
Applied Probability Trust (4 November 2010)

OPTIMAL TIME TO EXCHANGE TWO BASKETS

KATSUMASA NISHIDE,∗ Yokohama National University

L.C.G. ROGERS,∗∗ The University of Cambridge

Abstract

In this paper, we present simple extensions of earlier works on the optimal

time to exchange one basket of log Brownian assets for another. A superset

and subset of the optimal stopping region in the case where both baskets consist

of multiple assets are obtained. It is also shown that a conjecture of Hu and

Øksendal is false except in the trivial case where all the assets in a basket are

the same processes.
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1. Introduction

In the real options literature, optimal investment timing is often examined under

the assumption that revenue and/or cost processes follow log Brownian motions. As

mentioned in McDonald and Siegel [3], this specification can be justified when the

processes represent their present values. Moreover, revenues and costs may consist of

multiple sources in practice, implying that it is important to analyze the case in which

both revenues and costs follow additive log Brownian motions. The problem to be

studied in this paper is the optimal stopping time

sup
τ

E[e−ρτ (X1
τ + · · ·+ Xn

τ −Xn+1
τ − · · · −Xn+m

τ )], (1.1)
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where ρ is the discount rate, and (X1, . . . , Xn+m) are log Brownian motions represent-

ing the net present values of revenues and costs. Because of mathematical intractability,

only a few studies investigate the problem (1.1) analytically. The possibility that

τ = ∞ is allowed, and corresponds to the situation where the investor never exercises

his option to invest in the project. Accordingly, we make the convention that

e−ρτ (X1
τ + · · ·+ Xn

τ −Xn+1
τ − · · · −Xn+m

τ ) = 0 if τ = ∞. (1.2)

Since the agent may postpone his moment of investment for ever if need be, it is clear

that he would never invest at any time when the value of investing was negative, and

the value to him of the option is automatically non-negative.

The first study on the optimal investment timing of this type is by McDonald and

Siegel [3]. They consider the case n = m = 1 and show that the optimal stopping time

τ∗ takes the form

τ∗ = inf{t ≥ 0 : X1
t ≥ X2

t /z∗},

where the constant z∗ is determined by the values of drifts, volatilities, and correlation

coefficient of the two processes.

Olsen and Stensland [4] consider the problem in the case n = 1. They prove that

the optimal stopping region of (1.1) contains the cone
{

x ∈ Rm+1
+ : x1 ≥

m+1∑

k=2

xk

z∗1k

}
, (1.3)

where z∗1k denote the barriers for the two-dimensional case of X1 and Xk. They obtain

a similar result for the case m = 1.

Hu and Øksendal [2] study the problems in these two papers and provide sufficient

conditions for the stopping region to be equal to (1.3) in the problem of Olsen and

Stensland [4]. We note that [2] insist that the stopping time τ is finite. This assumption

corresponds to a situation where the investor is compelled to invest at some time, and

is different from our assumption; McDonald and Siegel [3] in effect make the same

assumption that we do, though this slips in implicitly in their account. In the case

where the discount rate ρ is greater than all the growth rates of the Xi, then there is

no difference in the solution.
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In this paper, we study the optimal stopping problem for the general case (1.1)

analytically. Our first results, in Section 2, provide bounds on the stopping set. On

the one hand, we prove that the stopping region for (1.1) contains a cone represented

as the convex hull of a union of simpler sets, and as we shall see, this generalizes Olsen

and Stensland [4]. On the other hand, we obtain a superset that contains the stopping

region, extending the result of Hu and Øksendal [2], proved only for the case n = 1.

Our second theme, presented in Section 3 is to prove that the stopping region is

in general quite a complicated shape, and the simple cones identified in Section 2 are

generally strict sub/supersets. We prove that in the case n = 1, m = 2 studied by

Olsen and Stensland [4] and by Hu and Øksendal [2] the convex cone (1.3) identified as

a subset of the stopping region is strictly contained in the stopping region unless the

problem is degenerate. More precisely, the sufficient conditions for the equivalence that

Hu and Øksendal [2] present hold only in a degenerate case where the volatility matrix

of log Brownian motions is singular. The result of Section 3 has been independently

proved by Christensen and Irle [1], using quite different techniques.

