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Abstract

Let (M;) be any martingale with My = 0, an intermediate law M; ~ u1, and terminal
law My ~ po, and let My = SUPg<t<2 M¢. In this paper we prove that there exists an upper
bound, with respect to stochastic ordering of probability measures, on the law of M;. We
construct, using excursion theory, a martingale which attains this maximum. Finally we

apply this result to the robust hedging of a lookback option.

1 Introduction

Suppose that (M;);>o is a martingale and M; = SUpPp<s<¢ Ms, its supremum process. Let u;
denote the law of M7 and v; the law of the maximum at time 1. The relationship between the
law of a martingale and its maximum have been studied by a number of authors. Given only
a law, p1, and no fixed initial law, Blackwell and Dubins [3] and Dubins and Gilat [5] showed
that g1 =< 11 <X p}, where < denotes stochastic ordering (p < 7 if and only if F,(z) > Fr(x)
Vz with the obvious notational convention) and p} is the Hardy transform of p;. The converse

was shown by Kertz and Résler [10]; that if p is a probability measure such that p1 < p < uj
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then there exists a martingale, M, with time 1 distribution given by p1 and time one maximum
given by p. A classification of all possible joint laws of (M7, M;) was given by Rogers [13], along
with a method of constructing such martingales using excursion methods.
If we fix the initial law, ug, as well as the time one law, u; then provided they have the same
finite mean, a necessary condition for the existence of a martingale with those distributions is
oo

[So-nduw < [CG-0duw) v o

T

which can be seen by Jensen’s inequality. This is also a sufficient condition, see Strassen [16],
or Meyer [11] for a proof.

Given initial and terminal laws pg, £1 Hobson [8] gave an explicit description of the stochastic
upper bound of the law of the maximum v7, and a method of constructing a martingale which
achieves this maximum. This paper deals with an extension of these results. We now consider
the case where we specify a martingale starting at the origin, with a given terminal law and
also some fixed law at an intermediate time. For simplicity we shall assume that we are given
the laws at times zero, one and two. Suppose u1, 2 are zero mean probability measures. We
denote the family of martingales, (M;)o<i<2, with My = 0, the law at time one given by p; and
terminal law pga, by M(u1, p2). This set will be non-empty if and only if

oo oo
0< [T du® < [ y-2)dual) Va.
Let vy denote the law of the terminal maximum My, and P(u1, po) := {ve|M € M(u1,u2)}. We
construct an element, M* € M(u1,u2) using excursion theory whose maximal law v stochas-
tically dominates any v € P. This construction is an extension of the Azema-Yor Skorohod
embedding. In some cases the imposition of an intermediate law will have no effect, the maxi-
mum maximum is the same as for a martingale with the same initial and terminal laws, however

this will not always be the case.

2 A proof that the maximum maximum is attained by the Azema-
Yor construction.
Let M(p1) denote the family of martingales (M;)o<t<1 for which My = 0 and the terminal law

is 1, where p; is centred e.g. [ |z| dui(x) < oo, [z dui(z) = 0. We will give an outline of the

Azema-Yor construction and a new (but long) proof that this construction gives a martingale
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whose law of the maximum dominates the law of the maximum for any other element of M (u1).
The purpose of this section is to introduce in this simple setting the main ideas and some of the

results which will be used in proving our main theorem.

2.1 The Azema-Yor proof of the Skorohod embedding.

First we define the barycentre by

b(z) = ( /[ . zdm(Z)) / ( /[ . dm(Z)) (2)

for all z such that py([z,00)) > 0, else b(x) = x. Then b is positive, non-decreasing, and if p;
has no atoms it is continuous. Define £ to be the right inverse of the barycentre.

Let B be a Brownian motion with supremum process B. Define a stopping time by 7 =
inf{t | B; < £(B;)}; then 7 < oo almost surely. We can imagine plotting the path of (B, By),

y
A

Figure 1: Stop once the excursions cross b

running B; along the x-axis, at a height on the y-axis corresponding to B;. We stop the first
time an excursion away from the maximum crosses £, as illustrated in Figure 1. Recall the
excursion theory result that if the Brownian motion has reached a new maximum at s then the
probability that it will achieve a maximum greater than y is equal to exp(— f( oy 1 /(r =& )dr),
see for example [14]. It can be shown from this that B, has law p; and so we can define M* as
a time change of Biar by

ﬁ)/\’T

The assumption that uq is centred is necessary to prove that M™* is a true martingale and not

just a local martingale. Then M* € M(u1) and note that we have the following important
J g g
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relationship between maximum and position when p1 does not have an atom at &,
M7 > y if and only if M} > £(y) (3)

and for general p; the sets {M} > y} and {M;] > £(y), M7 > y} are equal. With the possible
exception of the supremum of the support of y; (if this is finite) the law of M; contains no atoms
even if p1 does. This is a brief outline of the Azema-Yor construction; for a thorough treatment

see [2] or for an excursion theoretic approach [12].

