between L∗ and L∗.

Remark 3.2. • It is clear from (3) that the greatest and least clearing vectors are unique.

• The proof of Theorem 3.1 can be used directly to compute a clearing vector. However, it is not

guaranteed that it will terminate after a finite number of steps. We will therefore present an algo-

rithm in Definition 3.6 which returns a clearing vector after at most n = |N | steps.

• An alternative proof of the existence results uses Tarski’s fixpoint theorem, see Tarski (1955), and

proceeds then similarly as in Eisenberg and Noe (2001).

Example 3.3. • We consider the financial system

(L, e, α, β) =

((
0 K1

K2 0

)
,

(
1

1

)
, α, β

)

with α = β = 1
2 , K1 = 1

1−α = 2, K2 = 2.2. If we start from L
(0)
i := 0, i ∈ {1, 2}, one can show

by induction that L(n)
i = 2n−1

2n and therefore limn→∞ L
(n)
i = 1 for i = 1, 2. But (1, 1)> is not a

clearing vector since

Φ

((
1

1

))
=

(
2

1

)
.

However, if we start the iteration again with L(0),new := limn→∞ L
(n) = (1, 1)>, L(n+1),new =

Φ(L(n),new), then we obtain

lim
n→∞

L(n),new =

(
2

2.2

)
.

Therefore we have found the clearing vector (2, 2.2)>.

• If we change the financial system by setting K1 = 2.2. Then
(

1
1

)
and

(
2.2
2.2

)
are both clearing

vectors. If additionally, α = β = 1, then only
(

2.2
2.2

)
is a clearing vector.

Remark 3.4. The construction of the upper solution L∗ is achieved by assuming initially that all banks

are sound, then knocking out banks which are insolvent, or which become insolvent as the result of the

failures of others. Thus we are building a solution which spreads insolvency across the network. The

lower solution L∗ is achieved by supposing initially that banks can only rely on their own assets ei; any

which can cover their interbank obligations with their own assets are certain to be secure, and thus their
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obligations will be paid in full. This in turn may make other insolvent banks secure; this solution spreads

solvency across the network. From a practical point of view, it is likely to be the upper solution L∗ which

most concerns us; we would envisage a situation where initially all banks were (or were thought to be)

solvent, and insolvency is seen spreading across the banking network.

Remark 3.5. Notice that in the case α = β = 1 the function Φ defined in (1) takes the simpler form

Φ(L)i = L̄i ∧
(
ei +

n∑
j=1

Ljπji

)
, (6)

from which it is obvious that Φ is continuous and increasing.

It was shown in Eisenberg and Noe (2001) that if the banking network satisfied a technical condition

(called regularity), and if α = β = 1, then there is only one clearing vector: L∗ = L∗.

3.2 Construction of Clearing Vectors

Theorem 3.1 gives a recursive method for calculating approximations to the greatest/least clearing vec-

tor which in practice converges very rapidly and stably. However, this algorithm is not guaranteed to

converge in any fixed finite number of steps, and this is certainly a drawback, at least at the theoretical

level.

In this subsection, we propose an algorithm which is a modification of the fictitious default algorithm

introduced by Eisenberg and Noe (2001). This algorithm by contrast will find the greatest clearing vector

in at most n steps; moreover, on the way we find an interesting understanding of the way default spreads

through the network which we return to later.

Definition 3.6 (Greatest Clearing Vector Algorithm, GA).
For a financial system (L, e, α, β) the Greatest Clearing Vector Algorithm (GA) constructs a sequence(
Λ(ν)

)
as follows. Again Π = (πij) and L̄ are defined as before.

1. Set ν = 0, Λ(0) := L̄ and I−1 := ∅.

2. For all nodes i compute v(ν)
i :=

∑n
j=1 Λ

(ν)
j πji + ei − L̄i.

3. Define

Iν := {1 ≤ i ≤ n : v
(ν)
i < 0},

the set containing all indices of insolvent banks, and

Sν := {1 ≤ i ≤ n : v
(ν)
i ≥ 0}

the set containing all indices of solvent banks.

4. If Iν ≡ Iν−1 terminate the algorithm.
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4 MERGED BANKS AS RESCUE CONSORTIUM

5. Otherwise set

Λ
(ν+1)
j := L̄j ∀j ∈ Sν

and determine the remaining clearing payments by finding the maximal solution to the system of

linear equations

xi = αei + β

{ ∑
j∈Sν

L̄jπji +
∑
j∈Iν

xjπji

}
∀i ∈ Iν (7)

which is bounded above by Λ(ν), and setting Λ
(ν+1)
i := xi for i ∈ Iν .

6. Set ν → ν + 1 and go back to 2.

When the algorithm has terminated, the vector Λ(ν) is a clearing vector.

Remark 3.7. The maximal solution will be unique if (βP )n → 0, where P is the restriction of Π to

Iν × Iν . This condition will always be satisfied if β < 1.

Theorem 3.8. The greatest clearing vector algorithm (GA) stated in Definition 3.6 produces a sequence

of vectors
(
Λ(ν)

)
decreasing in at most n iterations to the greatest clearing payment vector.

Hence we have shown how we can find the greatest clearing payment vector. The proof is given in

Appendix B.

There is an analogue of the algorithm (GA) which starts from Λ(0) = 0, I−1 = {1, . . . , n}, and

proceeds exactly as (GA), with the sole exception that the solution to (7) we take is the minimal non-

negative solution. This algorithm produces a sequence (Λ(ν)) of vectors increasing to L∗ in at most n

steps. The method of proof is a direct translation of the proof of Theorem 3.8; since this result is of less

interest, we omit it completely.

The construction of Theorem 3.8 leads to an increasing sequence Iν of insolvency sets which have

an important and natural interpretation.

Definition 3.9. We call the set Iν the level-ν insolvency set.

Notice that the level-0 insolvency set is the set of those banks which would default even if all other

banks paid their obligations in full. The level-ν insolvency set is the set of all those banks which would

not be able to meet their obligations if all the level-(ν − 1) insolvent banks were to default. Thus the

insolvency sets Iν trace the spread of default through the financial system. We shall comment further on

this later in the context of possible rescue schemes and policy for limiting the damage of bank failures.