Finally, concluding remarks are given in Section 4.

2. Problem formulation and basic results

We first present the simplest form of the problem, which is a one-dimensional

problem soluble in closed form. Though very simple, this is the key result (due to

McDonald and Siegel [3]); all subsequent results in this paper use this by suitable

comparison with the basic one-dimensional problem.

The problem is to find the optimum

v(z) ≡ sup
τ

Ez
[

e−ρτ (1− Zτ )
]
,

where Z is a log Brownian motion

dZt = Zt(σdWt + µdt), Z0 = z > 0,

ρ > 0 is fixed, and τ ≥ 0 is a stopping time.

The solution is easy to determine.



4 Nishide and Rogers

Proposition 2.1. The value function v has the form

v(z) = 1− z (z ≤ z∗)

= (1− z∗)(z/z∗)−α (z ≥ z∗) (2.1)

where −α < 0 is the negative root of the quadratic

Q(t) ≡ 1
2
σ2t(t− 1) + µt− ρ

and

z∗ =
α

1 + α
.

The optimal stopping time is to take

τ = inf{t : Zt ≤ z∗}.

Proof. Let L be the operator given by

L =
σ2

2
z2 ∂2

∂z2
+ µz

∂

∂z
.

The following properties of the function v defined by (2.1) are easy to verify:

(P1) v(z) ≥ 1− z for all z > 0;

(P2) v is C1;

(P3) (L − ρ)v(z) ≤ 0 for all z > 0 with equality for z > z∗.

Hence by Itô’s formula1,

e−ρtv(Zt) = v(Z0) +
∫ t

0

e−ρsv′(Zs)σZs dWs +
∫ t

0

e−ρs(L − ρ)v(Zs) ds. (2.2)

Since the payoff function is bounded, the local martingale term on the right of (2.2)

is also bounded,2 implying that it is in fact a martingale. Hence by the Optional

Sampling Theorem we have that for any stopping time T

E[e−ρT (1− ZT )] ≤ E[e−ρT v(ZT )]

= v(Z0) + E

∫ T

0

e−ρs(L − ρ)v(Zs) ds

≤ v(Z0) (2.3)

1The C1 property is used here; if there was a discontinuity of the gradient of v at z∗ there would

also be a term involving the local time of Z at z∗.
2All the other terms in (2.2) are clearly bounded.
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using properties (i) and (iii). Thus v(Z0) is an upper bound for the value starting from

Z0. This bound is seen to be achieved when T = τ because (a) v(Zτ ) = 1 − Zτ and

(b) up until τ , (L − ρ)v(Zs) = 0.

Remark 2.1. Theorem 3.2 of Hu and Øksendal [2] states only that (2.1) holds when

µ ≤ σ2/2 and it is unclear whether the equation holds when µ > σ2/2.3 This

proposition ensures that the value function is given by (2.1) under any parameter

values. Note also that the value function v constructed is C1, but fails to be C2 at z∗.

To formulate the multidimensional analogue of this problem, we suppose that W is a

standard Brownian motion in RN , and that log Brownian motions Xi
t , i = 1, . . . , n+m

are defined as the solutions to the equations

dXi
t = Xi

t(σi · dWt + µidt), Xi
0 = xi. (2.4)

Here, the σi are fixed vectors in RN , and the µi are fixed scalars.

The multidimensional problem is to find the value function

V (x) ≡ sup
τ

Ex

[
e−ρτ

( n∑

j=1

Xj
τ −

n+m∑

k=n+1

Xk
τ

) ]
(2.5)

and the optimal stopping region in Rn+m. We make the notational convention that

an index j is assumed to be in {1, . . . , n}, and an index k is assumed to be in {n +

1, . . . , n + m} unless stated explicitly to the contrary. We also make the notational

convention that
∑

j ≡
∑n

j=1 and
∑

k ≡
∑n+m

k=n+1. We shall assume that

ρ > µj ∀j = 1, . . . , n (2.6)

otherwise the problem may fail to be well-posed.