2.2 A martingale inequality.

For any t > 0 we define
c(§) = BE(M - §)")

where (M; — €)™ denotes the positive part of M; — £. For fixed t > 0, ¢; is positive, decreasing
and convex. We now introduce a useful martingale inequality, originally given in a different form

in [3], relating the laws of the position and maximum.
Lemma 2.1 If (M)o<i<co s a right-continuous martingale then for allt >0

v ct(6)
P(M,; > inf —2% 4
(2 y) < juf 2. (@)
Proof: Fix some ( < y and we define the random variable Y as follows
(My — )t y— M, (Mt—C)Jr ( M; — C)
+ 1w +{1— 1w .
y—¢ y—¢ M Ty y—¢ ) (M=)

Since M is right continuous we can apply Doob’s inequality, hence IE((y — M;); My > y) < 0,

Y =

and so IE(Y) < &(()/(y — ¢). Also it is straightforward to see that Y > 15,5, and by taking

expectations

Ct(C )
y—¢
Since this must hold for all { < y the result follows. Q.E.D.

P(M; >y) <

2.3 The maximum maximum is attained.

We wish to show that the law of the maximum of the martingale constructed by Azema and

Yor, M*, dominates the law of the maximum of any M € M (u1).

Lemma 2.2 Let M € M(u1), then
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Proof: We will prove this by showing that the inequality (4), when ¢ = 1, is attained by M*
for all y > 0. First assume that p; has no atoms. Fix y > 0 and denote £(y) by £&. Doob’s

inequality becomes exact for continuous martingales and so from (3)
@) din(a) = (MG g M 2 €) = BOM; —y: 38 2 9) = 0

thus
P(I; > y) = P(M; > €) = / e
— c
/ dp (z) + / ydul (z) = e
y—¢
Hence IP(M; > y) = c1(€)/(y — 5), which must be the infimum else we contradict (4). This

holds for all y and (5) follows if M is right continuous. However since the martingale which

attains the maximum maximum must be continuous (5) will still hold for general M.

Figure 2: A barycentre with an atom at &,

If p1 has atoms then the barycentre contains jumps and so &, is constant over certain
intervals, see Figure 2. Suppose that £ is constant over the interval (y;,y,). By the previous

argument, since {M; > y;} = {M; > ¢, }, it is clear that P(M{ > y;) = ¢(€)/(y — &) and so

P(M; >y) = P(M{>y).IPy,(Hy < He)
c§) -8 _ <&
(y—8&) y—¢ (y—¢&)°

Here IP,,(H, < Hg) denotes the probability that a Brownian motion started at y will hit y

before it hits £&. So again the inequality (4) is attained and so (5) follows. Q.E.D.

Remark 2.3 We have shown that if £ is the (left) inverse of the barycentre then for every v,

&, minimises the function ¢;(€)/(y — &).
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Remark 2.4 This proof requires only the characterisation given earlier that, for all y > 0 if &,

is not an atom of ui, then (M7 >y) = (M > &,).

Remark 2.5 Instead of starting with the barycentre we could start our analysis by defining
&y to minimise ¢;(£)/(y — &). Since ¢; is convex it follows that &, must be the point where

the supporting tangent to ¢; which meets the x-axis at y, touches ¢; (see Figure 3). While &,

) c@® }

y 3 ~—Minimisin !
&y values of {g y

13

Figure 3: Defining &, to minimise ¢1(§)/(y — &)

may not be unique, if there is more than one value where the minimisation occurs it is clear
from the convexity of ¢; that there must be a closed interval of minimising values. Similarly if
y1 < y2 any value where c¢1(€)/(y1 — £) is minimised must be less than any possible minimising
value of ¢1(€)/(y2 —&). Thus if we insist upon some additional regularity e.g. left continuity we
can define § as follows: &, is the unique left continuous function such that for each y > 0, &,

minimises ¢1(§)/(y — &) over all £ < y. We now summarise this in a lemma.