4 Merged Banks as Rescue Consortium

The model we have introduced already allows us to study how default of one bank affects other banks in

the system. However, it also allows us to study situations where a bank failure might be avoided by some

solvent bank(s) stepping forward to rescue the failing bank. By so doing, the rescuer takes on the loss
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4 MERGED BANKS AS RESCUE CONSORTIUM

incurred by the distressed bank, but this may work out cheaper than the loss suffered by the rescuer once

the losses of the defaulting bank have been spread and amplified by the network of interbank obligations.

To model this amplification effect, the inclusion of default costs is essential.

Recall that the banks are indexed by N = {1, . . . , n}. We define a bank merger in the following.

Definition 4.1 (Merger).
In the financial system (L, e, α, β) consisting of n banks, the merger of all banks in B ⊂ N is a new

financial system (L̃, ẽ, α, β) indexed by Ñ := {0} ∪Bc. It is defined by

ẽ := Me,

and

L̃ij :=

{
0 if i=j=0,

L′ij otherwise,

where

L′ := MLM>,

and M is the |Ñ | × |N | matrix,

M0i =

{
1 if i ∈ B,
0 else ,

Mij = δij (i, j 6∈ B).

From this definition we see that for those banks which merge the corresponding liabilities to the other

(non merging) banks in the network are just added up. The liabilities to those banks which merge are

just cancelled. Also the external assets of the merged bank are just the sum of the external assets of the

banks which merged. Hence, this is a very natural definition of a merger.

There is the possibility that a rescue consortium is formed which just provides the necessary assets

such that no bank defaults. This works as follows. Suppose the system (L, e, α, β) is subjected to stress,

by reducing the banks’ initial external asset vector e to ẽ. Here we assume that initially (i.e. with external

assets e) all banks are sound but under reasonable model assumptions there comes a point where one or

more banks become insolvent if we reduce the external assets to ẽ.

Definition 4.2 (Bailout costs).
Given a financial system (L, ẽ, α, β). We define

δ := max
{

0,−
(

Π>L̄+ ẽ− L̄
)}

and refer to
∑n

j=1 δj =
∑

j∈I0 δj as the bailout costs.

In the following we define a rescue consortium assuming that the level-0 insolvency set is non-empty.
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4 MERGED BANKS AS RESCUE CONSORTIUM

Definition 4.3 (Rescue consortium).
Let (L, ẽ, α, β) be a financial system where the level-0 insolvency set I0 is non-empty. The corresponding

upper clearing vector is denoted by L∗. We define

Ṽ := max{0,Π>L̄+ ẽ− L̄}, (8)

∆V := Ṽ − V(L∗, ẽ). (9)

A rescue consortium is a set A ⊆ N \ I0 such that the following two conditions hold:

1. Rescue incentive: ∑
i∈A

∆Vi >
∑
j∈I0

δj , (10)

2. Rescue ability: ∑
i∈A

Ṽi >
∑
j∈I0

δj . (11)

Conditions (10) and (11) distinguish between situations in which banks want to rescue other banks

and those in which they can rescue. We assume that both conditions need to be satisfied. We establish a

relationship between these two conditions:

Theorem 4.4. 1. Every rescue consortium which has an incentive to rescue the failing banks also

has the ability to rescue the failing banks.

2. Suppose that the set of banks at risk of contagious default R := ∪νIν\I0 is non-empty, and

suppose, further that some subset A ⊆ R is able to rescue the failing banks. Then A also has an

incentive to rescue the failing banks.

A proof is provided in Appendix C.

Remark 4.5. We assume that a rescue consortium will always try to rescue all banks which are tech-

nically insolvent at once. One could change this definition and consider individual rescue consortia for

different defaulting banks as well.

In the following we describe the new financial system once a rescue consortium was formed.

Definition 4.6 (Rescued Financial System).
Let (L, ẽ, α, β) be a financial system in which the level-0 insolvency set I0 is non-empty, and suppose

that a rescue consortium defined by a set of indices A exists. Then the rescued financial system is the

financial system obtained by a merger of all banks in I0 ∪A.

From this definition we immediately get the following results using the notation of Definition 4.6:
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4 MERGED BANKS AS RESCUE CONSORTIUM

Lemma 4.7. In the situation of Definition 4.6, the value of the new bank obtained as a merger of all

banks in I0 ∪A is
∑

i∈A Ṽi −
∑

j∈I0 δj > 0.

The following result will be very useful to establish more general results about the existence of a

rescue consortium.

Lemma 4.8. Consider a financial system (L, e, α, β) in which all banks are initially solvent. Suppose

that the assets e are reduced to ẽ, with ẽi ≤ ei ∀i such that some banks have become insolvent: I0 6= ∅.
Let L∗ be the greatest clearing payment vector in (L, ẽ, α, β). Then

0 ≤
n∑
i=1

(V(L̄, e)i − V(L∗, ẽ)i) =
n∑
i=1

(ei − ẽi) +
n∑
i=1

(1− α)ẽi + (1− β)
n∑
j=1

L∗jπji

 I{L∗i<L̄i}.

A proof of Lemma 4.8 is provided in Appendix C.

Remark 4.9. Lemma 4.8 shows how much money is lost in the financial system when the external assets

are reduced from e to ẽ. We see that for α, β < 1, this loss is usually larger than
∑n

i=1(ei − ẽi).

As we will see in the following accounting for default costs is necessary for the existence of a rescue

consortium. Indeed as we prove in the following, for α = β = 1 banks have no incentive to form rescue

consortia.

Theorem 4.10. [Absence of Rescue Consortium] Consider a financial system (L, e, α, β) in which all

banks are initially solvent. Suppose the assets e are reduced to ẽ, with ẽi ≤ ei ∀i with the result that at

least one bank becomes level-0 insolvent. Let L∗ be the greatest clearing payment vector in (L, ẽ, α, β).

Suppose that α = β = 1. Then no bank in the network has an incentive to rescue the insolvent bank(s).

Again, a proof can be found in Appendix C. Therefore we see that for α = β = 1 it is never beneficial

for a solvent bank to take over an insolvent bank. But as we will see in the following for α, β < 1 it can

be beneficial for some bank(s) to take over an insolvent bank and in many realistic situations it will be

beneficial.

Theorem 4.11. [Presence of Rescue Consortium] Let (L, ẽ, α, β) be a financial system with α, β ∈
[0, 1). Suppose that I0 is a proper subset of N : ∅ ( I0 ( N . Let L∗ be the corresponding greatest

clearing vector and suppose that there exists a bank k such that L∗k < L̄k which satisfies at least one of

the following two conditions:

1. ẽk > 0,

2. there exists j 6= k such that L∗jπjk > 0 .

