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1. Introduction and preliminaries

In this paper we obtain criteria for a reflecting Brownian motion in the first
orthant B2 of the plane to reach an arbitrary open neighbourhood of the origin in
finite time, or in finite mean time. The reflecting Brownian motion {RBM) is assumed
to have a constant non-zero drift, and a constant non-singular covariance, and the
directions of reflection on the two sides of RY are constant along each side, but not
necessarily normal. We explain why the eriteria we find are to be expected.

The proof in the finite mean case is fairly unsophisticated, but the estimation
required for the finite time but infinite mean case is more delicate. Of independent

interest is a bound that we requiré on the amount of time a real Lévy process spends -

in an interval before first hitting zero.
Reflecting Brownian motion can be considered as a process Z, = (X,, Y}, where the
coordinate processes satisfy (at least until the RBM first hits zero)
X, =x+B,+pt+ L +al], ()

Y, = y+ W, vt + BLE + LY. |

Here o, B, pr and v are fixed reals, (B, W) is a Brownian motion in R® with non-singular
covariance X and L¥* (respectively, LY) is the local time process at zero of X
(regpectively, ¥). Thus, for example, until the time 7 = inf{u: X, = 0}, we have

LY = max (—y—W,—ws)*. (2)

st

The construction of such a process from (B, W) is guite straightforward (at least
until the first time Z hits 0) and we refer the reader to Varadhan and Williams{14]
should further details seem necessary. We shall make the following assumption
throughout:

Assumiption 1. The drift vector b = (g, v} is non-zero.

Let " be a bounded neighbourhood of the origin. The main result of this paper
is the following.

Taeorem 1-1. Let T'=inf{u:Z, e A }. Then
PHT < 0)=1 forallzeR} (3)

13-2
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if and only if ptor €0, v4+Au < 0. {4)
Moreover, E*(T) < o0 forall ze R% (5)
if and only if ptoar <0, v4+pu <0 (6)
and then E(T) < C(1+z]) forallze R (7

Jor some conslant C.

EBemarks. (i) The conditions (4) and (6) and conclusions (3) and (5) mirror those of
MalySev[9], who considered a two-dimensional random walk with state space Z7.
Using methods anticipated by Kingman[7], MalySev proved positive recurrence by
constructing & Liyapunov function which could be approximated locally by a linear
function and hence shown to satisfy Foster’s criterion: see [2]. Specifically he used
ares of circles and straight lines to construet the Lyapunov function ; his function was
C" but not C%. Rosenkrantz[12] considered a slightly more general Markov chain in
Z% and constructed a smooth Lyapunov function with which to determine positive
recurrence, However, his method cannot be extended to the null recurrent situation.

Lyapunov functions are a natural and attractive approach to the problem we
consider which is the continuous {time and state space) analogue of the random walk
problem. The methods of Kingman and Maly3ev could certainly be extended to our
problem; however we use a completely different sample path approach. An
additional benefit of our method is the estimate (7) of the mean time to hit a given
neighbourhood, and Theorem 12 below on Lévy processes may be of independent
interest,.

(i1) The conditions of Theorem 11 do not involve the covariance T in any way.
This can be understood easily, because if the drift b is non-zero, then the drift
dominates the diffusion on long time and distance scales, and the recurrence or
transience is determined by this large-scale behaviour. The case of zero drift ig quite
different, but easily reduced to known results. Indeed, the process 53X, )T is again
an RBM (in a wedge now, rather than R2) with identity covariance, and so questions
of whether 0 can be reached are completely decided by the results of Varadhan and
Williams 14} and Williams[15]. See also Rogers[11] for an excursion-theoretic proof.

(i1) Any wedge contained in the upper half plane H can be mapped onto the
quadrant via a linear transformation. Thus our results extend to Brownian motion
in a wedge with constant non-zero drift and constant angles of reflection over each
face. See Section 3:1 for an application of this idea in reverse.

