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Abstract: In this paper, we discuss a variety of methods for computing the Wiener-Hopf factorization
of a finite Markov chain associated to a fluctuating additive functional. The importance of this is that the
equilibrium law of a fluid model can be expressed in terms of these Wiener-Hopf factors. The diagonalization
methods considered are actually quite efficient, and provide an effective solution to the problem.
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1. Introduction

Fluid approximations to queueing systems have been widely and successfully studied in recent years;
as a representative (but by no means exhaustive) sample, see Anick, Mitra & Sondhi [1], Mitra [7], Stern
& Elwalid [9], Gaver & Lehoczky [4], [5], Asmussen [2]. The key idea in any fluid approximation is that
the service requirements of the customers are typically small, and there are typically many customers in a
system at any time, so the total number of customers may be thought of as a continuous variable, which
changes in a nearly deterministic way.

The simplest prototype example is clearly explained in Mitra [7]. One has n pipes, each of which can
pour fluid into a large tank of capacity a, and in the bottom of the tank there are k taps, each of which can
be either open or closed. Each pipe which is pouring fluid into the tank does so at rate 6, and each open
tap empties fluid out at rate p, so that if & is the amount of fluid in the tank at time ¢, Z; is the number of
open taps and Y; the number of pipes pouring water into the tank, then

(1) Loy - oz,
at least when 0 < & < a. If the tank is full, surplus input overflows and is lost.

One typically assumes that the pair (Y3, Z;) is a Markov chain, and one is concerned with the equilibrium
distribution of £&. The great virtue of such models is that the size of the statespace of the chain is nk, whereas
if one had sought to model the queueing system discretely, the statespace would have been impossibly large.
However, computing the equilibrium distribution is now a problem outside the conventional theory of Markov
chains, and is intrinsically quite difficult. It is closely linked to the problem of computing the Wiener-Hopf
factorization of a Markov chain, a problem first addressed by Barlow, Rogers & Williams [3]. The situation
considered there is of a Markov chain X on a finite statespace F, together with an additive functional

(2) b1 = /O v(X,)ds,

where v : E — R\ {0} is some function, which takes positive and negative values, so that ¢ is a fluctuating
additive functional. Now one may define time changes

(3) 75 =inf {u: ¢, > t},

and the time-changed processes

(4) Y = X (7).



The process Y+ lives in £, = {i : v(i) > 0}, because at any time 7;", ¢ must be increasing and therefore
X must be in 5.

Clearly Y*, Y~ are Markov chains; what are their generators? It is extraordinarily difficult to answer
this question in closed form except in the most elementary examples, but Barlow, Rogers & Williams [3]
provide a characterization of the generators G+ of Y, in terms of the matrices

(5.1) My (i,j) = P'(X(rg) = j,7g <o), (i€ E,j€By),
(5.i1) I_(j,i) =P (X(1y ) =1,15 <o0), (jeEq,icE).

To state their results, if S is any finite set, let Q(S) be the set of S x S irreducible Q-matrices, that is,
matrices whose off-diagonal entries are non-negative, whose row sums are non-positive, and which generate
an irreducible chain. We say that Q € Q(S) is recurrent if the row sums of ) are zero, otherwise we say
Q € Q(9) is transient. Let V be the diagonal matrix diag(v(i)).

THEOREM A (Barlow-Rogers-Williams [3]). A Wiener-Hopf factorization of V~'Q is a quadruple
(Z+,Q+;Z7,Q7>, where Z+ is E_ x E+, Z_is E+ X E,, Qj: € Q(Ei) and

(T Z\ (I Z\{(Qs O
) VQ(Z+ I)_(ZJr I)(O —Q-)
(i) The quadruple (ILy, G411, G_) is always a Wiener-Hopf factorization of V'Q.
(i) If Q € Q(F) is transient, then the Wiener-Hopf factorization of V ~1(Q is unique.

See Rogers [8] for a proof of Theorem A and a discussion of the result. For our current purposes, the
main point about Theorem A is that the invariant distribution of the process £ can be simply expressed in
terms of 11 and G4 ; see §§4-5 of Rogers [8]. As an example, we have that if the buffer has infinite capacity,
and if j € E4, then R

Jim P(X; = j, & > @) = mj(exp(zG-)1);,

where m is the invariant distribution of the underlying chain X, and G_ is the generator of the minus process
defined from the reversal of X. The whole story is in [8].