Then there exists a rescue consortium.

A proof is given in Appendix C.
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5 EXAMPLES

Remark 4.12. • We therefore see that in the presence of default costs a rescue consortium exists

under very mild regularity conditions. The two conditions stated in Theorem 4.11 have a clear in-

terpretation. The first condition requires the existence of one defaulting bank with strictly positive

external assets. This is a very natural assumption and very often satisfied. The second condition

requires the existence of at least one defaulting bank and another bank in the network which after

clearing still has strictly positive liabilities to the defaulting bank. This condition is also often

satisfied.

• The statement of Theorem 4.11 can also be motivated by considering a mega-merger in which all

banks in the financial network merge into one bank. The value of such a bank is
∑n

i=1 ei and hence

strictly positive if at least one bank in the system has strictly positive external assets. Moreover, by

definition such a mega-bank cannot go bankrupt because it does not have any liabilities to satisfy.

Key in all considerations regarding rescue consortia is that we assume that once the external assets

are reduced, banks have time to actually form a rescue consortium. Hence it is assumed that the default

of a bank does not automatically trigger the clearing procedure, but banks may merge before clearing

takes place. This is an important assumption. In a different set-up, Leitner (2005), discusses the impor-

tance of a coordinating device, once default or possible contagion is unavoidable. We suppose that this

coordination mechanism is available here too; provided the conditions of Theorem 4.11 are satisfied, a

rescue consortium will be able to form.

We have seen so far that the existence of default costs is necessary for the existence of rescue con-

sortia. One could think this further and assume that the parameters α, β could be chosen to some extent

by regulators if they confiscate or tax assets of failing banks. Then there would be a much higher chance

that the system sorts out its problem on its own without relying on bailouts using external money.

5 Examples

In the following we consider two symmetric examples and one asymmetric example to illustrate our

results.

5.1 Circular Network

Definition 5.1. Let n = 2N , N ∈ N, the (even) number of banks in the network. We refer to a financial

system (L, e, α, β) as circular if the external assets are e = (1− ε, 1 + ε, . . .)> ∈ Rn and the liabilities

matrix L ∈ Rn×n is given by

L =


0 a . . . 0 0

0 0 a+ ε . . . 0

. . .

0 0 . . . 0 a

a+ ε 0 0 . . . 0

 ,
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5.1 Circular Network 5 EXAMPLES

bank 2N

bank 2N − 1

bank 2N − 2

bank 1

bank 2

1 + ε

1− ε

1 + ε

1− ε

1 + εa+ ε

a a+ ε

a

a a+ ε

1

Figure 1: Circular arrangement.

where a > 0 , 0 < ε ≤ 1.

Figure 1 shows such a circular financial system. We see that the value of all banks is 1 and there

are two different types of banks. We can therefore simplify our analysis by just considering a network

consisting of bank 1 and bank 2. We investigate the effects of changing the external asset vector e to γe

where 0 < γ ≤ 1. By construction all banks are solvent if γ = 1. The minimum amount of external

assets required for the two banks is

ξ = max{0,−(Π>L̄− L̄)} = (0, ε)>.

Hence, we see that only bank 2 can be level-0 insolvent when the external assets are reduced, in particular,

this is the case if and only if

γ(1 + ε) < ε⇔ γ <
ε

1 + ε
.

In the following we will always assume that

0 < γ <
ε

1 + ε
(12)

is satisfies and hence default is triggered. We need to distinguish two situations: bank 1 suffers a conta-

gious default or bank 1 does not default.

Lemma 5.2. Suppose a circular financial system with two banks is given and suppose (12) is satisfied.

1. Bank 1 suffers a contagious default if and only if

γ <
a(1− β)

α(1 + ε) + (1− ε) . (13)

14



5.2 Star Network 5 EXAMPLES

2. Suppose (13) is not true. Then the greatest clearing vector is

L∗ = (a, a+ αγ(1 + ε))>. (14)

3. Suppose (13) is true. Then the greatest clearing vector is

L∗ =
αγ

1− β2
(β(1 + ε) + 1− ε, 1 + ε+ β(1− ε))>. (15)

A proof is provided in Appendix D.

Theorem 5.3. We consider a circular financial system with two banks. Suppose (12) holds, and suppose

α ∈ [0, 1) and β ∈ [0, 1]. Then bank 2 will always be rescued from default by a rescue consortium

consisting of bank 1.

Again, the proof can be found in Appendix D.

Remark 5.4. • From Lemma 5.2 we see that for β = 1 a contagious default of bank 1 will never

happen.

• Theorem 5.3 guarantees the existence of a rescue consortium by only assuming that α < 1.

5.2 Star Network

bank 2N + 1

bank 2N

bank 2N − 1

bank 2

bank 3

bank 1

1 + a

1− a

1 + a

1− a

1 + a

1

a

a

a
a

a

1

Figure 2: Star arrangement.

We now consider a star arrangement as shown in Figure 2.

Definition 5.5. Let n = 2N + 1, N ∈ N, the (odd) number of banks in the network. We refer to a

network (L, e, α, β) as star shaped if the external assets are e = (1, 1− a, 1 + a, 1− a, 1 + a, . . . . . .)>

15



5.2 Star Network 5 EXAMPLES

and the liabilities matrix L is given by

L =



0 a 0 a . . . a 0

0 0 0 0 0 . . . 0

a 0 0 0 0 . . . 0

0 0 0 0 0 . . . 0

a 0 0 0 0 . . . 0

. . .

0 0 0 0 0 . . . 0

a 0 0 0 0 . . . 0


,

where 0 < a < 1.

Again we investigate the effects of changing the external asset vector e to γe where 0 < γ ≤ 1.

The value of all banks is 1 and we see that there are three different types of banks. In order to simplify

the presentation we consider a network consisting of bank 1, 2, 3 in the following. The results obtained

for bank 2 carry over for all banks with an even number and the results obtained for bank 3 carry over to

all banks with an odd number strictly greater than 1.

We compute the minimum amount of external assets required for the three banks to avoid them being

level-0 insolvent:

ξ = max{0,−(Π>L̄− L̄)} = (0, 0, a)>.

Hence the only bank which can become level-0 insolvent is bank 3 and this happens if and only if

γ(1 + a) < a⇔ γ < a
1+a . Therefore we will assume in the following that

0 < γ <
a

1 + a
(16)

is satisfied.