Lemma 2.6 If we define for y >0

ky = inf a (@)
e<yy —

then this infimum is attained when = & (y) and

ky:]P(Mny)ZeXP(—/()yJTi@))- (6)

From (6) it is clear that ky has well defined left and right derivatives everywhere, and is almost

surely differentiable. Where it exists k, = —ky/(y — &1(y) )-

2.4 An example.

We now discuss a simple example to show how the introduction of an intermediate law can affect

the law of the maximum maximum.
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Let po = dp, and the distribution of M; be uniform on [—1,+1]. Let uo have atoms at
—3/2,0,3/2 with weights «, 3, a respectively. For pg to be an admissible measure for My we
must have o > 1/6. Given this restriction there are two distinct cases, first 1/2 > a > 1/4 in
which case the time one and time two barycentres do not overlap, and second 1/4 > a > 1/6

where an overlap exists.

T2

\

-3/2 1 -3/2 1 0 1 32
1/2> 0> 14 14>0>1/6

o
i
@
N

Figure 4: Barycentres b1, be with and without an overlap.

In the case where the barycentres do not overlap the constraint of the time one law has
no effect. We can achieve the maximum maximum for a martingale started at time zero at
the origin and at time two with law us. We can simply adapt the Azema-Yor construction as

follows. Let B be a Brownian motion and B; its maximum, then we define the stopping times
m =inf{t| B, <b; (B}, o = inf{t | By < by }(By)}.

Plotting B; along the z-axis and its current maximum B; on the y-axis, we stop first when we
cross by and secondly when we cross by. Clearly 71 < 79 and from the Azema-Yor embedding
we know that B, has law u1, and B,, has law p9. A time change leads to a construction of a
martingale which attains the maximum maximum.

In general, if the barycentres do not overlap we can always use the above construction. This
simple example however demonstrates that it is possible for barycentres to overlap, in which

case a more sophisticated approach is required.

3 An intermediate law

We again assume that we have two centred probability measures, 1, e such that the space

of martingales, M (u1,u9) is non-empty. We shall introduce a martingale inequality which
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generalises that in Lemma 2.1 by relating the laws of position of a martingale at times one and
two, to the law of its maximum at time two. We will use this to define two functions akin to
the barycentre which will be used in an extension of the Azema-Yor Skorohod embedding. We
then show that the martingale inequality becomes exact for this martingale and finally we show
that the constructed martingale has the given laws at times one and two. Thus we will have
shown by construction the existence of an element of M (u1,u2) whose maximum at time two

has a stochastically maximal law.

3.1 A Martingale Inequality.

Lemma 3.1 If M € M(u1,u2) and is right continuous then for any y > 0

c2(C2) ci(Ge) 01(41))> _ (7)

PMz 2 y) < y—GC y—~Q

>qy)< in (
G<y,Ce<y \Y — (2

{e>a)(
Proof: First fix y > 0, (1 <y, and (s < y. If (1 > (2 then we wish to show that

P(M; > y) < ;{CZ

which follows from Lemma 2.1. Now consider {; < (s, then we claim that the following inequality

holds:
(Ma — G)* L - )t (M —-G)f

(8)

Ligt,>yy <

y— G2 y—GQ y—C
y— M M, — M, y— M
Pz T Tz anzey T T T <y iz T
this is easy to check on a case by case basis. Note that by Doobs inequality
— M, _ - M, _ _
B(Lphin 2 y) =0, B (L0200 <y 2 ) =0
y—G y—C
and since M is a martingale by taking expectations in (8) we obtain
_ c & &
PVl > y) < 2(G) () n Q)
y—GC y—GC y—Q
Thus since y, (1, and (o are arbitrary the result follows. Q.E.D.

3.2 Two Functions

We now use the above inequality to define two functions which will play a role akin to the
barycentre in the Azema-Yor embedding. We wish to find two functions &;(y), £2(y) such that
for any y > 0 choosing (1 = £1(y) and (o = &2(y) will minimise (7). First we show that &; can

be taken to equal the inverse of the barycentre, by, of u1.
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Consider y > 0 fixed. Suppose &1(y),2(y) are values of (1,2 where (7) is minimised. Then
if £5(y) > b7 (y) we may take & (y) = by ' (y) since ¢ = ¢1(¢)/(y — ¢) is decreasing to the left of
b; }(y) and increasing to the right, by the convexity of ¢;. If &(y) < by ' (y) then we may choose
any & (y) > &(y) and so we choose & (y) = by *(y). We consider the simpler, but equivalent

problem; to choose &»(y) as the value of (5 which minimises

2(C2) al(@) albly)
y—C a6 Ty —a(y)

This will not necessarily be unique and more will be said about this later, but for now choose

. (9)

any &(y) to be a value of (3 < y for which (9) is minimised.
Lemma 3.2 & is increasing in y.