{iv) The spirit of (3) is that the process is neighbourhood recurrent, and the spirit
of (5} is that the process is neighbourhood positive recurrent. There is need for some
care in interprefing this, because of the possibility that the RBM may reach the
corner and be trapped there. In the case of zero drift, the results of Varadhan and
Williams decide exactly when this may happen, and, at first sight, the introdunction
of a constant drift cannot change anything here, because on the small scale which
determines the behaviour at 0, the drift is dominated by the Brownian part. This
reasoning is valid in cases where the RBM with zero drift can be obtained ag a
pathwise solution of the Skorohod equation {see Harrison and Reiman [4]), because
then a Cameron—Martin change of measure allows the drift to be added painlessly.
But in cases where the RBM with zero drift is not a semimartingale, this approach
appears to break down. Can the inclusion of drift really change anything at 017
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{v) Let us explain now intuitively why conditions (4) and (6} are what one would
expect. If 4, » > 0 then it is clear that with positive probability the process could
escape to infinity without touching either axis (we substantiate this claim in Section
2). So suppose that v < 0 < u: it is possible for the process to reach a neighbourhood
of 0 almost surely ¢ At first sight, the positive drift in the z-direction seems to rule
this out, but the y-co-ordinate has a downward drift of » > 0 and so (see (2)) L is
growing like v7f. Thus wntil the first hit on the y-axis, the finite-variation part of X
is going like {(p+av™)t, so if -+ o™ < 0 then X will eventually reach 0. The point is
that the effective drift in the x-direction is #+ov”, and not y.

Study of this and related problems is motivated by a diffusion approximation from
the theory of queuing networks. Harrison and Williams [3] outline how multi-
dimensional RBM (in our sense with constant drift, covariance and reflection matrix)
arises as the heavy traffic imit of an open queuing system with homogeneous
castomer populations. They also find necessary and sufficient conditions for & REM
which arises as such a Iimit to have a stationary distribution. However, the
parameter values which can ocour from the queuing approximation are not
exhaustive and the proof uses, in an essential way, properties inherited from the
underlying queuing model.

In Section 2 we shall prove that (6) implies (5) by considering successive crossings
by the RBM from the z-axis to the y-axis and back. A relatively crude inequality
allows us to conclude that there exists some g such that the interval [0, 2,] of the x-
axis will be hit in finite mean time from any starting point. Then the equivalence of
(6) and (5) follows quite easily. .

As one would expect, the equivalence of (3) and (4) is considerably more delicate,
and the estimation needed is given in Section 8. One result of note which we need on
the way is the following estimate for the Green’s function of a real Lévy process:

TarOREM 1-2. Let (V,), , , be a real Lévy process, and let T = inf {t: ¥, < 0}. Then there
exists some constant C such that, Jor all z,a > 0,

E”[fdsl[n'm](ﬂ)} < Cll+a} (1 +{zAa)). (8)

In the case where V is a Brownian motion, we have for @ < « that the left-hand side
of (8} is 0, and for x < a itis 2ax—22. The case of a compound Poisson process shows
that the left-hand side of (8) need not tend to zero as z,@ | 0, so that the estimate is
quite sharp.

2. Positive recurrence

In this section we shall prove part of theorem 11, namely that condition (6):
o™ <0, v4+fu <0,
implies that E¥(T) < oo for all ze R%. So until we reach Theorem 21 we shall assume
condition (6).

Thespiritof the proofisasfollows. Suppose that the RBM starts at some distant point
on the z-axis. Then we find estimates of the time and place of the first hit on the y-
axis. The roles of the two axes can now be reversed to give estimates of the place of
first return to the z-axis. It is then possible to define a jump process on each of the
axes; £, denoting the place of nth return to the z-axis where between each return the
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process has visited the y-axis, We show that this jump process returns to some large
neighbourhood of the origin. Subsequently we extend this result to an arbitrary
neighbourhood.

We begin by finding the estimates of the time and place of the first hit on the
y-axis. It is convenient to consider two distinct cases.

ProrosiTion 2-1. Suppose Z, = (x,0). Define 1 = inf{t: X, = 0}. Suppose that y < 0
and v > 0. Then there exist constants (K;)yy 5 5 4 depending only on u, v and « such thal
Er) < Kja+K, and EY)<K;z+K,.