If we now account for possible default costs modelled by α ∈ (0, 1] and β ∈ (0, 1], we investigate in

which situation bank 3 is the only defaulting bank in the network and what the corresponding clearing

vectors are.

Lemma 5.6. Suppose a star shaped financial system (L, e, α, β) is given and suppose that (16) is satis-

fied.

1. Bank 3 is the only defaulting bank in the network if and only if

α ≥ aN − γ
Nγ(1 + a)

. (17)

2. Suppose (17) holds. Then the greatest clearing vector is given by

L∗ = (a, 0, αγ(1 + a))>. (18)
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5.3 Asymmetric Network 5 EXAMPLES

3. Suppose that (16) holds and suppose that

α <
aN − γ
Nγ(1 + a)

. (19)

Then, both bank 1 and bank 3 default and the corresponding upper clearing vector is

L∗ = (Nβαγ(1 + a) + αγ, 0, αγ(1 + a))>. (20)

A proof can be found in Appendix D. Note, since α ≤ 1 we see that for small γ condition (17) will

not be satisfied and then more banks will default.

The following theorem guarantees the existence of a rescue consortium for bank 3 if default costs

exist.

Theorem 5.7. Suppose a star shaped financial system (L, e, α, β) is given and suppose that (16) is

satisfied.

1. If (17) holds true and α ∈ [0, 1), then bank 3 will be rescued from default by a rescue consortium

consisting of bank 1.

2. If (19) is satisfied and if α, β ∈ [0, 1), then there exists a rescue consortium which rescues bank 3

from default.

These results are proved in Appendix D. Note that the first result is completely independent of the

choice of β.

5.3 Asymmetric Network

Finally, we consider an asymmetric network consisting of six banks. Figure 3 shows the liabilities

structure in this network and in (21) the liabilities matrix L and external assets e are given.

L =



0 4.94 2.47 5.59 0 0

6 0 0 2 0 0

0 13 0 0 0 0

0 0 0 0 0 8

12 0 0 0 0 0

2.79 6.21 0 0 0 0


, e =



1

1

11.51

1.4

12.5

2


. (21)

To avoid level-0 insolvencies the external assets have to exceed

ξ = max{0,−(Π>L̄− L̄)} = (0, 0, 10.53, 0.41, 12, 1)>.

From this we see immediately that banks 3, 4, 5, 6 can become level-0 insolvent. We see that if the

external assets e are reduced to γe with 0 < γ < 1, the first condition of Theorem 4.11 is still satisfied
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5.3 Asymmetric Network 5 EXAMPLES

bank 1

bank 2

bank 3

bank 4

bank 5

bank 6

1

1

11.51

1.4

12.5

2

4.94

2.47

5.59

6

2

13

812

2.79

6.21

1

Figure 3: Asymmetric arrangement.
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6 ASSESSING AND CONTROLLING CONTAGION RISKS.

and therefore a rescue consortium does also exist in this asymmetric example.

6 Assessing and controlling contagion risks.

We have seen how default may spread through a financial system. A financial system which is initially

solvent may get into difficulties because the external assets e fall to (or are revalued to) some lower

values ẽ, whereupon the set I0 of level-0 insolvent banks becomes non-empty; one or more banks are in

difficulties. Section 3 explains what happens if the problems are left unchecked: without intervention, the

amounts recoverable of the interbank loans fall from the nominal L̄ to the maximal clearing vector L∗,

and insolvency spreads from the initial level-0 set to level-1 insolvencies, level-2 insolvencies, ... Section

4 explains what can happen if a group of solvent banks get together and rescue the level-0 insolvent

banks, and the circumstances in which there can be a rescue consortium with both the resources and the

incentive to save the level-0 insolvents. However, what can happen is not necessarily what does happen,

and in general a member of a rescue consortium would prefer not to take part in the rescue because doing

so will incur costs for the rescuer; far better to let someone else stand up and take the bullets! It may

be that a potential rescuer may see benefits in the rescue which make the cost worthwhile; for example,

the rescued banks may have strengths in geographical or business areas where the rescuer is weak, and

the combination would strengthen the rescuer. But if no such synergy exists, the regulator must either

have power to compel the banks which it regulates to participate in a rescue for the good of the system

as a whole, or else must have available sufficient cash to bail out the failing banks, which is the solution

applied in the crisis of 2007-8. This solution has generated huge resentment in the democracies which

resorted to the emergency bailouts, being seen quite correctly as the state being left with an enormous bill,

while the banks are able to continue much as before. The alternative, which involves regulators being

equipped with powers to compel banks to take part in rescues, would prove much more palatable to

the electorates, though quite how it could be made to function in a landscape of overlapping regulatory

responsibilities and transnational banks is very far from clear. Nevertheless, we shall attempt in this

Section to make some suggestions in this direction.

But before we do this, we offer some possible diagnostics for the fragility of a financial system.

We propose to base these on a thought experiment in which the eternal assets e of the individual banks

are reduced by a common fraction3; as the losses mount, the pressure on the system increases until the

set I0 of level-0 insolvent banks becomes non-empty. So we consider the situation where the external

assets e have been reduced to ẽ = γe for some 0 < γ < 1, and the set I0 is non-empty. Firstly we

calculate the value Ṽ of the banks with external assets ẽ on the assumption that all interbank liabilities

are paid in full (8), and then we calculate the losses ∆V which are suffered if defaults occur, as given by

(9). We then attempt to assemble a rescue consortium, starting with all banks in I1, recruiting banks in

decreasing order of their potential losses ∆Vi; then moving on to I2 again adjoining banks in decreasing

order of ∆Vi; continuing in this fashion through I3, I4 . . . until if necessary we add in banks which are in

N\∪ν Iν which would in any case survive the wave of bankruptcies, but nonetheless might suffer losses

3This could represent a global decline in the value of assets used as collateral, or the effects of a recession. The assumption
is probably an oversimplification, but is the simplest story that could be told.
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6 ASSESSING AND CONTROLLING CONTAGION RISKS.

in the process. If at some stage we achieve a rescue consortium, then this rescue happens, otherwise

no rescue is possible, and the failure spreads through the network to bring down all the banks in ∪νIν ;

either way, we record the overall remaining value v(γ) of the financial system. If a rescue consortium A

exists, then we obtain from Lemma 4.7, that

v(γ) =
∑
i∈A

Ṽi −
∑
j∈I0

δj +
∑

i∈N\(A∪I0)

Ṽi =
∑
i∈N

(
Π>L̄+ γe− L̄

)
i

= γē,

where ē :=
∑

i∈N ei is the initial value of the financial system before it was subjected to stress. We used

the notation L∗(γ) to indicate that the greatest clearing vector does depend on γ. If a rescue consortium

does not exist, then we obtain from Lemma 4.8, that

v(γ) =
∑
i∈N
V(L∗(γ), γe)i = γē−

n∑
i=1

(1− α)γei + (1− β)

n∑
j=1

L∗j (γ)πji

 I{L∗i (γ)<L̄i}.