This problem will not in general be explicitly soluble except in the trivial case

where all the log Brownian motions are the same, but we will be able to find out some

useful information about the stopping region. We are however able to find the solution

explicitly in the case where n = m = 1 by reducing the problem to the one-dimensional

3In this setting, the condition µ ≤ σ2/2 is equivalent to P{τ < ∞} = 1. The discrepancy is due

to the assumption in [2] that the stopping time must be finite.
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problem solved in Proposition 2.1. To see how this works, consider

vjk(x) ≡ vjk(xj , xk)

≡ sup
τ

E
[

e−ρτ (Xj
τ −Xk

τ ) |X0 = x
]
.

By the change of probability measures, we have

vjk(x) = sup
τ

xj Ẽ
[

e−(ρ−µj)τ (1− Zτ ) |X0 = x
]

(2.7)

where we have written

Zt ≡ Xk
t /Xj

t , (2.8)

a log Brownian motion, and we write Ẽ for expectation with respect to the probability

P̃ defined by
dP̃

dP

∣∣∣∣
Ft

= x−1
j e−µjtXj

t .

As is well known, the effect of changing measure to P̃ is to introduce a drift into the

Brownian motion W :

W̃t ≡ Wt − σj t

is a P̃ -Brownian motion. Thus under the probability measure P̃ , Z is also a log

Brownian motion (explicitly, dZt = Zt

{
(σk − σj) · dW̃t + (µk − µj)dt

}
) , and the

value function vjk has the form given by Proposition 2.1. The stopping region for this

problem is the region where

Zt ≡ Xk
t

Xj
t

≤ z∗jk (2.9)

where the constant z∗jk is calculated analogously.

Returning to the multidimensional problem (2.5), we write

g(x) ≡
∑

j

xj −
∑

k

xk

for the stopping value, and we notice that V ≥ g. As Olsen and Stensland [4] have

observed, for any stopping time τ the function x 7→ Exe−ρτg(Xτ ) is clearly linear, so

the value function V , which is the supremum of all such functions as τ varies, must be

convex. This implies that the function V − g ≥ 0 is convex, and hence the stopping

region

S ≡ { x : V (x) = g(x) }
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must be convex. For any 1 ≤ j ≤ n, n < k ≤ n+m, we know from (2.9) that all points

of the set

∆jk ≡ {x : xk ≤ xjz
∗
jk, xi = 0 ∀i 6= j, k}

are points of S, so

S ⊇ S− ≡ Co(∪j,k ∆jk ),

where Co(A) denotes the convex hull of A. In the case n = 1, it is not hard to see that

we recover the result of Olsen and Stensland [4]:

S ⊇
{

x : x1 ≥
∑

k

xk

z∗1k

}
. (2.10)

We shall now find a superset of the stopping set by a different comparison with

the simple case n = m = 1. We introduce log Brownian motions X0 and XK solving

the corresponding stochastic differential equation (2.4) for vectors σ0, σK and scalars

µ0, µK < ρ yet to be specified, and with the initial conditions X0
0 = XK

0 = 1. We shall

for concreteness assume that K = n + m + 1, so that we are considering a sequence

X0, . . . , XK of log Brownian motions, the first and last of which are for comparison.

The idea of this comparison is due to Hu and Øksendal [2].

Proposition 2.2. The stopping set S is contained in the set

S+ ≡ {x : z∗0K

∑

j

xj/z∗0j ≥
∑

k

xk z∗kK}. (2.11)

whatever σ0, σK and µ0, µK < ρ.

Remark 2.2. Notice that the set S+ depends on the dynamics of X0 and XK ; if we

allow σ0, σK , µ0 and µK to vary, we find that the stopping region is contained in the

convex hull of an intersection of half-spaces of the form (2.11).