Proof. First we show that E(7) < 0. For a continuous process U, null at 0, denote
by U* the maximum process, so that

UF = max U,
st

Fort<r,

Xy=a+B+pi+all, ¥,=W+v+L] (9)
and from (2) 0 < LY < (—W)F, (10)
hence X, < x+B,+pt+|od (— WE.

Let 7’ = inf{t:x+B,+ut+|of (— W)§ < 0}. Then 1 < 7/, and so it suffices to prove that
E(r} < oo. We have

E{r') = J‘w dtP{r" > 1)

Q

< f dtP(z+ B, + pt+al (— W)k > 0)

0

< f G P(a+B,+Lut > 0} U pt+lal (— W) > 0))

0

< J At Pz+B,+1ut > 0)+f At Pt +|af (— W)F > 0).

0 U]

But, j dt PG put+ || (— W) > 0) =2J dt Plo| W, > §p71)
0 0
by the reflection principle, and since the mean amount of time spent above zero by
a downward drifting Brownian motion is finite, the conclusion follows.
Applying the Burkholder—Davis—Gundy inequality (BDG), with ¢ as the universal
constant, and Jensen’s inequality, to (10) evaluated at the stopping time 7 yields

E(LY) < E((=W)7) < eE(r) < ofF(r)
Now F(7) is finite so that E(B} = 0 = E{(W), and applying the Optional Sampling

Theorem to (9) we have

x oF(LY)  x  ac X
[E T =——+ _T S_-—-_~+-——_ [E'T EIOL}_
(1) p u T (BT o

and

[E(Yr (g6 +oer > 0)°

) = vE(r)+ E(LY) =V@+{1 +°‘_f} E(LY) < ;+5{-’%M(E(T))%I

#

2
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ProposiTion 2-2. Suppose that Z, = (x,0). Define 7 = inf{t: X, = 0}. Suppose that
» < 0 and pt+oav < 0. Then there exist constants (Ky);_; 5 5,4 depending only on p, v and
a such that
Fo9(r) < K, 2+ K, and E®NY)<K,2+K,

Proof. For t < 7 we have again
X, = x+B,+ut-+oaly, (11)
Y, =W +ut+L;, (12)
where LY = supg <, <¢{— W,—»s}. Then L} satisfies
W, LY —vt < (— Wi} (13)
and, applying BDG at the stopping time 7, = 7 A, we have

0 < ELY —vr,) < E((— W) < ol(rh) < o(E(r,)).
Thus
E(Y, ) = E@LE —vr,) < e(E(r,)l, (14)

and, taking expectations in (11) at the stopping time 7,,, we have
0 < o (pt+ov ) Er,) +al(L) —vor,)
< (o ) E(r,) + cal E(r, )i oy-
This quadratic yields an upper bound on (E(r,))* which is independent of n. The

desired inequalities follow from the Monotone Convergence Theorem and the
equivalent of (14) for the stopping time 7.

Remark 2-1. In Proposition 3'1 the bound on the mean first hitting place is
considerably improved. Indeed it is shown that, if v <0 and p+av” <0 then there
exists a global constant K such that E®9(Y,) < K, independently of the x-coordinate
of the starting position.

CoroLLARY 2-1. With 7 defined as above, define o = inf{t = 7:F, = 0}. Then there
exists a constant C=Clp,v,o,f) such that E=9(o} € C(1+e) and X, <
C(1+27).

Proof. After transposition of # and v, and « and §, ‘there are direct analogaes of
Proposition 21 and Proposition 22 for returns to the z-axis. The two parts to
condition (6) ensure that the conclusions of one of these propositions must hold both
for the first hit on the y-axis and the first return to the z-axis; moreover the tighter
bound of Proposition 22 must pertain in at least one direction.

