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Abstract. Fractional Brownian motion has been suggested as a model for the movement
of log share prices which would allow long-range dependence between returns on different
days. While this is true, it also allows arbitrage opportunities, which we shall demonstrate
both indirectly and by constructing such an arbitrage. Nonetheless, it is possible by looking
at a process similar to the fractional Brownian motion to model long-range dependence of

returns while avoiding arbitrage.
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1 Introduction

The log-Brownian model for the movement of share prices is widely used in the theory of
mathematical finance, but empirically demonstrated to be incorrect in a number of ways.
Various alternatives have been suggested to account for empirically-observed deficiencies,
among them the fractional Brownian motion, which displays dependence between returns
on different days, in contrast to Brownian motion. However, as we prove in this note,
the fractional Brownian motion is not a semimartingale (except in the Brownian case) and
therefore there can be no equivalent martingale measure, and by general results this means
that there must be arbitrage. We shall then give a direct construction of arbitrage with
fractional Brownian motion. While this may be the end of fractional Brownian motion as
a model for the movement of the price of a share, it is not the end of all attempts to model
a share price process with long-range dependence of returns. Formally, the fractional
Brownian motion is the convolution of Brownian increments with a power-law kernel, and
the arbitrage is happening because of the behaviour of that kernel near zero. Long-range
dependence is happening because of the behaviour of the kernel at infinity, and so the
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remedy is clear; we convolute the Brownian increments with some kernel which has the
same behaviour at infinity, but a more orderly behaviour at zero, and everyone will be

happy! The conclusion shows one way in which this can be done.

To explain the problem in more detail, if (W;):cr is a standard Brownian motion with
Wy = 0 (so the paths of W are continuous, and the increments of W over disjoint intervals
are independent zero-mean Gaussian random variables with variance equal to the length of
the interval), then the fractional Brownian motion (X¢)¢cr with self-similarity parameter

H € (0,1) is defined by!

(1.1) X, =k [/t (t — s)H=2dw, — /_L(—S)H—%dws]

—00

where

k2= (QH)—1+/ (1+ )72 — o7 =2)24y.
0

The process X is clearly a zero-mean Gaussian process, and the constant k is chosen to

normalise the covariance structure neatly:
(1.2) E|X, — X, = |t —s*.

The case H = % corresponds to the familiar situation of Brownian motion, and X is in

general a self-similar process; for any ¢ > 0,
D -
(1.3) (X (ct))rer = (7 Xy )ter-

At an intuitive level, it is easy to explain both of the results of this paper. Firstly, from
(1.2) we see that the increments process of X is stationary and that X415 — X; ~ 6 which
suggests that

(1.4) Z X (27 = X((j = D277 ~ (27) 771

Letting n — oo, we expect that the order-p variation of X will be infinite if p < H~!, and
zero if p > H~'. This is only consistent with semimartingale behaviour if H = %

For the construction of arbitrage, we note that for ¢ > 0

0

(1.5) E(X4|Go) :/ {(t—s)H—% - (—S)H—%}dws,

where G, = o({W, : u < t}). If we knew that F(XGy) = FE(X¢{Fo), where
Fi = o({ X, : u < t}), we may conclude from (1.5) that seeing (X,,) <o gives us information
1

about the future behaviour of X (except in the case H = 3), which can be exploited in

the obvious way; if F(X|Fy) > 0, we would make a positive investment in the asset, but
if F(X|F) < 0 we would short the asset. What remains is to show that we can carry out

!Strictly speaking, the two integrals on the right-hand side of (1.1) cannot be defined separately, but

the formally-correct definition
X, = L/ {((t —s)h)FE (s—)H—%} dw,

does make good sense, even though it is less digestible than (1.1).



the trading in a sufficiently controlled way to make arbitrage in finite time while ensuring
that the wealth process will never fall below some fixed level. As the reader will see from
Section 3, several of the steps involved require care; since X is not a semimartingale, we
have to rely on more elementary properties. Finally in Section 4 we show how simple
change of measure properties extend the conclusions of Sections 2 and 3 to more general
Gaussian processes of the form X, = fjoo a(t — s)dWs, where a(t) ~ tH_%(t 1 0).