Proof. For any stopping time τ and any positive ξi, i = 1, . . . , n + m, we have

E e−ρτ (Xj
τ − ξjX

0
τ ) ≥ − v0j(ξj , xj)

E e−ρτ (Xk
τ − ξkXK

τ ) ≤ vkK(xk, ξk).
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Hence for any stopping time τ ,

V (x) ≥ E

[
e−ρτ

(∑

j

Xj
τ −

∑

k

Xk
τ

) ]

≥ E

[
e−ρτ

(
X0

τ

∑

j

ξj −XK
τ

∑

k

ξk

) ]

−
∑

j

v0j(ξj , xj)−
∑

k

vkK(xk, ξk).

Now taking the supremum over all stopping times, we obtain the inequality

V (x) ≥ v0K

(∑

j

ξj ,
∑

k

ξk

)−
∑

j

v0j(ξj , xj)−
∑

k

vkK(xk, ξk). (2.12)

Since the choices of ξi, σ0, σK , µ0 and µK are arbitrary, we could obtain a lower

bound for V (x) by taking the supremum on the right-hand side of (2.12) over all these

variables. However, the dependence on these variables is sufficiently complicated that

it is very hard to see what may result. Nevertheless, we may exploit (2.12) by choosing

the ξi at the critical values:

ξj =
xj

z∗0j

, ξk = xk z∗kK

which ensures that

∑

j

v0j(ξj , xj) =
∑

j

(ξj − xj),
∑

k

vkK(xk, ξk) =
∑

k

(xk − ξk).

We will be able to deduce that V (x) > g(x) if

v0K

(∑

j

ξj ,
∑

k

ξk

)
>

∑

j

ξj −
∑

k

ξk,

which is ensured if

z∗0K

∑

j

ξj = z∗0K

∑

j

xj/z∗0j <
∑

k

ξk =
∑

k

xk z∗kK .

If this inequality is satisfied, then we know that it is optimal to continue at x; hence

the stopping region is contained in the set

S+ ≡ {x : z∗0K

∑

j

xj/z∗0j ≥
∑

k

xk z∗kK},

as claimed.
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3. Strict inclusion of the stopping region

Hu and Øksendal [2] conjectured that the inclusion (2.10) found for the stopping

region in the case n = 1 might in fact hold in wide generality. However, as we shall

show next, it holds only in degenerated cases.

Proposition 3.1. Suppose that m ≥ 2 or n ≥ 2. When the volatility vectors are

linearly independent, the convex hull is strictly included by the optimal stopping region.

Proof. To prove the proposition, we study only the situation n = 1, m = 2. As at

(2.7), we shall rephrase the problem as

sup
τ

Ex
[

e−ρτ (X1
τ −X2

τ −X3
τ )

]
= sup

τ
x1 Ẽx

[
e−(ρ−µ1)τ (1− Z2

τ − Z3
τ )

]
,

where Zk ≡ Xk/X1 as at (2.8). Since the Zk are log Brownian motions, we lose no

generality in seeking the value function

V (x) ≡ sup
τ

Ex
[

e−ρτ (1−X1
τ −X2

τ )
]
,

where X1, X2 satisfy (2.4). Our proof rests on the elementary inequality valid for all

x, y > 0, and p ≡ 1− q ∈ [0, 1]:

x + y = p
x

p
+ q

y

q
≥

(
x

p

)p(
y

q

)q

,

which holds with equality if and only if qx = py (Young’s inequality). Thus if we define

a new log Brownian motion

Xt(p) ≡
(

X1
t

p

)p(
X2

t

q

)q

,

for p ∈ [0, 1], the associated value function

Vp(x) ≡ sup
τ

Ex
[

e−ρτ (1−Xτ (p) )
]

is an upper bound for V . Calculating the value function Vp is simply an application of

Proposition 2.1; we find that it is optimal to stop whenever (x1/p)p (x2/q)q ≤ z∗(p),

where

z∗(p) ≡ α(p)
1 + α(p)

, (3.1)

and −α(p) < 0 solves the quadratic

1
2
σ(p)2t2 + m(p) t− ρ = 0. (3.2)
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Here, σ(p)2 = |pσ1 + qσ2|2, and m is the linear function

m(p) = pµ1 + qµ2 − 1
2
p|σ1|2 − 1

2
q|σ2|2.