Thus to find the invariant distribution of &, we have to compute IIL and Gi. There are a variety of
ways to do this, which we shall describe, compare, and evaluate in §2. Broadly speaking, there are two types
of methods: recursive methods, and diagonalization methods. It turns out that the diagonalization methods
are numerically far superior, which is comforting, since all the applications so far (for example, [1], [5], [7],
[9]) are based on diagonalization procedures.

Next we consider a variant of the fluid model, in which the buffer content process £ is not simply an
additive functional of a Markov chain, but has some (small) Brownian noise superimposed on it. To be more
precise, if

t
(7) ¢t:/0 v(X,)ds + €By,

where B is Brownian motion independent of the chain X, then

(8) & = ¢+ LY — Lf,

where L (respectively, L?) is an increasing process which grows only when £ is at 0 (respectively, a), and
are such as to constrain ¢ to [0,a]. As before, we may define time-changes 7+ by (3), and new processes Y+
by (4). This time, Y* can live anywhere in E, and have generators I'+. It turns out once again that the
invariant law of £ can be simply expressed in terms of I'y (see §7 of Rogers [8]), so the problem is to compute
I'y. As Kennedy & Williams [6], Asmussen [2] and Rogers [8] all show, I'y are characterised as follows.

THEOREM B (Kennedy-Williams; Asmussen; Rogers). The generator I'y (respectively I' ) is the unique
Z € Q(E) such that



1
(9.4) 56222 ~-VZ+Q=0

(respectively,

1
(9.i1) 56222 +VZ+Q=0. )

In §3 of this paper, we discuss a number of numerical algorithms for computing I' .. Once again, there
are recursive methods, and a diagonalization method; and once again, the diagonalization method is far
superior.

2. The classical Wiener-Hopf problem.
Throughout this section, we shall make the simplifying assumption that
v:E— {-1,+1}.

For the computation of II, and II_, this loses no generality since we could replace Q by A~'Q, where A is
the diagonal matrix diag(|v(7)|), and this converts (6) to the standard form where

J(ErxEy) By xE-)
V= 0E-xEy) _[(E_XE_) |-

We shall now similarly partition @ according to the partition £ = F, U E_, and write it as

AELxEy)  pBELxE-)
Q= cw_xe) pE-xe) |-

So if we look only at the E-columns of (6), we have

(4 5 () (e

which can be equivalently expressed as

(11.i) A+BZ, =Q,,
(11.ii) —C—-DZ, =7,Q,.

One can easily eliminate ()4 to obtain the key quadratic equation

(12) DZy+Z,A+C+ Z,BZ, =0.

Until further notice, we concentrate on calculating I, so abbreviate Z; to Z.

This innocent-looking equation is the starting point of the recursive methods for calculating I1;.. The-
orem A guarantees that one solution to (12) is given by Z = I - but are there any others? Williams [10]
proves that I is in fact the minimal solution to (12), but the complete resolution of the uniqueness story
has only recently been given (Rogers [8]). In brief, the only time that (10) has a solution (Z;,Q4) other
than (II;, G4) is if Q4 is recurrent, G is transient, and in that case @ can be represented in terms of G4
as

Q+ =G+ — (G41)p,

where g is the left eigenvector of G of largest real part. Unfortunately, it is not so easy to express G4 in
terms of Q4.



We shall not dwell on possible non-uniqueness, because the methods we examine here all give (in
principle) IT;. First we shall describe three recursive methods.
(1) Williams’ method [10]. If we replace C by 0C (0 < § < 1), then we get

with

Zp(0) =Y 0"Y,.

n>1

Comparing coefficients of 6™ gives
DY1 +Y1A=-C,

DYpi1+ Y1 A== YiBY,11 4 (n>1).
i=1
By solving the equation above we will get the solution to (12) with Z, =" ., Y,. See Williams [10] for
the complete story. This method is rather slow indeed, as apart from the difficulty of solving the type of
equation

(14) DZ+ZA=—R,

(for given R), it is slow to compute 2?21 Y;BY,+1—;. Moreover, the previous values of Y; must all be stored
to permit the calculation. The following recursive method is an improvement on Williams’ method.

(ii) An improved recursive method. This second method generates a sequence Z, of non-negative
matrices by the recursion

(15) Zo=0, DZpi1+ Zn1A=—C — Z,BZ,.