The first result of this paper has been known for some time; it certainly appears in the
paper of Maheswaran & Sims [6], and indeed was known to the present author in 1989
when the issue was drawn to his attention by Walter Willinger. Quite possibly other
earlier references exist 2. However, since the fractional Brownian motion continues to
appear as a model for an asset price process (for example, in Peters [7], and in Bouchaud
& Sornette [2]), it seems that the problems in using it as an asset price process need to
be more widely known. To amplify, the first result implies that for H # % the process X
is not a semimartingale and therefore there can be no equivalent probability under which
X becomes a local martingale. This almost implies that there is arbitrage; Delbaen [3]
proves that the existence of an equivalent martingale measure is equivalent to the NFLVR
(= no free lunch with vanishing risk) condition. This condition is more restrictive than
the condition that there is no arbitrage and, indeed, Delbaen & Schachermayer ([4]) and
also Back & Pliska ([1]) give examples where the NA (= no arbitrage) condition holds,
but the NFLVR condition does not. To be exact, we say that an arbitrage exists if there is
some trading strategy whose gains process (£;)o<i<1 satisfies (i) & =0 < &, (ii) & > -1
forall 0 <t <1 and (iii) P(& > 0) > 0. It is immediate that the existence of an arbitrage
in this strict sense implies existence of a FLVR, but the converse is false. Maheswaran
& Sims describe a trading strategy which by time 1 can create a wealth whose mean is
at least 1 and whose variance is as small as one wishes, but this fails to be an arbitrage
because condition (ii) above fails — and this really matters, since this is the condition which
prevents arbitrage by double-or-quits strategies played on Brownian motion. Delbaen &
Schachermeyer [4, Theorem 7.2] give a proof in a general setting that if a process X is not
a semimartingale, there must exist a FLVR. Not surprisingly, with the specific structure
of a fractional Brownian motion, we can do better; there does exist an arbitrage in the
strict sense defined above and the somewhat delicate task of constructing it is settled in
Section 3 of the current paper.

Acknowledgement. The careful reading of this paper by a perceptive referee resulted in

several valuable improvements.

2 Fractional Brownian motion is a semimartingale only if

1

The title of this section is its main result, and the proof follows the lines sketched in the

Introduction. Fix the parameter H of the fractional Brownian motion, and consider for

2A. N. Shiryayev tells me that it appears as an example in his 1986 book (in Russian) with R. S. Liptser
Theory of Martingales.



p > 0 fixed :
1) Yoy = YO IX(G27) - X(G - 02 (7,

It is clear that £Y,, , = E|W;|?, the same for all n, and it is even true that ||Y), ,||2 remains

bounded for all n. If we now consider
}7”710 = Q_nZ|Xj — X]‘_1|p,
=1

this has (for each n) the same law as Y,, ,. Noticing that the sequence (X; — Xp_1)rez is
stationary and ergodic, the ergodic theorem tells us that

Y/mp — E|X1 — Xolp =06 (n — OO)
almost surely and in L'. Hence
Yop E Cp (n — o)

P
and therefore Y, , — ¢,. Hence

i P 0 if pH>1
2.2 Vop = X(G27) - X((F7— 127
(22 b= IXGE) =X (G- nﬁ{+m © o
If H > %, we can choose p € (H™',2) such that V,,, — 0 in probability, and therefore

almost surely down a fast subsequence. This implies that the quadratic variation of X is
zero, and so (if X were to be a semimartingale) X must be a finite-variation process. But
since for p € (1, H™1), V, = lim,,— V,, is almost surely infinite, and (by scaling) also
the order-p variation on any interval is infinite almost surely, X cannot be finite-variation.
If H < %, we can choose p > 2 such that pH < 1, and the order-p variation of X on
[0,1] (and hence on any fixed interval) must be infinite. This contradicts the almost-sure
finiteness of the quadratic variation of X, assuming X were a semimartingale. Either way,

if H# %, X is not a semimartingale.

3 Making an arbitrage

As we indicated in the Introduction, there is a priori a difference between G, = o({W; :
s <t})and F; = o({X;s:s <t}) (though F; C G; is obvious), which might matter for the
construction of arbitrage; if our arbitrage-generating investment policy (which will be of a
simple “buy-and-hold” nature) were adapted to (G;), would there necessarily be an (F;)-
adapted arbitrage-generating policy? As it turns out, our construction of the arbitrage
needs only to see the smaller filtration (F;), but for its passing interest we record here a
result which shows that the two filtrations are the same.