We now proceed to define a jump process on the #-axis. For 7 and o as above let
7, =7 and o, = o. Define inductively

7, =inf{t > o, X, =0}, e,=inf{t>r7,:Y, =0k

Write £, for X ; then £, is the place of the nih return to the z-axis.
From the above Corollary it follows that for x > &, (large enough)

EHE) <a/2 and E*(oy) < 20w (15)

Since we are concerned here with a process on the x-axis the superseripts to our
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expectations are positive reals. If N=inf{n:£, < z;} then 2°*¥¢ . is a non-
negative supermartingale and

x> FP[2RAVE ] 3 9ng PA(N > n),

then PN > n) < (E) 2-n,

Zy
Also 2" (8, Iy o ] S EP[27MVE, y1< o
and then

| 6]~ F] 5 gl 5 220

n=0 n =0 20

Thus using (15) we have
E¥oy] < 4Cx, (16)

and §, hits [0, z;] almost surely. Moreover the mean time to hit this interval is finite.

Having proved that some lafge neighbourhood of O will be hit in finite mean time,
it remains to prove that the given (small} neighbourhood A" will be hit in finite mean
time. Recall that 7= inf{t: Z,e A"}

Prorosition 2:3. There exists some constant C such that, for all ze R%
F2(T) < C{1+]2). {17)
Proof. Assume without loss of generality that g < 0.

Firstly we prove that
B (1Y) < ({1 +2), (18)

where T = inf{t:Z, = (x,0}:2c[0,z,]}. Indeed, T}, = inf{£: X, < 0 or ¥, < 0}, then
| 0 < B(Xy,) = o+ pE(Ty) <z
and thus B2(7}) < z/x and

EY(L3)] = y+vE(Ty) < y+v*a/u- < Cll.
We now estimate

BT, —1T,) = BEX(T\—T; Y(T,) = O)+F{T, = 1,; X(T},) = 0). (19)
The first term on the right-hand side of (19} is bounded by
E[4CX (T} X(T) > xy] < 40,
using the estimate (16) above. The second term on the right-hand side of (19} is
estimated similarly; if 77, = inf{{ > 7} ¥, = 0}, then
BT Ty X(Ty) = 0) = EXEZ9(T0); Y(T,) > 0)

< PR, + K, Y(T,) + 4CEZ T (X(T); Y(T0) > 0]

< OF[1+Y(Ty); Y(Ty) > 0]

< C(1+12)),

where, as usual, the constant C varies from line to line. This establishes (18) as
required. ’
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Now let us consider what happens if Z starts at some point (x,0) where xe[0, 2.},
and we let the process run until the stopping time

R, =1 AT AInf{u:|Z,| > 2mx}.

Tt is a standard property of reflecting Brownian motion that there exists § > 0 such
that, for all xe{0, z,],
PENR, =T)=4.

If By = inf{i > R, :Z,[0,z,}} then in view of the estimate (18) we must have
EO(R) < ¢ forall ze[0,z,].
If R} < T (and induetively if B, < T define
Ry =Ri08(R,), Ry, =Rio0(R,), (n>1).
Then if N = inf{n: Z(R,)e A"}, we have P® V(N > n} < (1--8)" for all z€ [0, %,]. Also
nAN
2 Ri—(nAN)C

=1
is a supermartingale implying

N
@ 0Ty @0 (ZR;) < CE=O(N) < Of6.
1

(17) follows when we combine this result with (18). i

Thus we have shown that (6) implies (5). We close this section with a proof of (3)
implies (4), and so, a fortiort, (5) = (4). The implication (4) = (3) is the aim of the next
section, where we also complete the implication (5) = (6).

TarorEM 21. Suppose that either
poav >0 or v+ >0

Let A be a bounded, open, convex nesghbourhood of 0 and suppose that the RBM 7 is
indtially at some point in RE\A". Define T = inf{i: Z,e A" }. Then P(T' < c0) < 1.

Proof. Without loss of generality suppose that g-+av™ > 0. Suppose that A" is
the open dise of radius 7 centred at 0 and that the process starts ab (x,0) for some
2 > x,, where x, is some large value.