The following representation

(16) Zni1 :/ e!P(C + Z,BZ,)etdt
0

makes it clear that the Z,, increase to some solution K of (12), and likewise it is easy to see that if Z were
any non-negative solution to (12), then for all n, Z,(i,5) < Z(i,j) and hence K(i,7) < Z(i,7), for all 4, j.
Since II; is the minimal solution to (12), K = TII.

How does one go about solving the equation (15)? The main difficulty is that solving the equation (14)
with R known, is not a trivial matter. One approach might be to observe that the solution to (16) can be
expressed as

Z :/ e!P RetAdt,
0

but this does not lend itself to rapid computation. Another observation is that if D and A were diagonal
matrices, then the computation of Z is trivial. We made a program which firstly reduced A, D to diagonal
form, and then used the recursion (14) to compute the Z,,. The main conclusions about the method were

- It is stable, and converges monotonically to the true value;

- It is quite slow;

- It requires a pair of diagonalizations, so can be no real improvement over the

diagonalization method discussed below.

The last point deserves amplification. Diagonalizing an N x N matrix is an O(NN?) operation. If we now have
to diagonalize two square matrices of order about N/2, the best we can hope for is to reduce the computation
time by a factor of about 4.

(iil) Kurtz’ method. This method was shown to us by Tom Kurtz. Firstly write D = Da + Dy,
A= Ax+ Ay, where Da (resp. Aa) is the diagonal part of D (resp. A). Now consider the recursion

4



(17) Zo=0, DAZns1 + Zni1An = —C — ZyBZy — Dy Zy — Zp Ay

It is trivial to verify inductively that the Z, are now all non-negative (Z,(i,7) > 0, Vi,j,n), and are
increasing (Z,+1(%,5) > Zn(i, ), Vi, j,n). Moreover, if Z is any non-negative solution to (12), then equally
easily Z > Z,, for each n. Hence the monotone limit of the Z,, will be the smallest non-negative solution to
(12), namely IT.

The Kurtz method has one great advantage over the previous recursive method (ii); solving (17) for
Zpn+1 is now trivial, because Do and Aa are diagonal. One small disadvantage is that there is now no
probabilistic interpretation of Z,,, so estimating how far Z,, is from I, may not be so easy.

We carried out the Kurtz method on a number of examples where the off-diagonal entries of @) were
independent negative exponential random variables, so that essentially @ had no structure. The main points
about the method were:

- It is stable, and converges monotonically to the solution;

- It is slow, but not as slow as the previous recursive method (ii).

It is worth pointing out that in any recursive method which involves many matrix multiplications, one
can not expect a fast algorithm, since multiplying an n x k matrix by a k x m matrix has O(nmk) operations
so that each step of the recursion is O(nin_(n4y + n_)), where ny is the size of Fy. Thus we could not
expect the overall order of a recursive method to be better than the diagonalization method described below
(which is O((ny +mn_)3) ), although it might be better if (say) ny = O(1).

We also tried to accelerate the convergence of these recursive methods, by looking at Z,,_1, Z,, Zn+1,

and trying to estimate from these what the limit would be, then jumping to this estimated matrix and
continuing the algorithm from there. Although this certainly got more quickly to the correct answer, it did
not always get to the correct answer! We discarded this and the other recursive methods in favour of the
diagonalization method.
(iv) The diagonalization method. Let m denote the invariant distribution of Q). We shall assume for the
moment that m(Ey) # m(E_), a condition that will hold in all but a few freak situations. Just to fix
our ideas, suppose that m(E;) > m(E_). In this case, ¢ — +oo a.s., and the matrix II_ is strictly
substochastic, whereas the matrix II; has row-sums equal to 1. This means that the matrix

I oI
S:(H+ 1)

is invertible, and so from the Wiener-Hopf factorization (6), the matrix V=@ is similar to the block diagonal

matrix
G+ 0
0 —-G_
If now we take the eigenvalues A, ..., Ay of V1Q (assumed for the moment distinct) with corresponding
eigenvectors f1,..., fn, and supposing that the first ny =| Ey | of the eigenvalues are of non-positive real

part, we have, for each j,

M;(t) = fj(X¢)e % is a martingale,

and

for j=1,...,ny, M; is bounded on [0,7,].