If we consider the line Lp ≡ {(λp, λq) : λ ≥ 0} (see Figure 1), then at all points of this

line where λ ≤ z∗(p) the optimal rule for Vp is to stop. Thus at all points of the line Lp

for λ ≤ z∗(p), we shall have Vp(λp, λq) = 1 − λ; what we require to prove is that the

point z∗(p) on this line where the rule changes lies strictly outside the triangle defined

by the origin and the points (0, z∗(0)), (z∗(1), 0). If this is the case, since Vp ≥ V , we

z*(1)

z*(0)

z*(p)

Figure 1: Critical region in the (x1, x2)-plane.

know that it will also be optimal to stop for V all along Lp as far as z∗(p); and hence

the stopping region for V extends strictly outside the triangle. Routine coordinate

geometry gives us that the point where Lp reaches the edge of the triangle is where

λ =
z∗(0)z∗(1)

pz∗(0) + qz∗(1)
, (3.3)

which we want to be strictly smaller than z∗(p). Equivalently stated, we require for

0 < p < 1 that
1

z∗(p)
<

p

z∗(1)
+

q

z∗(0)
; (3.4)

or again, using (3.1), this is the statement that p 7→ 1/α(p) is strictly convex. It is

easy to see from (3.2) that 1/α(p) is the positive root of the quadratic

ρt2 + m(p)t− 1
2
σ(p)2 = 0.
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This positive root is
1

α(p)
=
−m(p) +

√
ξ(p)

2ρ

where

ξ(p) ≡ m(p)2 + 2ρσ(p)2 ≡ ap2 + bp + c

is quadratic in p. Since m is linear, the convexity of 1/α(p) is equivalent to the convexity

of
√

ξ(p). Differentiating twice, after some calculations we discover that

d2

dp2

√
ξ(p) ≥ 0 ⇔ 4ac− b2 ≥ 0.

However, we observe that the quadratic ξ is non-negative, so cannot have two distinct

real roots. Hence b2 − 4ac ≤ 0, as required.

The theorem immediately holds for general n and m since the stopping region is

strictly contained by the convex hull on the three-dimensional plane.

Remark 3.1. Christensen and Irle [1] independently prove the same result. Their

proof is based on a good choice of measure transform to estimate the optimal stopping

value, and is an application of a general method. The proof we give here is simpler in

that it requires only an elementary inequality and comparisons with the known solution

to the one-dimensional problem, but is not capable of generalization.

Figure 2 presents an illustrative example of the convex hull and the subset of

stopping regions described by z∗(p). The subset induced by {z∗(p); p ∈ [0, 1]} is

strictly greater than the convex hull. Note that the maximum subset of the optimal

stopping region derived analytically in the previous studies is the convex hull of the

stopping regions for the two-dimensional cases. In the proof of Proposition 3.1, we

have obtained a subset that is strictly greater than the convex hull. This observation

helps us understand the optimal stopping region for the exchange of two baskets that

contains multiple log Brownian motions.

4. Conclusions

In this paper, we have generalized the results of Olsen and Stensland [4] and Hu

and Øksendal [2], and studied the optimal stopping problem in which both positive

and negative baskets are made up of linearly additive log Brownian motions.
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x1

x2

z*(p)
Co

Stopping
Region

z*(1)

z*(0)

Figure 2: Convex hull and the subset obtained by z∗ in the (x1, x2)-plane.

The contribution of this paper has two folds. First, results that include Olsen

and Stensland [4] and Hu and Øksendal [2] as special cases are obtained. That is,

the stopping region for the original problem contains the convex hull of the stopping

regions for all two-dimensional cases. In addition, we have presented a superset that

contains the stopping region in the general case where both baskets consist of multiple

log Brownian motions.

The second contribution is to show that Hu and Øksendal’s sufficient conditions for

the equivalence of the stopping region and the convex hull only hold for a degenerated

setting. More specifically, if we assume a regular volatility matrix, the optimal stopping

region is strictly larger than the convex hull. In contrary to Christensen and Irle [1],

our proof is based on an elementary inequality and so helps us understand how we

optimally stop and exchange the two baskets.
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