Let 7 = inf{{: X, = r}. Then for { < 7 we have

X, =a+B,+ (pto ) t+oally —vi),
and, applying (13),
X, 2 ay— (— B)f + (gt ov7) t— (a W)}
Provided that z, is chosen so large that
P < Yxg—r) +3(n+av™)i, for all t) > §

for both U, = —B, and U, = aW,, then P(r < c0) < 1.

Note also that conditioned on not hitting the y-axis, the process is transient to
infinity.

In general, suppose that /" is contained in a dise of radius r. Then, by standard
properties of planar Brownian motion, for all starting peints not in the closure of A"
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there is a non-zero probability that Z hits the set {(x,0);%, < 2 < oo} before A" and
the above argument completes the result. The proof also extends to the case where
RI\A is connected.

3. Null recurrence

The remaining case is when (g +ow™) V (v-+ fu~) = 0. Note that if
(ptar) =03 (p+fr)

then v < 0 by our assumption of non-zero drift. This section is devoted to a proof that
under such assumptions the RBM will almost surely reach any neighbourhood of the
origin, but not in finite mean time. We begin by considering the location of the first
hit on the y-axis.

ProposirioN 31, Suppose that p+ov™ <0 and v < 0. Let Z, = (z,0) and define
T= inf{t > 0:X, = 0}.
Then 7 < o0, almost surely, and there exists a constant K such that
E@O(Y) <K forall z. (20)

Remark 3-1. Neglecting the effect of obligque reflection from the y-axis (or
alternatively for ¢t <7), ¥, will be a positive recurrent process. Thus, under the
assumption that 7 < 0, a.s. the existence of a constant K independent of x for which

E9(Y) <K
is intuitively plausible.

This estimate improves on the bound E“(Y,) < K(1 +27) proved in Proposition
22 under the stronger assumption w+ar™ < 0. However, the bound for E®%(r)
proved there goes badly awry if we relax to g+av™ = 0; we prove below that under
such circumstances E¥ (1) = co.

The proof of the estimate (20) is based on the following pair of Lemmas, the proofs
of which are postponed to Sections 3-1 and 3-2.

Lzmma 3-1. Suppose that v < 0. Define Ty = inf{1: X, < 0 or Y, < 0}. Then there extst
constants A, B > O such that

limlﬂf(w'ﬁ}(YT) < Ae B, (21)
N € ¢ .

Luvma 32, Let (V). , be a real Lévy process, and let oy, = inf{s: V, < 0}. Then there
exists some constant O such that, for all x, a > 0,

tExH Vd.sI[(,’w](Vs)] < C(1+a) (L+ (@ Aa)), (22)
]

Proof of Proposition 3:1. Consider a reflecting Brownian motion in the upper
half-plane with drift (u,») and reflection at angle tan™¢« from the normal to the
x-axis where s, v and a are the same as those for the RBM in the quadrant. Let V be
the Lévy process obtained by time changing the z-component of this RBM by the
local time of the y-component at 0. Then by the Rogozin trichotomy {1] we have

HminfV,=—ow and o,=inf{s:V, < 0} < o0, as.
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But if o is finite then so is 7 for our RBM in the quadrant. Let o = L and define
V' by V"—{Vs fors< o
£ 10 fors>o,

so that V7 is the process obtained by time changing the z-component of our RBM run

until X, first hits 0. Define

nl(z) = Jim L E@9(Y, ).
&40 € !

tha
Then Liso K—J n(V") ds
0

is a martingale (since the integrand exactly compensates for the tendency of the first
term to jump). This is similar to several computations in [10]. Thus

E®O(Y,) = E(Jhn(V;) ds) = j Gz, dz) n(z)
. r*

0
< J Gz, dz) A e 5 < A_Bf dze B*G(x, z),
0 4]

where ((x, z) is the expected time spent in (0,2] by the process V" started at z. But
G(x,z) can be bounded by a comparison with the Green’s function of the Lévy
process ¥V and we can apply Lemma 3-2 to obtain that

o
E=0(Y) < ABOJ Bl +2)dz =K. |
0
TaroREM 3-1. Suppose that (u+oav™)V (v+pu”) =0. Then if T = inf{u:Z, e},
PUT < o0)=1 forall zeR3.
Moreover if RE\A" has a single component
BTy = forallze RE\V .