Since 7 < 00 a.s. (¢ — oo a.s.) we may use the optional sampling theorem to conclude

(18) fi@) = E'If;(YD), (G=1,...,n4,i€ E_).
(This argument is familiar from many earlier works in this area - see, for example, Barlow, Rogers & Williams

3])-

Thus we have for each j =1,...,n4

fi()) = (4 ) @), (i€ B,
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where f; is the restriction to £ of f;. So if

F:(fla"'7fn+)7 F+:(f1+7"'7 ;z:)’

we have in matrix notation

(19) Giygﬁ

If we know the diagonalization of V=@, we know F'; and F is invertible - so from (19) we can calculate IL
by inverting F;! The diagonalization method therefore firstly diagonalizes V1@, then computes F from
this, and finally computes IL.

Remarks. The assumptions made in the above discussion can all be lifted quite easily. If the eigenvalues
are not assumed distinct, we take a basis f1, ..., fy of Jordan vectors ((V~1Q—\)"f = 0 for some ), for some
r > 1), and the identity (18) still holds good for all those Jordan vectors whose eigenvalues have non-positive
real part - see Barlow, Rogers & Williams [3] and Rogers [8] for further discussion. In practice, a matrix
whose Jordan form is not diagonal is a freak. The assumption that m(EL) > m(E_) is also superfluous; if
m(Ey) < m(E_) then there are N, eigenvalues whose real part is strictly negative and exactly as we argued
for (18), one now finds

560) = B (V) snf < oo, (G=1...mpi€ Eo).

The balanced case m(F;) = m(F_) needs a bit more care, but is not too difficult. Rogers [8] proves that
0 1
0 0
eigenvalues of V~1Q whose real part is strictly negative, fi,..., fn.—1, say, and by setting f,, = 1, the
statement (18) remains valid, and from that we deduce II; as before.

The numerical computations were done using the NAG library routine FOLAAF to diagonalize V ~1'@Q. This
routine was fast and accurate. In the following table we compare the time taken (on a SUN SPARC station
2) to calculate I11 by the Kurtz method and by the diagonalization method. The matrices ) were generated
randomly by the method described above. The columns are labelled by (n4,n_), where ny = |Fy | as
before.

the Jordan decomposition of V1@ now contains a Jordan block < > . There will now be exactly ny —1

Table 1
(10,15) (48,50) (100,100)
time for
diagonalization method 0.49s 9.82s 60.88s
time for Kurtz method 4.76s 1942.31s 50533.0%s
number of iterations
for Kurtz method 64 460 1378

*The method here had not yet converged, though the mean value of the difference Z,1(i,j) —
Zn(i,§) fori,j =1,...,100 was less than 1075.

Observe that the diagonalization method is overwhelmingly superior!

3. Noisy Wiener-Hopf factorization. We now consider the noisy Wiener-Hopf problem; we have to
solve the equation (9.i-ii) for the unknown Q-matrices. Firstly we consider two recursive methods.

(i) Kennedy & Williams’ method [6]. If we write Q@ = A 4+ R, where A is the diagonal part of @, we
introduce a killing with probability 1 — 6 at each jump of the chain by replacing @ by Q(0) = A 4+ 6R. If
now the solution to (9.i) with Q(6) in place of @ is represented as

Z0)=> 0"y,

n>0
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then by comparing coefficients of 8™ for each n in (9.i) we arrive at

1
(20.i) 5621“3 —VIo+A=0,
1
(20.ii) 562(1“01“1 +I'Ty) = VI +R=0,
1 n
(20.iii) 562 > Ty =V =0, (n>2).
r=0

Now (20.1) can be solved explicitly, since T'g is a diagonal matrix of non-positive entries, and then trivially
from (20.ii) we can calculate T'; (since T'g is diagonal); and finally, recasting (20.iii) in the form

(V — Lep I Leop ry =1 2n21r r
2 0)tn 2 nt 0 — 26 rtn—r
r=1
it is a simple matter to calculate '), from Ty, r < n. The solution we seek is Z(1) = > T',.

However, this method, as in the case of Williams’ method for the classical Wiener-Hopf problem, is
computationally most undesirable. For one thing, the calculation of the sum-of-products Z:;ll r.I,_,is
slow, and can not be done recursively; it has to be recomputed at each stage. Moreover, the previous values
of I', must all be stored to permit this calculation! We reject this method in favour of a somewhat better
recursive method.

(ii) An improved recursive method. Instead of trying to calculate I'y to satisfying (9.1), we attempt to
calculate

K=T,+al,

where « is going to be chosen big enough. In terms of K, the equation to be satisfied is easily derived from

(9.):

1 1
(21) —?K? — (V + Ea)K + (aV + §e2a21 +Q)=0.