Proof: Fix y > 0 and define [y(x) to be the tangent to ¢; at &1 (y) passing through y. So

_ (y—=
lo(z) = mcl(ﬁl(y) )-

Thus
c1(w,y) = (c1(z) — lo(7)) Lzt ()}
is non-negative, increasing and convex (Figure 5). Recall the definition of &k, from Lemma 2.6,
then
cr(r,y) = (c1(x) = (y — 2)ky ) Lizsei (9)}-
We define ¢(z,y) = c2(z) — c1(z,y) so that the minimisation of (9) is the minimisation of

Q)

(&) -(y-x)
Y40

Figure 5: If £ > & (y) then c¢1(x,y) is equal to the difference between the two lines.

c(¢,y)/(y — ¢) over (. The supporting tangent to c(-,y) which passes through the z-axis at y

must meet the curve at £3(y). Fix § > 0. First we consider the case when & (y) > &2(y) then
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c(x,y +9) = c(z,y) for all z < &(y) and so clearly &2(y + §) cannot be smaller than &a(y). We
now consider the remaining cases: &1(y) < &2(y).

Let [1(x) be a supporting tangent to ¢(-,y) at &(y),

hz) = c(é2(y),y) + [o = &(y)] (K1 — ky)

where K lies between the left and right derivatives of ca(-) — c1(-) at &2(y). Since l1 passes

through the x axis at y we can rewrite [; as

__y—z .
11(1‘) - y—&(y) (52(y)=y)

which implies that

Ky —ky — _d&e)y) _ al&l) —ally) y

y —&(y) y— &)
thus K; < 0. Since I (y) = 0, it is clear that I1(y + ) = (K1 — ky ).

Now consider ¢(-,y+46) —c(-,y) = ¢1(-,y) — ¢1 (-, ¥+ 0), which is non-decreasing, non-negative
and convex. In fact it is zero for z < &, convex between &1 (y) and & (y + d), and a straight line
for x > &1 (y + §) (Figure 6). Let lo denote a supporting tangent to ¢(-,y + ) — c(-,y) at &2(y).
Since c(-,y + 6) — c(-,y) is convex, 1 + lo must be a supporting tangent to c(-,y + d) at &2(y).
We shall show that (I; +I2)(y + ¢§) < 0 which will imply that & (y + §) > &a(y).-

Suppose now that &1 (y) < & (y + §) < & (y). Consider

la(x) = c(&2(y),y + 6) — c(&2(y),y) + [z — &LW)](ky — ky+s)
then lo(x) is a supporting tangent to c(-,y + 8) — c(,y) at £2(y). Now
li(y+0) +la(y+0) = 6[K1 — ky] + c1(&2(y), y) — a1 (&a(y), y +0) + [y + 6 — &2(y)](ky — ky1s) (10)
and since &(y) > & (y + )

c1(62(y),y) — c1(éa(y),y +9) = —[y — &(W)](ky — kyys) + 0ky1s,

and so from (10) we see I;(y + 8) + lo(y + ) = 6K; <O0.
Conversely suppose &1(y) < &(y) < &1 (y + d) then since & is increasing it follows that
y < a:=bi(&(y)) <y+d, where by = & is the barycentre of ;. We define

lao(z) = c1(€a(y)) — [y — La(y)lky + [z — La(y)](ky — ko) (11)
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then [ is a supporting tangent to c(-,y + &) — ¢(-,y) at &(y). Hence

(h+D)(y+6) = O[Ki—kyl+ci(€a(y)) — [y — L@k + [y + 0 — L(y)](ky — ka)

= K1+ a(&y)) — o — W)k — [y + 0 — alka.

By definition ko = c1(€2(y) )/[a — €2(y)] and so again (I; +l2)(y + 6) < 0. Q.E.D.

c(2)

!
|
|

|
|

I
|

|
|

|
|

0 & Vv — ¢

Figure 6: ¢1(z,y) — c1(z,y + 9) is equal to ¢1(z,y) for z < & (y + 0) and the difference between

the two straight lines otherwise.

Definition For all y > 0 we define &1 (y) to be the inverse of the barycentre of p; and &2(y) to

be the largest value of (2 such that (9) is minimised. Then &;, & are increasing functions of y.

3.3 An extension of the Azema-Yor Skorohod Embedding.

We shall denote the martingale constructed here by M* throughout the rest of this paper.
Remember that &;(y) = b7 (y), is the inverse of the barycentre for y;. Letting this guide our
intuition we first use the Azema-Yor construction to embed the law uq1 at time one. Between
time one and time two there are three different ways to construct the martingale depending
upon the starting point (M7, M}).