We then plot the function

γ 7→ λ(γ) :=
ē− v(γ)

ē

=

 1− γ +

∑n
i=1((1−α)γei+(1−β)

∑n
j=1 L

∗
j (γ)πji)I{L∗

i
(γ)<L̄i}

ē without,

1− γ with rescuing.

The function λ measures the relative losses due to default. It measures the difference between the initial

value of the system and the value of the stressed system divided by the initial value of the system.

Note that the conditions in Theorem 4.11 on the existence of a rescue consortium are either satisfied

for all 0 < γ < 1 or not at all.

Another informative plot we can present will display the function

γ 7→ η(γ) :=
|{i ∈ N | L∗i (γ) < L̄i}|

|N | , (22)

where L∗(γ) is the greatest clearing vector if the external assets are given by ẽ = γe. This shows how

the proportion of banks defaulting grows as γ decreases.

In the following we present these plots for our examples from Section 5 assuming that no rescue

consortium forms. This is for illustration only as we know already from Section 5 that rescue consortia

exist in all three examples. We immediately see a very different default behaviour in the three networks.

We have chosen the parameters in the symmetric networks such that the initial default conditions

(12), (16) are satisfied at the same time. In all three examples we observe an increase in default costs

and the proportion of defaulting banks for decreasing values of γ and hence decreasing external assets.

We also find that higher values of α can trigger earlier defaults of additional banks. This is particularly

striking in the asymmetric example. For small values of α we can observe almost individual defaults if

we decrease γ. For larger values of α we see many banks defaulting at once. In our examples, the star

20



6 ASSESSING AND CONTROLLING CONTAGION RISKS.

shaped network is the only example where some banks will never default no matter how we reduce γ or

α. This is due to the fact that their liabilities are 0 and hence they can always satisfy them.

These diagnostics give a readily-understood picture of how fragile the given banking network is, and

are more informative than any attempt to define a single scalar ‘fragility index’ for a financial system.

They could be used to warn of looming dangers in the financial system, allowing time for corrective

measures to be put in place.

As we have noted, left to their own devices, banks would be unwilling to step forward to take on the

losses of the failing banks, and without the possibility of compulsion and some kind of coordination, a

chaotic collapse would be the likely outcome. Here there is a rôle for a bank regulator. We shall suppose

that the regulator is able to observe the entire financial system; in particular, he knows whether or not the

banks in the level-1 insolvency set I1 are capable of rescuing the level-0 insolvent banks. If this is the

case, then we propose that the rescue consortium will be made up of level-1 banks, which are after all

those most perilously exposed to the level-0 banks. In the interests of containing the spread of contagion,

we propose that the regulator should act so far as possible to leave banks distant from the level-0 banks

completely unimpaired. If the banks in I1 cannot mount a rescue, then the regulator will widen the

net and try to assemble a rescue from the banks in I1 ∪ I2, and so on. For the sake of discussion4,

let us suppose that the banks in I1 are capable of mounting a rescue. Then the regulator should be

empowered to compel that group of banks to rescue the banks in I0. Different possible mechanisms

could be proposed; here are a few that might be considered.

(i) The simplest possibility would be that each bank in I1 contributes to the bailout costs in proportion

to the losses5 ∆V that they would experience if default were to occur, and receives shares in the

rescued banks in proportion to their contribution.

(ii) An alternative would be for the regulator to receive from each bank i in I1 a sealed bid for the

fraction αi of the defaulting banks which it was willing to take on, which would of course imply

that bank i would assume responsibility for a fraction αi of the bailout costs. This would allow

banks to bid higher if they thought that taking over the failing banks might be advantageous to their

own business. If
∑

i∈I1 αi ≥ 1, then the bids received are sufficient to cover the bailout costs, and

banks in I1 are allocated fractions of the defaulting banks assets and liabilities proportional to their

bids αi. If the total fractions bid fall short of 1, then each bank in I1 contributes to the bailout

proportionally to its potential losses ∆V as in mechanism (i) above, but receives a fraction of the

defaulting banks proportional to its bid. Thus a bank which bid zero would pay nothing towards

the bailout if the total fraction bid by the other banks was at least 1, but it would then run the risk

that the total was less than 1, in which case it would end up contributing to the rescue, but not

receiving any part of the assets of the rescued bank. This threat would hopefully induce banks to

make a realistic offer towards the bailout.
4There is no loss of generality here: it is just notationally more compact.
5See (9).
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(a) Plot of λ for the circular network with 6 banks, β =
0.9, a = 1, ε = 0.5, N = 3.
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(b) Plot of η for the circular network.
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(c) Plot of λ for the star network with 5 banks, β = 0.9,
a = 0.5, N = 2.
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(d) Plot of η for the star network.
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(e) Plot of λ for the asymmetric network with 6 banks,
β = 0.9.
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(f) Plot of η for the asymmetric network .

Figure 4: Plot of the functions λ and η considered as a function not just in γ but also in α.
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7 CONCLUSION

(iii) Another somewhat riskier resolution mechanism which could be proposed is to allow the regulator

to seize the assets of any failing bank, which would then pay out nothing to any bank to which

it owed money. Those assets could now be used to compensate depositors, with any not used in

this way being held by the government; but the main reason for allowing the regulator to seize the

assets of a failing bank would be to give other banks in the system a very strong incentive to mount

a rescue. This mechanism would also give failing banks a stronger position when bargaining with

other more solvent banks. However, this mechanism would probably not be preferred because it

does not as it stands guarantee that a catastrophic meltdown would be avoided, even were that

possible.

The mechanisms proposed here all have the property that the regulatory authority is not required to

inject any cash to rescue the failing banks, which would presumably be preferred by a rational democratic

government, and the first two mechanisms would imply that the total cost to the financial system would

be just the bailout costs, which is as low as it could possibly be.

Notice that while these proposals can arguably be effective in containing the damage caused by

failure in an interconnected financial network, they would not work in the similar context of a failing

sovereign nation, which could not be liquidated and shared among a consortium of rescuers as a bank

could.