2
Now if we take a > 0 sufficiently large, all diagonal entries of the diagonal matrix D = V + €2« will be
positive, and all entries of C' = oV + %62042[ + @ will be non-negative. Thus the recursive scheme

1
(22) Ko=0, DK, = 5621(5 +C

will generate an increasing sequence K,,, which, as before, is easily seen to be bounded above by I'y + al,
and which converges, to the unique solution I'y + al.

The main conclusions about this method are:

- It is quite simple, and stable, converging monotonically to the true value;

- It is quite slow, because of the many matrix operations.
Notice that we have considerable freedom in our choice of the parameter a. We tried some examples using
this method by choosing different . It turned out that the larger the value of « is, the longer it takes to
compute.

Once again, though, it is the diagonalization method which wins.

(iii) The diagonalization method. If we consider the matrix

[ 22V T
(23) M:(—QG_QQ 0)’

then if we take an eigenvector of M with eigenvalue A of non-positive real part, the eigenvalue equation

o w(p)= (%% 0) () 0)
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implies that

1
562A2f —AVf+Qf =0,
and hence

f(Xy)e ™ is a martingale.

If Re(\) < 0, we use the optimal sampling theorem as before to see that

Ef(Y;") =M,
and hence that

(25) T, f =\

Assuming for the moment that m(F;) > m(E_) and that all eigenvalues of M are distinct, then T'_ is a
transient Q-matrix, so has IV eigenvalues in the open left half plane. An exactly similar argument to that
above shows that if —\ is an eigenvalue of M with strictly positive real part, then A is an eigenvalue of I'_,
and conversely. Thus in this case, M has exactly N eigenvalues with strictly positive real part, exactly N —1
eigenvalues with strictly negative real part, together with the zero eigenvalue. In particular, then, if we had
diagonalized M, we would know which eigenvectors/values belong to I'y; we could then compute 'y from
the eigenvectors and eigenvalues, and likewise I'_.

To treat the delicate case m(F;) = m(E_-), we observe that M has a one-dimensional kernel, the left
kernel being spanned by (0,m), and that

(ma y)M = (Oa m)

Here, m is the invariant law of ), and y is such that

mV = yQ.

(Such a y exists, because mvl = 0.) Thus the Jordan form of M contains a Jordan block

(0 4)

(It is easy to see that the Jordan block of the zero eigenvalue must be 2 x 2.) We conclude that in this case
the Jordan form of M has exactly N — 1 eigenvalues in the open left half plane, N — 1 in the open right half
plane (assuming the eigenvalues are distinct).

Finally, we present some results of the computations. We took the three Q-matrices we used in Section
2, and added noise € = 10! in the first instance, and then € = 1073 in the second. The interest in taking
€ small is of course that this should approximate the classical Wiener-Hopf situation studied in Section 2.
Table 2 displays the times (in seconds) taken by the diagonalization method.

Table 2

(B | |E_|) | e=10" | e=107

(10,15) 1.29 1.17
(48,50) 43.71 39.24
(100,100) 323.76 291.22

We also tried the recursive method (ii) above on an example of (|EL|,|E_|) = (3,100), with ¢ = 1073,
and a the minimal value such that all diagonal entries of V +¢€2a is positive and all entries of oV +€e2a?1/2+4Q
is non-negative, and this was very slow - it took 3500s. Observe that the calculations in Table 2 took a lot
longer than the classical Wiener-Hopf calculations of Section 2, of the order of 4.5 times as long. This is
in fact better than expected, in that the heart of the calculation is diagonalization of a matrix, which is
an O(N?) operation; thus when we diagonalize a matrix of double the order, in the noisy Wiener-Hopf, we
would expect an eight fold increase in computing time.

8



We have thus calculated the matrices I} in §2 and I'} in §3. When € is very small, and if we write

1"_H_(E+><E+) 1’*+_(E+><E—)
Iy = P, (BxBy) p (BB |

we would expect that the ', chain viewed in F; to look very much like the chain with generator G =
A+ BIIL;. Therefore, for example, —(I'__)~'T'"_, should be like IT,.. Indeed, we computed the matrix
H =1, + (I__)"'T'_; (which should be approaching zero when ¢ tends to zero) for our example where

(|E+],|E-]) = (100,100) and ¢ = 1073; it turned out that the sum of squares of all the entries in H is of
order 107!, Our intuition is therefore justified.
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