First if M7 > &(M}) (i.e. starting below 5 = &5, for example the point (z1,4;) in Figure
8). In this case we use excursion methods. Similarly to the Azema-Yor construction we imagine
running a Brownian motion from Mj, plotting its position along the z-axis, and its maximum
in the y-axis, we stop the first time the excursion hits n (Figure 7).

If M{ > &(M;) we define a new martingale, (N;)1<t<oo as follows. To begin with (N, Ny)

has the law of (M7, M7). If B be a Brownian motion, then for ¢ > 1 we set

Ny = My + By,



Maximum Maximum of a Martingale. 12

/M 2, Mo)

Figure 7: Excursions from (M, M)

and the maximum process

N, := M,V sup NV .
1<s<t

We now introduce the stopping time 7 := inf{t > 1|N; < &(N;)}, and define M* by rescaling
the time of Niar
M{ =Ny onr t€(L,2].

Finally we have to show that we obtain a true martingale, not just a local martingale. This
follows by a straightforward extension to Lemma 2.3 in Rogers [13] and an appeal to Theorem
1 in Azéma, Gundy and Yor [1].

Second If M} < &(M7) and &(y—) < M} < &(y+) for some y < M7, then we run from the
point (M7, M;}) until some stopping time 7 at which M+ ~ L{Ms | é2(y—) < My < &(y+)}-
Although it is not obvious, it is possible to do this, as we shall prove shortly, and then M,, = M.
The situation is illustrated by the point (z2,y2) in Figure 8.

A N

| (x3,y3)

Figure 8: Three different starting points at time 1.

Third for any other starting point, e.g. point (x3,y3) in Figure 8, stop immediately. i.e.
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My =My, s €(1,2].

3.4 The Main Result.

We are now in a position to state precisely the main result of this paper. If we denote by M*

the martingale constructed above and v* the law of MJ then we have the following result.
Theorem 3.3 M* € M(u1,p2) and v* stochastically dominates any v € P(u1, pu2).

The proof of Theorem 3.3 occupies the remainder of Section 3. First we show that the

martingale embedding used in the second case of the construction is possible, next that

_a@l) | (01(52(?4)) B 61(61(?/)))
y—&y) ORIy 6 y-a®)

and finally that M* € M(u1,p2). This means that the upper bound on the probability that

Vy>0, IP(Ms>vy)

My >y for M € M(u1, u2) is attained for all y, by M*.

3.5 Non-unique values of &

We first show that the embedding when there is a jump in the value of &;, the second step in
the above construction, is possible. Fix y > 0 at a value where there is a jump in &3, we will
write a = &2(y—) and § = &(y+) for short during this whole section.

We need to distinguish two cases, first a = &(y—) > &1(y). Recall that the supporting
tangent to c¢(-,y) passing through y touches the curve at a and £, and possibly in between these
two points as well. We set m equal to the slope of this tangent

_ clavy) —c(B.y)
o« B

and let

e-=—d(a—y)—m , er=m+(B+y).
Where ¢ (z+,y) represents the left/right derivative of ¢(,y) at z. Now we define the measures
fi2 = p2lfa,p) —€-0a — €40

f1 = plja,p)

We wish to show that it is possible to embed fio as a martingale starting from f;. First we

compare the total masses and then the means. The total mass of i is ¢y (8+) —ch(a—)—e_ —ey
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and the total mass of ji1 is ¢} (8+) — ¢} (a—), so that the difference is ¢/(8+,y) — c/(a—,y) —

ey —e_=0.

The mean of jio is
/[ L Fhaldn) —ea—ef = /[ (@ walde) e~ e f + agnfo ]

= [ )~ [ @ a)m()

[8,00)
—e_a — e4f + apla, A

= co(a) —c2(B) + (B—a)P(My > ) —e_a — ey B + aps[a, f]

= ca) —a(f) + (B —a)i(f+) —e a—ey S+ auslo, f].