7 Conclusion

This paper has extended the modelling framework of Eisenberg and Noe (2001) to allow for the fact that

when a bank defaults and has to call in its loans, it never realizes the face value of those loans but instead

suffers a real loss. We used this to show that without intervention a failure of one or more banks could

spread through the financial system, destroying value and taking down more banks as a result. For a given

network, we are able to find what the network would look like when the spread of default is finished; we

can work out which banks though initially solvent will fail if the banks initially in difficulties fail - and

then we can work out what other banks will fail as a consequence. Dominoes of default sweep through

the network until eventually only solvent banks remain.

We are then able to analyze how failing banks might be rescued by consortia of other banks, estab-

lishing the important results that any consortium which has an incentive to rescue the failing banks also

has the means; and that any consortium of banks which would fail if default was allowed to spread will

have an incentive to rescue if it has the means. These are hopeful conclusions, but not enough to ensure

that failing banks will be rescued. We could have a situation where a group of banks might have the

means to effect a rescue, but no incentive, as could happen if the banking network was in two geograph-

ical locations with weak linkages between them. Moreover, it does not deal with the moral hazard issue;

a bank would prefer to let another bank do the rescuing, and would indeed have to have a good reason to

act apparently against shareholder interests by bailing out a failing bank. We therefore see no alternative

to some regulatory backstop compulsion if the banking sector is to collectively make good the losses of

some of its members which would threaten further losses and overall stability. Otherwise, governments
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will again be the unconscious underwriters of risky but profitable banking activities. Any framework of

effective regulatory legislation runs the risk of driving financial services into the least-regulated juris-

diction, so some effective international coordination would be needed here. We offer some thoughts on

how a rescue mechanism might look, but do so tentatively, well aware of the complexities lurking around

these issues. Maybe all we have been able to do here is to present some ways of thinking about financial

networks, some tools to analyze the default risks inherent in them, and some simple diagnostic methods

that may help us to assess financial fragility; even this we believe has value.
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A Proofs of Section 2

Proof of Lemma 2.7. (i) The first property follows immediately from the definition of Φ and the fact

that α, β ∈ (0, 1].

(ii) Let I = {i : L̄i > ei +
∑n

j=1 Ljπji}, and Ĩ = {i : L̄i > ei +
∑n

j=1 L̃jπji}. Clearly I ⊆ Ĩ. For

any i ∈ I the second alternative of the definition (1) obtains for both L and L̃, so it follows that

Φ(L̃)i ≤ Φ(L)i for such i. For any i ∈ Ĩ\I, since α, β ∈ (0, 1], we have

Φ(L̃)i = αei + β

n∑
j=1

L̃jπji ≤ ei +

n∑
j=1

L̃jπji < L̄i = Φ(L)i.

B Proofs of Section 3

Proof of Theorem 3.8. We shall firstly prove that

Λ(ν+1) ≤ Λ(ν) ∀ν = 0, . . . , n.

The proof proceeds by induction. To start the induction, we prove that Λ(1) ≤ Λ(0) = L̄. According to

step 5 of the GA algorithm, we have Λ
(1)
i = L̄i = Λ

(0)
i for i ∈ S0, so now we just have to identify Λ(1)

on the insolvency set I0, as specified by (7). We construct the maximal solution x to (7) by a recursive

method, starting from x(0) = Λ(0), and defining recursively the x(k) by

x
(k+1)
i = αei + β

{ ∑
j∈S0

L̄jπji +
∑
j∈I0

x
(k)
j πji

}
, i ∈ I0. (23)
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Now for i ∈ I0 we have

x
(1)
i = αei + β

{ ∑
j∈S0

L̄jπji +
∑
j∈I0

Λ
(0)
j πji

}
≤ ei +

n∑
j=1

Λ
(0)
j πji < L̄i = Λ

(0)
i = x

(0)
i (24)

where the first inequality holds because α, β ∈ (0, 1] and Λ(0) = L̄ on S0, and the second inequality

holds because of the definition of the insolvency set I0. Thus we see that x(1) ≤ x(0), so the sequence

x(k) decreases to begin with, and hence due to the recursive definition decreases thereafter. The limit

x :=↓ limk→∞ x
(k) solves (7). If x̃ was any other solution to (7) bounded above by Λ(0), then it is easy

to see from the recursive recipe (23) that x̃ ≤ x, since x̃ ≤ Λ(0) = x(0); therefore the constructed x is

the maximal solution to (7) bounded above by Λ(0).

To carry the inductive proof from ν to ν+1, we observe that Sν ⊆ Sν−1 by the inductive hypothesis,

and so for all j ∈ Sν we have Λ
(ν+1)
j = Λ

(ν)
j = L̄j . Now we again construct the maximal solution x to

(7) by the obvious modification of the recursive recipe (23):

x
(k+1)
i = αei + β

{ ∑
j∈Sν

L̄jπji +
∑
j∈Iν

x
(k)
j πji

}
, i ∈ Iν , (25)

this time starting with x(0)
i = Λ

(ν)
i for i ∈ Iν . The inequality (24) evolves to

x
(1)
i = αei + β

{ ∑
j∈Sν

L̄jπji +
∑
j∈Iν

Λ
(ν)
j πji

}

= αei + β

{ ∑
j∈Sν

L̄jπji +
∑

j∈Sν−1\Sν

Λ
(ν)
j πji +

∑
j∈Iν−1

Λ
(ν)
j πji

}

= αei + β

{ ∑
j∈Sν

L̄jπji +
∑

j∈Sν−1\Sν

L̄jπji +
∑

j∈Iν−1

Λ
(ν)
j πji

}

= αei + β

{ ∑
j∈Sν−1

L̄jπji +
∑

j∈Iν−1

Λ
(ν)
j πji

}
(26)

since Λ(ν) = L̄ on Sν−1. Now from (26) we see that for i ∈ Iν−1 we have x(1)
i = Λ

(ν)
i = x

(0)
i , and for

i ∈ Iν\Iν−1 the expression (26) is

αei + β

{ ∑
j∈Sν−1

L̄jπji +
∑

j∈Iν−1

Λ
(ν)
j πji

}
≤ ei +

∑
j∈Sν−1

L̄jπji +
∑

j∈Iν−1

Λ
(ν)
j πji

= ei +

n∑
j=1

Λ
(ν)
j πji

< L̄i = Λ
(ν)
i = x

(0)
i .