PROPOSITION 1 For anya >0

0 a -H-1 _1
oo e = [ M e
(3.2) = /_ {(a_s)H—% _(_S)H—%}dws.



In particular, (Gy) = (Fy) to within null sets.

We omit details of the proof; to prove (3.1) we take the integral representation (1.1) of X
and perform a change of order of integration to show it is the same as (3.2). Since (3.2) is
E[X,|Wy :u < 0], that proves all but the last assertion, and for the last assertion we find
that the process (fi)oo(a — 8)°dW,)a>0 is Fo measurable for c = H — 2 (by differentiating
twice), and W can be recovered from this Mellin transform.

So now our task is to construct an arbitrage. We are going to split (—oc,0) into
Unez(—27"11,—27"] and only trade in the share during intervals which look promising.
During such an interval, if the gain of our investment in the share gets too high or too
low, we immediately sell it, and wait til the end of the interval, thus ensuring bounded
gains on each time interval. The main task is to show that there do exist time-intervals
which look promising; that there are plenty of them follows by stationarity.

LEMMA 2 Suppose that (2, F, (Fi)icr+P) is a filtered probability space and (Xy),cp+ is
a continuous adapted process, with Xq € L1 (P). For any real a < b and 0 <t < ¢ define

(3.3) T(t,c;a,b) = inf{u >1t: X, ¢ [a,b]} A c.
Suppose that for all rational a,b, c,q, for which ¢ < ¢ and a < b, we have
(3.4) E(XT(q,C;a,b)|Fq) =X, a.s;

then X is a local martingale.

Proof. Firstly note that if ' < ¢ is any stopping time, then the equality (3.4) is easily
extended to

(35) E(XT(T,c;a,b)|fT) = Xr a.s.,

by approximating T by T(" = 27"([2"T] + 1), a sequence of stopping times taking
discretely-many rational values and decreasing to 7.

Now fix N € N, and define { = 7(0,N;—N,N). We shall prove that X (¢ A () is a
martingale, and this will be sufficient. To this end, fix e=' € N and define the stopping
times o7 by o5 =0,

op =inf{u>op : Xy # X(0), Xy €cZINC

for n > 0. Evidently o; 1 ( as n | oo. It is also clear that (X (o}),F(0}))n>0 is a

n

martingale, using (3.4). Since |X (0})| < N V | Xg| for all n, we have that for all n
X(o7) = E[X | F(a7)];

n

and from this it follows easily that for all t < N

Xt/\C — E[det]



Now we know that (unless H = 1) the fractional Brownian motion X is not a local

martingale; indeed, if H < % we have from Section 2 that for some p > 2 the order-p
variation of X is infinite over every interval of positive length (which is not consistent
with the locally-finite order-2 variation of a continuous local martingale) and if on the
other hand H > % we shall have for some p < 2 that the order-p variation of X is
zero, which would imply that the order-2 variation of X is zero, and therefore that the

continuous local martingale X is constant.

Thus we know that the condition (3.4) of Lemma 2 must fail for some rational ¢ < ¢, and
a < b;
(3.6) PIE(X;(4,c:00)Fg) # Xg] > 0.

This is not quite in the form we want for later use. Define for 0 <¢ < candfora <0<
the stopping times

p(t,c;a,p) =inf{u > t; X, — X; ¢ [o, ]} A c.

LEMMA 3 If (Xy)ier is fractional Brownian motion, H # %, then for some a < 0 < 3
and ¢ >0
(3.7) PIE(X (0,¢;0,6)| Fo) # Xo] > 0.