The mean of ji; is

/W] 2 1 (dz) = e1(a) — e (8) + (8 — a)e (5+) + apn (o B]) -
The difference between the two means is
(@) = c(B,y) + (B— ) (B+,y) —e-a —e1 B+ aps([a, B) — apu ([a, B))
= (8- a)(m+(B+,y)) — e—a — e4 8+ aps ([, B]) — o (v, B)
— (8- a)es e a— ey B+ ap(lo B]) — o ([ B])
— —cra—c_a+aps(a, f]) — ap (e, f) = 0
Since the total mass and means match we need only show that
[@ =2 ate) > [(@- 2t vz e,

Now for z € [a, ]

J@= 2 ) = [@-2) ) - (8- 2) - /(ﬂ = el

= c3(2) —e4(B —2) — 2(B) — (B — 2)p2(B, 00).
So

J@=2 e - [@= 2 ) = ) -alz) -6~ 2) - a@) +al)
(8 — 2)112(8,00) + (8 — 2)pu1 (B, 0)
= (B—2) (u1(B,00) — p2(B,00) —e4 + ky)
+e(z,y) — c(B,y)
> (8- 2) (m+ (8, 00) — (B, 00) + ky — £3)

= (B—2) (m+(B+,y) —e4) =0.
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Thus we can perform the required embedding.
The second case is when a = &(y—) < &1(y). In this case we take fis to be defined as in the

last case and ji; to be defined by

fir = pl(g (y),8) T00, (v)

where
c1(€1(y)) ! !
= —"""+¢ +)=m+c +).
y—&1(y) 1(&(y)+) 1(&(y)+)
In a similar fashion to the first case the embedding can be proved. Q.E.D.

3.6 Proof that the extended Azema-Yor construction gives correct law.

The rest of the proof of Theorem 3.3 splits into two parts. In Lemma 3.1 we proved an upper
bound for the law of the maximum of any element of M(u1, o). We shall first show in Lemma
3.4 that our constructed martingale M* achieves this maximum. Once this is proved all that
remains is to show that M* is itself an element of M(u1, u2). We already know that M; has

law pq so we will need only prove that M3 has the law us.

Lemma 3.4 If we define for y >0

— C(.T,’y)  /

We need some more results before we can prove this lemma.

Lemma 3.5 Recall the definition of ky from Lemma 2.6, then

x oo ks
ol 71 J -
Cl(l',y) /;oo dt/y 3 _61(3) {ks>—cl(t)}ds
Proof: We have
o) = [ G0+ k)"

—00

and as y 1 oo, c1(z,y) | 0. Hence

— 00

x ] ks
= /_oo dt/y ml{cg(t)%sw}ds

as required. Q.E.D.

clz,y) = —/ dt/ kgl (t)+k,>0yds
Yy

Lemma 3.6 The function y — K, is absolutely continuous.
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Proof: We shall prove that K is locally Lipschitz. Firstly let’s notice that 0 < ¢1(z,y) —c1(z, y+
8) < (z —&1(y) )t (ky — ky+ts) so that for § >0

.. czy+9) . c(z,y) (z —&(y) )t (ky — kyis)
Kﬁé_migg—é y+d—=x = mi%£5<y+5—x+ y+d—x . )
c(§2(y),y) n (&2(y) = &))" (ky — kyis)
Y+ —E&(y) y+0—E&(y)
g bly) @),
< (14 mgm) B e e

Thus

_ K, (Ealy) = &) )t by — kyts
Ky+s Ky§5<y_£2(y)+ o 3 ) .

Since k always has well defined left and right derivatives we obtain the required inequality. For

the other inequality we suppose that § > 0 is small enough that & (y + §) < y. Then

c(62(y +9),y) c(§2(y +0),y +9)
M Ta8wr0 S T y—Gu+0)

= Hw (”#@m)-

Q.E.D.
Proof of Lemma 3.4: We know that K, < inf,«, c2(z)/(y — ), which tends to zero as

1y — 00, so from Lemma 3.6 we may write

o0
Ky:—/ K dt .
Yy

Now since K is absolutely continuous, for almost every ¥y, both K and & are differentiable at y,

and & is continuous at y. Assuming that y has all of these properties,

SRy CCURTNVES TN
h—0 h +h—E&(y+h) y— fg

!
Ky

.1 1
- Jmi (raem —ram) sy
+(§2(y+h y+h) —cléa(y),y )>
y—&2(y)
_ G- L il .
= Sk (i 7 e+ Ly ) @) ) 02

Let’s now assume that ¢(+,y) is differentiable at &»(y), the other case is dealt with later. Then

;a1 |
Ky = y—sZ(y)K”y—@()
K, 1
y—=E&(@y)  y—E&(y) dy

(¢t m + 5 @m)
2 60),9)
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_ Ky 1 £a2(y) ky

 y—&(y) * y —&a(y) /_oo dt y—&(y) L{e, () +ky >0}
K k

= XOM ’ (Ealy) - E1(y) )" .