Proof. Without loss of generality p+ar”™=02>». Tet K be the constant from
Proposition 3:1. By a similar argument to that of Proposition 2-3, there exists
& > 0 such that for all ye[0,2K] we have

PO(T < 1) = 24,
Now consider the RBM started from (x, 0). By Proposition 3-1 we have

[]:D(x,o)(yT < 2K) > 1
and then
PENT < 741 < 00) > 6.

If T > 741 then we can wait until the first subsequent return to the z-axis and
repeat the argument. That there is (almost surely) such a return can be shown by
methods similar to those at the start of Proposition 3-1. The RBM will enter A4~ after
at most a geometric number of such trials. Thus

PENT < w)=1

and the extension to a general starting position is immediate.
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For the final part of the argument we show firstly that there exists z such that
E(T) = oo and then that this must hold for all z not in the closure of 4. Here we use
the fact that R3\.# has a single component.

Suppose that E¥9(7) < co; then E*%(¥} = —z' /. But this contradicts (20) at
least for sufficiently large a’, and so there exists x, such that

E=N7r)=c forallz>=z,
If

#, = supf{x:(z,y)e A for some y}
then by shift invariance away from the y-axis
E=O(T) =00 forallz = ax,+ux,.

Let D = {(x,0):x = 2,4+ x,} and let T}, = inf{¢: Z, e D}. Then for any ze R2\.# we have
P#Tp < T) > 0 and hence E*(T") = co.

3-1. Exponential bownds

The purpose of this section is to provide a proof of Lemma 3-1. Since we are only
interested in the RBM up to the first hit of either axis we can assume that reflection
is normal. However, the drift parameters remain as before. To simplify the
calculations consider the process (U, Y) with U = X +9Y, where 9 = —X,,/%,,. This
process is an RBM in a wedge, with co-ordinate processes driven by independent
Brownian motions. Choose A > #*. For the process (U, Y) started at (u, ¢) define the
stopping times Ty = inf{{: X, <0 or ¥, <0}, Iy =inf{f: ¥, < 0}, T, = inf{t: U, < hu}
and Ty = inf{¢: Y, = u/{2A)}.

Proof of Lemma 3-1. Clearly (21) will hold if and only if

lim% EV=% %= (Yp) < A e Bv, (23)
[2%1]

We prove (23). Since E(T,) < oo, we have by the Optional Sampling Theorem

[E‘“-E’(YTG) = g+ vE®T})
and hence, since v < (0,

fim L E®9 (%) < 1. (24)

ejo €
By our assumption on the reflection matrix, E“9(T}} = ¢/v~ and we have
FO9(F,,) = v BTy — T3,
But 7}, = min {7, T}, T}, so that
E® (T — T} < E(Ty— Ty A Ty) + E(Ty =T, AT). : (25)

The first expression on the right can be rewritten as

. exp(2ve/Z,. —1] u
P(T < T) ECEDTy) = {exﬁ((v‘u/{\ﬂm})— 1} 240 : (26)
23
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Tor the second, for § > 0,
E(T, — Ty ATy) = BT — Ty ATy Ty < Su)+ E(Ty — Ty ATy Ty = 0u)
< E(Ty; Ty < ou)+ E(T% Ty = du).
In pa,rticula.r, if p = p+yvis the drift of U, take § = oo if p > 0 and & = (1/4p7) A1

if p < 0.If H, , is the time of the first hit by a one-dimensional Brownian motion with
variance o on the sloping line a- bt then it is well known that H, , has density

laf (_ (a+bt)2)
oy @) TP\ T e )

If ab > 0 then P(H, , < o) = ¢**". Then, for p >0,

BTy T, < 00) = E(Ty) P(Hy , < 00) = V—‘iexp{uup}. (27)

Similarly, for p < 0,
X))