Proof. Suppose that the result were false; for all @« < 0 < fand g < ¢ E(Xp(q7c;aﬁ)|fq) =
X, almost surely. This contradicts (3.4) as we can see as follows. With ¢, ¢, a, b being now
values for which (3.4) holds, we shall construct stopping times 7T,, | 7(q, ¢; a,b) with the
property that X — X, is bounded on [¢,T}] for each n, and E(X (7,)|F,) = X, for every
n. Take § = b — a and define

T, = q if X, ¢ (a,b]
= plg,e;—j3é/n,(n—j+1)8/n) if (j—1)én~' < X, —a < jén™!

for j = 1,..,n. It is not hard to verify that the 7, have the properties claimed and, if (3.7)
were to fail, then E(X(7,)|F,) = 0 for all n. This would ensure that (3.4) fails, and we
know this is not correct. O

Let us now see how to use Lemma 3 to make arbitrage. We shall make arbitrage by
investing suitably in X during the time interval [—1,0). For each n € Z, define the
process

Yo(t) = {X(=27"(2 1)) = X(=27"")2" (0 <t <1).

By the scaling properties of X, the sequence (Y},)nez of C([0, 1])-valued random variables
is stationary, and even ergodic because N,o(Yy : & < —n) is contained in the tail o-field
of W_;, which is trivial. If we let G, = F(—27"), then (Y,,) is adapted to G,, and because
of Lemma 3 and scaling properties, there exist & < 0 < # and ¢ > 0 such that

(3-8) PIENY(Ta)|Gn] 2 €] 2 ¢,

where

T, = inf{t : Y, () ¢ [o, 3]} A 1.



In view of this, the ergodic theorem guarantees that
(3.9) PlE(Y,(7,)|Gn=1) > ¢ for infinitely many n > 0] = 1.

Call the time interval (—27"*1 —27"] period n, and say that period n is promising if
E(Y(r,)|Gn—1) > e. Since there will be infinitely many promising periods, we may
describe our investment strategy by saying that (at least to begin with) we invest unit
amount in each promising period, but should Y,, leave [a, 5] during the promising period
we immediately sell our holding and wait until the end of the period. Thus the gain
made during a promising period is always bounded, and has positive mean. Let 5,
denote the accumulated gain by the end of period n. Since o < 7, — 9,1 < 3, and
Enp — Mu—-1]Gn-1) > €, we may pick A > 0 so small that for all n

E[e"A””|gn_1] < e~ Min—1

(Of course, if period n is not promising, 7, = 7,_1!) Thus e~ is a non-negative
supermartingale, convergent almost surely to 0 (since there are infinitely many promising
periods). If we stop 7 at the first time v that n < a, then we have

Plv < o00) <exp(la)=1-60<1

and on the event {v = +00}, 1, — 00. Now we can describe fully how we make arbitrage.
Invest unit amount 3 in each promising period until either 1 has risen to 1 or 7 falls to
below a. The former happens with probability at least § (and results in our gain of 1)
while if the latter happens, we shall have lost at most 2|a|. If the latter happens proceed
to invest % in each promising period until either the accumulated gain 5 has risen to 1 or
the accumulated gain has fallen below 5a/2. If the latter happens, we shall have lost at
most 3|a|, and we proceed to invest % in each promising period either i has risen to 1 or
7 has fallen below 13a/4. If we continue in this way, successively halving our stake when
things go badly, we shall eventually be successful and make net gain at least 1, and the
worst that can happen is that our wealth meantime could fall to 4a.

4 Extending to Gaussian processes similar to fractional
Brownian motion

In this Section, we use routine change of measure arguments to show that if we convolute
Brownian motion with a kernel which is similar at zero (in a sense to be made precise)
to the kernel used to make fractional Brownian motion, then the existence of arbitrage
persists. By contrast, we show in Section 5 that we can smooth out the kernel at zero,
remove the arbitrage, but keep long-range dependence.

In Section 3, we created arbitrage by trading on the fractional Brownian motion only
during the interval [—1,0), but we could just as well have made arbitrage in [0,1), by
shifting the strategy by one unit of time to the right. The strategy so shifted will (with
probability 1) make net gain 1 with a lower bound on the wealth process throughout [0, 1];

®That is, unit amount in Y, which is the same as investing amount 2”¥ in X during period n



so if we change to an equivalent measure, the same will be true, almost surely with respect
to the equivalent measure.