Y& -&W)y-aw)
The third line follows from Lemma 3.5. Recall that — K is the slope of the supporting tangent
to ¢(-,y) at &(y). From this it is clear that if ¢(-,y) were not differentiable at &(y), it has to
be that the right derivative of c(-,y) is greater or equal to —K,, the left derivative less than or
equal to —K, and the two are different. If we rule out the (null) cases where y is exactly at the
end of some flat interval of &5, we shall have that &(y + h) = &(y) for all small enough h and
so & (y) = 0 and from (12)

. KZ’/ 1 @
% = e Timawma WY
N VR by (&2ly) — E1(w)* (13)

y—60)  W-&W)y—aw)
exactly as before.
The only way M* can achieve a new maximum between times one and two is if we are in
the first case discussed in Section 3.3, and we run Brownian excursions from (M7, M7) until we

first hit &5 1. So from excursion theoretical results, briefly discussed in Section 2.1, we see that

— — S S)— S + T
POt >t <) = [ R G e (- [ ) o

What do we know of IP(M3 > y)? Certainly IP(M3 > y) — 0 as y — oo and

S N Y ksds  (&a(s) —&a(s))* A
Ky =P(M;y 2 y) = P(M; 2 y) + 0 s—&i(s)  s—&(s) exp( /S T_&(T))

so that if we cross multiply by exp(f§ dr/(r — &(r)) and differentiate we get

¥

Ky 1 ky ky (él(y)_§2(y))+
e N T Rt T Ty e v 6w
(1 i (E(y) — ealy))*
= h ( —aw Tr_&w T (y—&(y))(y—@(y)))

o (Ely) —&(y)”
Yy —&a))ly— &)

and by comparing the above with equation (13) we are done. Q.E.D.

We are now in a position to finish the proof of Theorem 3.3, all that remains is to show that

M* € M(p1, p2), and to do this we need only show that Mj ~ puo.

Lemma 3.7 M5 ~ p9
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Proof: From Lemma 3.6, since limy_,, K, = 0, we must have
oo o0
Ky:—/ Kgdt:—/ 15(t)K; dt ,
Y y
where B is a set whose compliment is null. Take
B = {t| & is differentiable at ¢, & (t—) =& (¢+)}.

For almost all y such that & (y) < &a(y) if | 6] is sufficiently small then & (y + J) < &2(y). Fix
some y > 0 with this property, and also such that & is differentiable at y, and &;(y) is not an

atom of po. It can be seen from a direct calculation of

d . 1Te(&(y+0),y+6)  c(é(y)y)
dyKy_}g%é y+0—&W+6)  y—&(©)

that ¢; must be differentiable at £2(y). We define Fy(x) = ua([z,00)). Consider the following

two cases:

Case 1; &1(y) < &(y), and all of the above conditions hold. Here, since ¢; is differentiable

at &2(y), we get

K, = —cy(&()) + (&) + ky
_ o0 ks
= Fy(&(y) ‘l‘/y ml{ks>—c’l(§2(y))}d‘g

_ oo ks
= F(&(y) + /y ml{&(s)qﬂy)}ds
= F(&(y) + Py < My <bi(é2(y)))

and since

P(M; > y) = IP(M3 > &(y) + P(y < M < bi(&(y)) = Ky

it follows that IP(Mjy > &(y)) = Fy(&2(y)).
Case 2; &1(y) > &(y), and & is differentiable in y and &5(y) is not an atom of uo. Here

Ky = —ch(&(y) = Fa((y) = P(M3 > y) = P(Mj > &(y)).
So we conclude that for all y with the stated properties

P(M3 > &(y)) = Fa(&(y)) -

So we’ve matched the distribution of M3 to u9 at almost every point outside of jumps intervals
of £&. However the jump intervals are taken care of by the earlier construction. Thus Mj; €

M(u1, p2) and Lemma 3.7 is proved, which completes the proof of Theorem 3.3. Q.E.D.
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4 Financial interpretation

We can reinterpret much of the earlier work in financial terms. Let M; denote the price process
of a risky asset and suppose interest rates are zero. Then standard arguments from the theory of
complete markets show that when pricing contingent claims or derivative securities it is natural
to treat M as if it were a martingale. The simplest and most liquidly traded contingent claims
are European call options, which give the buyer the right to buy a unit of the asset at a fixed
time, T" (the maturity), for a fixed price k (the strike) regardless of its current price. Clearly this
has a payoff equal to (M7 — k)™, and the fair price is the IE[(Mr — k)*] where the expectation
is taken with respect to the martingale measure. From knowledge of the price of the call option
at all possible strikes for a given maturity it is possible to infer the law of M.