This ensures that the sequence x(k) starts decreasing, and therefore will always be decreasing. Whatever

the limit is, it cannot be bigger than x(0) = Λ(ν), so we learn that Λ(ν+1) ≤ Λ(ν), as required.
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The next task is to prove that Λ(ν) ≥ L∗ for all ν, again by induction. It is clearly true when ν = 0,

so we now assume true up to ν and try to extend to ν + 1. If we make the natural notation

I∗ = {i : ei +
∑
j

L∗jπji < L̄i}

then by the inductive hypothesis we have Iν ⊆ I∗. Observe that for i ∈ Sν we have Λ
(ν+1)
i = L̄i ≥ L∗i ,

so we just have to confirm that Λ(ν+1) ≥ L∗ also on Iν . For this, we return to the recursive construction

(25) and notice that when we start with x(0)
i = Λ

(ν)
i on Iν we find

x
(1)
i = αei + β

{ ∑
j∈Sν

L̄jπji +
∑
j∈Iν

Λ
(ν)
j πji

}

≥ αei + β

{ ∑
j∈Sν

L̄jπji +
∑
j∈Iν

L∗jπji

}
≥ αei + β

∑
j

L∗jπji = L∗i ,

exploiting the inductive hypothesis for the first inequality, and the fact that L̄ ≥ L∗ for the second, and

finally using the defining property of L∗ for the last equality, bearing in mind that i ∈ Iν ⊆ I∗. Once we

have that x(1) ≥ L∗ on Iν , the recursive recipe (25) guarantees that x(k) ≥ L∗ on Iν for all k, and hence

that the limit Λ(ν+1) is at least L∗ on Iν .

The proof is finished by the observation that when the algorithm terminates, as it must, the final

vector Λ(ν) is a clearing vector. But we also know that Λ(ν) ≥ L∗, as has just been proved; since L∗ is

the maximal clearing vector (Theorem 3.1), the only possibility is L∗ = Λ(ν), as required.

C Proofs of Section 4

Proof of Theorem 4.4. 1. This result follows from (10) and (11) and the fact that V(L∗, ẽ) ≥ 0.

2. For i ∈ R we have V(L∗, ẽ) = 0 and hence ∆Vi = Ṽi.

Proof of Lemma 4.8. Note that in the original financial system (L, e, α, β) the vector L̄ is a clearing

vector, since I0 = ∅. Hence,

V(L̄, e)i = (Π>L̄+ e− L̄)i =

n∑
j=1

L̄jπji + ei − L̄i ≥ 0 ∀i ∈ N .
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Summing on i and using the fact that Π is a stochastic matrix6 leads to the conclusion

n∑
i=1

V(L̄, e)i =
n∑
i=1

ei. (27)

In the distressed financial system, for a bank i with L∗i < L̄i we have

L∗i = αẽi + β
n∑
j=1

L∗jπji

and hence

n∑
j=1

L∗jπji + ẽi − L∗i =

n∑
j=1

L∗jπji + ẽi −

αẽi + β

n∑
j=1

L∗jπji

 = (1− α)ẽi + (1− β)

n∑
j=1

L∗jπji.

Thus we can rewrite the value of a bank:

V(L∗, ẽ)i = (Π>L∗ + ẽ− L∗)iI{L∗i≥L̄i}

=

n∑
j=1

L∗jπji + ẽi − L∗i −

(1− β)

n∑
j=1

L∗jπji + (1− α)ẽi

 I{L∗i<L̄i}.

Again summing on i and using the fact that Π is stochastic gives us

n∑
i=1

V(L∗, ẽ)i =
n∑
i=1

ẽi −
n∑
i=1

(1− β)
n∑
j=1

L∗jπji + (1− α)ẽi

 I{L∗i<L̄i} (28)

Taking the difference of (27) and (28) proves the Lemma.

Proof of Theorem 4.10. For i ∈ N , V(L̄, e)i ≥ 0 by assumption. We shall suppose that V(L̄, e)i = 0 for

all i ∈ I0, so that these banks are just on the brink of insolvency. Thus the bailout costs will be exactly∑
i∈I0

(ei − ẽi).

Similarly, we shall suppose that ej = ẽj for j ∈ N \ I0, so that any fall in the value of a solvent bank is

due entirely to the defaults of the insolvent banks. From Lemma 4.8 and the fact that α = β = 1, we see

that

0 ≤
n∑
i=1

(V(L̄, e)i − V(L∗, ẽ)i) =
∑
i∈I0

(ei − ẽi).

Hence we see that the total loss in value of all banks when the insolvency spreads until we arrive at
6In fact, there may be rows of Π which are identically zero, but these are rows corresponding to banks which owe nothing

to any other bank, and these contribute nothing to the sum.
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the maximal clearing vector is equal to the total initial loss
∑

i∈I0(ẽi − ei). Hence it can never be

advantageous to any group of banks to rescue the failing banks, because in so doing they will have to

assume liability for the losses
∑

i∈I0(ẽi − ei) of the failing banks, and this will be at least the loss that

would be suffered if they did not intervene.

Proof of Theorem 4.11. Let e be a vector such that ei ≥ ẽi for all i ∈ N and such that the financial

system (L, e, α, β) does not contain a level-0 insolvent bank. (Note that such a vector always exists

since we could choose e = ẽ+ δ, where δ is given below. )

Using the notation from Definitions 4.2 and 4.3, we see that

Ṽ = max{0,Π>L̄+ ẽ− L̄},
δ = max{0,−(Π>L̄+ ẽ− L̄)}

and hence

Ṽ − δ = Π>L̄+ ẽ− L̄ = Π>L̄+ e− L̄+ (ẽ− e) = V(L̄, e) + (ẽ− e),
∆V = Ṽ − V(L∗, ẽ) = V(L̄, e)− V(L∗, ẽ) + (ẽ− e) + δ.

By summing over all components of ∆V and applying Lemma 4.8 we obtain

n∑
i=1

∆Vi =

n∑
i=1

(V(L̄, e)i − V(L∗, ẽ))i +

n∑
i=1

(ẽi − ei) +

n∑
i=1

δi

=

n∑
i=1

(ei − ẽi) +

n∑
i=1

(1− α)ẽi + (1− β)

n∑
j=1

L∗jπji

 I{L∗i<L̄i} −
n∑
i=1

(ei − ẽi) +

n∑
i=1

δi

=

n∑
i=1

(1− α)ẽi + (1− β)

n∑
j=1

L∗jπji

 I{L∗i<L̄i} +

n∑
i=1

δi.