B u _(u/2+pt)2)< N (ﬁ_ui,_
Py < du) = L dtZU\/(Zﬂﬁa) exp( 5o < . dtzo‘\/(2ﬂi3)eXP 3959 )"

where o ig the variance of the Brownian motion which drives U, If

<
b4 ] 2
Jixy =1 d P yhiem)
(@) J Vo ¢

then J(0) = J(c0) = 0 and by inspection of the derivative of J, J(z) < 0; thus

% o~ wi(320%) (28)

o (_(e+vt)2)
o) P\ T g

E(Ty; T, < 6u) <

p=a]

Also F(Ty; Ty = du)= | dt
S

o3
< e""ﬁll;'(zc}’z) € J dt 6—v2t/(2a-z), 29
ST e =0

where now o refers to the Brownian motion driving ¥. Combining (26) with (27) or
(28) and (29) yields, for all values of p

hm%[E("'E)(YTU) < Ae B {utu), (30}
&0

The inequality (23) follows in view of (24), subject to the renaming of constants. i

32. The Green's function for a Lévy process

Let (W), 5o be a real Lévy process, and define r = inf{t > 0:V; < 0}. The proof of
Proposition 31 required a bound on the amount of time the Lévy process started at
x > 0 spends in the interval [0, a] before time 7: we prove an estimate of the form

{Ex[fclsf[o,a}{Vs)] <O +a)(l+@Aa)) forallz,a>0 (31)
[

for some constant C.
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Replacing V by V-+eW if necessary, we may assume without loss of generality that
0 is regular for (— co,0) and (0, co). Define V= 1nf{V s < f}; the process V— ¥ has a
local time I at zero with inverse 4. Let R, = V(4,); then (4,, —R,) is a bivariate
subordinator (see Fristedt[3]}.

Let G(x, ) and g(*) be the Green’s functions of the (decreasing) ladder process B
and the excursion process of V- ¥ respectively, with the former also parametrized by
the initial position z. (Thus

0

O, [0, 0]) = E* Uwfm,a](ﬁo dt),

and, in the notation of Rogers[10],

(v) ) '
j g(dy)h(y}=jv(dp) f h(os) ds,

where v is the excursion measure, and ¢ is the lifetime of an excursion.)
Then

Ex[fds-l[o.a](vs)} = Ex{J.mI[u,wm](Rt)g([O: a—R1) dt}
| < Gz, [0,z Aa)) g{[0,al).

1t remains to estimate the Green’s functions &, g and it is convenient to exploit the
following result of Tauberian type.

Lemma 3. Suppose that U:RY>RY is increasing and right continuous, with
U(0) = 0. Write U(dz) for the measure induced by U. Then

lim SUP)LJ e Uldz) < O implies lmsup géz—) < Ce.
[

A40 ztoo

Proof. Fixing z > 0, and setting A = 1/z, we have
Ulz)

74

= AU(z) e < j

z

NOly) e dy < )\f e (dy),

0

this last step following by first increasing the range of integration and then
integrating by parts. |

From the definition of G as the Green’s function of the ladder process B we have

1] o) 1
G0, d e“y:[E"f Mgy = ————,
Jw (0. 4) L 50,0

where $(n, A) is the Laplace exponent of (4, —R). But a Laplace exponent satisfies
ALg{0,2) 1 as A}0, whence, for some constant ¢,

limsuphj G0, dy) < cfe

LD

and G(0,[—a,0]) < e(1+a) by Lemma 3-3. Finally

Gz, [0,a]) < FO,[—(zAa),0]) <e(l+(xAa)) for all z,0 >0
since B is a decreasing process.
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Similarly, an identity of Silverstein[13], namely

fv(d }fe"‘ﬂscis~ :
SR T H0,2)

can be re-interpreted for our purposes ag

° w1
L wa) e = 5oy

A bound of the form
g([0,a]) < ¢(1+a)
is obtained as above.

This problem was first brought to our attention by J. Michael Harrigson during a
visit by one of us (L.C.G.R.} to Stanford University in August 1990. It is a pleasure
to thank him for interesting discussions on this and other questions.
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