The standard approach to pricing derivatives is to assume a model for the dynamics of the
price process of the underlying asset and use this to derive prices. However this approach has
been reversed by Ross [15], Breeden and Litzenberger [4], and Dupire [6],[7], where no model for
the underlying is assumed. Instead we start from the traded call prices at a given maturity to
infer a law for the underlying. Options can then be priced using this implied law. If the value
of the contingent claim depends only upon the underlying at the times when the law is known
then we obtain a unique price. However if we only know the law at discrete times then we do
not uniquely identify the behaviour of the underlying.

A digital is an option which has unit payoff if the underlying ever crosses some barrier in a
given time period, and a look-back option has a payoff equal to the maximum achieved by the
underlying in a given time period. In this case the best we can hope to achieve is the lowest
upper bound to the set of possible prices. This has been studied by Hobson [9] in the case where
the initial and terminal laws were known. Here we shall extend these results by introducing an
intermediate law.

Our analysis of the maximal law of the maximum given a martingale defined only by its
distribution at given points, leads, via the martingale inequality used in the proofs, to a super
replicating strategy for digital and look-back options. These are the cheapest possible hedging

strategies which guarantee to provide at least the required payoff.
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4.1 A super-replicating strategy for a digital option.

We assume that a continuum of calls at all possible strikes can be bought and sold at arbitrary
quantities. Further transactions in the forward market of the underlying are possible, there are
no interest rates or transaction costs and trading can be executed instantaneously.

Suppose we are given the call prices of an asset at times one and two, then given the implied
laws 1, o we wish to hedge a payoff 1 (s >y} The maximum possible price of a digital option

must be the supremum of IP(Ms > y) over all M € M(u1, 12). Recall Lemma 2.1,

_ : () c(G)  al&)
PMz 2y) < C13?2f<y (y — 2 ta>a (y -G Y- Cl))

and note that cr(k) := IE((Mr — k)*) is the price of a call option strike k, maturity 7. The

proof of Lemma 3.1 contains the following inequalities. First if (o < (4

(My — ¢)*t — My

Yy
1, < + 1,47 —_—. 15
{M2>y} = y—Co {M2>y} Y — (o (15)

We can interpret terms in the above inequality as a hedging strategy. First buy 1/(y — (2) calls
strike (5 with maturity 2. This has payoff (My—(3)™ /(y—(2). Next when the price first reaches y
sell forward 1/(y—(2) units of the underlying to time 2. This has payoff 17,5, (y—Ma2)/(y—(2).-
Clearly from (15) this strategy super replicates the payoff of the digital.
If (o > (4 then the relevant inequality is
(Mo — )t (Mi—C)"  (Mi—GQ)*
_|_ —
Y= y—Q y—C

y— M My — M, y— My
+1{M12y} y—G + 1{M1297M12€2} y—Co + 1{M1<y,1\7122y} y—Co :

We interpret this inequality as the following strategy, we initially buy 1/(y — (2) maturity 2 calls

Lty 2yy < (16)

with strike (o, sell 1/(y — (2) maturity 1 calls with strike (2, and buy 1/(y — ¢1) maturity 1 calls
with strike (1. Then if the underlying first reaches y before time 1 then sell forward 1/(y — (1)
units of the underlying to time 1. If at time 1 the underlying has already reached the level y and
the current price is greater or equal to (2 then sell forward 1/(y — (2) units of the underlying
to time 2. Finally if the underlying first reaches the level y after time 1, sell forward 1/(y — (2)
units of the asset to time 2, when the underlying first reaches y.

Clearly from the above inequality this is a super-replicating strategy. The cost of this
strategy, since selling forward is a costless transaction, is c2(¢2)/(y — (2) + 1{e>ca3le1(C)/(y —
C2)+c1(¢1)/(y —¢1)]- If we minimise over all 1, (2, then from the proof of Theorem 3.3 we know
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there exist &1(y),&2(y) such that the minimum is attained. Without further assumptions there
can be no cheaper super replicating strategy since the martingale constructed in Theorem 3.3
achieves this cost.

A super-replicating strategy for a lookback option can be constructed using the hedging
strategy for digitals as its building blocks. The required payoff is My, so we buy, for every y > 0,
(dy) units of the hedging strategy for a digital with payoff 1¢y7,,y and hold M in cash. The
hedging strategy is clear and must be the cheapest possible since the martingale constructed in

Theorem 3.3 has fair price of the lookback option equal to the cost of this strategy.
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