Hence we find that

n∑
i=1

∆Vi >
n∑
i=1

δi ⇔
n∑
i=1

(1− α)ẽi + (1− β)

n∑
j=1

πjiL
∗
j

 I{L∗i<L̄i} > 0

and the second inequality is true by our assumption that there exists a bank k which satisfies at least one

of two properties and we see that each property guarantees the strict positivity of the expression.
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D Proofs of Section 5

Proof of Lemma 5.2. 1. Bank 1 does suffer a contagious default if and only if

βa+ αγ(1 + ε) + γ(1− ε) < a⇔ γ <
a(1− β)

α(1 + ε) + (1− ε) .

2. + 3. These results follow from the definition of a clearing vector and the fact that bank 2 always defaults

and bank 1 only suffers a contagious default if (13) is true.

Proof of Theorem 5.3. Note that in any case, bank 2 is the only level-0 insolvent bank, but bank 2 can

suffer a contagious default depending on the model parameters. The following bailout costs are always

the same and are given by

δ2 := −(a+ γ(1 + ε)− (a+ ε)) = ε− γ(1 + ε).

Moreover,

Ṽ := max{0,Π>L̄+ γe− L̄} = (ε+ γ(1− ε), 0)>.

1. Suppose we are in the situation in which the clearing vector is given by (14). Then

V(L∗, ẽ)1 = a+ αγ(1 + ε)− a+ γ(1− ε) = γ(α(1 + ε) + 1− ε),
∆V1 = Ṽ1 − V(L∗, ẽ)1 = ε− αγ(1 + ε),

∆V1 > δ2 ⇔ α < 1.

2. Suppose we are in the situation in which the clearing vector is given by (15). Then

V(L∗, ẽ)1 = γ(1− ε) +
αγ

1− β2
(1 + ε+ β(1− ε)− β(1 + ε) + ε− 1),

∆V1 = Ṽ1 − V(L∗, ẽ)1 = ε+ ε
2αγ

1− β2
(−1 + β).

From there we immediately obtain that

∆V1 > δ2 ⇔ ε+ ε
2α

1− β2
(−1 + β) > −(1 + ε)

⇔ ε(1 +
2α

(1− β)(1 + β)
(−1)(1− β)) + (1 + ε) > 0

⇔ 2ε(1− α

1 + β
) + 1 > 0

and the last inequality is always true, since in this situation α < 1 + β and ε > 0.

Hence we see that bank 1 always has an incentive to rescue bank 2 and from Lemma 4.4 we know that it
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also has enough assets.

Proof of Lemma 5.6. 1. We need to check when bank 1 defaults as well. Bank 1 does not default if

and only if

Nαγ(1 + a) + γ ≥ Na⇔ α ≥ aN−γ
Nγ(1+a) .

2. + 3 This follows immediately from the first part and the definition of a clearing vector.

Proof of Theorem 5.7. We prove the result for N = 1.

1. We compute the bailout costs:

δ3 := −(γ(1 + a)− a) = a− γ(1 + a).

Moreover,

Ṽ := max{0,Π>L̄+ γe− L̄} = (γ, a+ γ(1− a), 0)>,

since

Π>L̄+ γe− L̄ =

 0 0 1

1 0 0

0 0 0


 a

0

a

+

 γ

γ(1− a)

γ(1 + a)

−
 a

0

a

 =

 γ

a+ γ(1− a)

γ(1 + a)− a

 .

Since (16) and (17) hold we are in the situation in which only bank 3 defaults. Then the clearing

vector is given in (18) and

Π>L∗ + γe− L∗

=

 0 0 1

1 0 0

0 0 0


 a

0

αγ(1 + a)

+

 γ

γ(1− a)

γ(1 + a)

−
 a

0

αγ(1 + a)

 =

 αγ(1 + a) + γ − a
a+ γ(1− a)

γ(1 + a)(1− α)

 .

Hence, we find

V(L∗, ẽ) = (αγ(1 + a) + γ − a, a+ γ(1− a), 0)>.

(Note that the first component is greater or equal to zero since (17) holds.) Then

∆V1 = γ − (αγ(1 + a) + γ − a) = a− αγ(1 + a),

∆V2 = a+ γ(1− a)− (a+ γ(1− a)) = 0.

Hence we see that ∆V1 ≥ ∆V2 and we therefore check whether a rescue consortium consisting

only of bank 1 is sufficient for rescuing bank 3.

30



D PROOFS

Note that ∆V1 > δ3 for all 0 ≤ α < 1 and for all 0 < γ < 1. (Hence we see that the strict

inequality is not satisfied for α = 1. ) Hence condition (10) is satisfied for a rescuing consortium

consisting of bank 1.

From Lemma 4.4, we know that condition (11) is also satisfied. Hence we see, that under the

current parameter restrictions bank 1 will always rescue bank 3.

2. As before, the bail out costs are

δ3 := −(γ(1 + a)− a) = a− γ(1 + a)

and also Ṽ stays the same and is given by

Ṽ := max{0,Π>L̄+ γe− L̄} = (γ, a+ γ(1− a), 0)>.

Since the clearing vector is now given by (20) we obtain

max{0,Π>L∗ + γe− L∗}

=

 0 0 1

1 0 0

0 0 0


 βαγ(1 + a) + αγ

0

αγ(1 + a)

+

 γ

γ(1− a)

γ(1 + a)

−
 βαγ(1 + a) + αγ

0

αγ(1 + a)



=

 αγ(1 + a)(1− β) + γ(1− α)

βαγ(1 + a) + αγ + γ(1− a)

γ(1 + a)(1− α)

 .

Since L∗1 < L̄1 and L∗3 < L̄3, we obtain

V(L∗, ẽ) = (0, βαγ(1 + a) + αγ + γ(1− a), 0)>

and

∆V1 := γ,

∆V2 := a− βαγ(1 + a)− αγ.

Then

∆V1 + ∆V2 = γ + a− βαγ(1 + a)− αγ > δ3 = a− γ(1 + a),

⇔ 1− αβ(1 + a)− α+ 1 + a > 0

⇔ (1 + a)(1− αβ) + (1− α) > 0

for α, β ∈ [0, 1).

Using Theorem 4.4, we therefore see that a rescue consortium consisting of bank 1 and 2 always
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exists. For many realistic parameter combination one can also show that a rescue consortium

consisting only of bank 2 exists.
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