Let us write
_1
(4.1) e(s) = 77201 = wols) + ¢1(s)

where g, (o1 are non-negative, with the properties

(4.2) @1 is C3(R), with support in (1,00)
(4.3) o is compactly supported in [0,2].
Now define

_ t 0
X{ = / it — s)dW, — / wi(—s)dWs,

and observe that we may integrate by parts to express X! as

x!= [ 40 - s mads

From this, it is not hard to check that X! is differentiable, with

1
%X}:/ Gt — )\ Weds (1> 0).

— 00

Next we aim to identify a process g which will be non-zero only in [0, 1] with the property
that for 0 <t <1

t
(4.4) X} = / wolt — 8)usds,
0

this last integral being equal also to fot ot —s)usds for 0 < t < 1. If fis C? with compact
support, f = X' on [0, 1], we can solve the convolution equation (4.4) f = ¢*u by taking
the Laplace transforms (denoted by a tilde) to obtain

(4.5) FO) = gNAEM) = X720 (H + D))
yielding
(4.6) ) = A2,

- T(H+1)

Now since A=3 is the Laplace transform of t%_H/F(% — H), and A2f(}) is the Laplace
transform of the measure f”(¢)dt + f'(0)éo(dt), we conclude from (4.6) that

(4.7) jy = {/Ot(t —5)77H " (s)ds + f’(O)tg‘H} /(5 — H)T(H + 3).

Observe that, because ¢ is supported in (1,00), it follows that X} is Fy-measurable for
all t € [0,1], and hence the process (Mt)ogtgl is again Fp-measurable. We have then for
te[0,1]

(4.8) X, = XP+Xx{

t 0 t
= / wolt — s)dW, — / wol(—s)dW, —I—/ wolt — s)psds
—00 0

—00

t 0
= / ot — 8){dWs + psds} — / wo(—s)dWs.
-2

— 00



Since the process p is continuous and Fyp-measurable, the drifting Brownian motion
dW, = dW; + psdt is equivalent to Brownian motion, and so from (4.6), since arbitrage is

possible with X, it must also be possible with X©.

The process X° comes from convoluting dW with a function ¢y which is equal to ¢ in a
neighbourhood of zero, but would we still get arbitrage if we convolute dW with ¢, where
o is like ¢ in a neighbourhood of zero? We do. Suppose that we express ¢g = @ + ¢1,
where @1 € C3(R), with support in [0,2], and ¢} (0) = 0. The argument is similar to that
given above; we seek a process (ﬂt)ogtgl such that

t

(4.9) / polt = )@, +juds) = [ olt = aw, + e,

—o0 —00

where ¢ is some unimportant Fy-measurable random variable. Provided fi has enough
integrability, the process on the left of (4.9) is equivalent to X, and so an arbitrage can
be constructed for the process on the right of (4.9). We need to pick f so that

/_too ot — s)fisds = /too{cfol(t —3) — @1(—9) JdW, + /_io ©o(—5)fisds

0

E /:tm{saa(t—s)—@a(—s)}wsdw | ent-s)ids,

—o0
As before, the recipe (4.7) can be used to obtain fi, which is now an adapted Gaussian
process, vanishing at zero. Can it be used to change measure? We can use Novikov
criterion (see, for example, Ikeda & Watanabe [5]) to guarantee that a change of measure
exists at least up to some positive time €. This will be enough, because an arbitrage could

have been constructed by that time.

5 Conclusion

We have seen that fractional Brownian motion is an absurd candidate for a log-price
process. We have also seen that the arbitrage is arising because of the behaviour of the
kernel ¢(t) = tH_%I{DO} on small time scales. Since the fractional Brownian motion was
introduced to model perceived long-range dependence in share returns, the way round all
the problems is obvious; if we define

t 0
X = / ot — s)dWs — / o(—s)dW;

where ¢ € C*(R), ¢(0) = 1, ¢'(0) = 0 and lim;_.c go”(t)t%_H existing in (0, c0), then
we have that X is a Gaussian process, with the same long-range dependence as fractional

Brownian motion and yet (integrating by parts)

t 0
X; = VVt—I—/ o' (t — s)Wsds —/ ' (—s)Wsds

— 00 — 00

£ s
= W, —I—/ (/ (s — 'U)I/Vud'v) ds,
0 —00

exhibiting X as a semimartingale. We could take
ol1) = (e 4 12) 1D/,

for example.
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