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Abstract

In the style of Rogers (2001), we give a unified method for finding the
dual problem in a given model by stating the problem as an unconstrained
Lagrangian problem. In a theoretical part we prove our main theorem,
Theorem 1, that shows that under a number of conditions the value of the
dual and primal problems are equal. The theoretical setting is sufficiently
general to be applied to a large number of examples including models with
transaction costs, such as Cvitanic & Karatzas (1996) (which could not be
covered by the setting in Rogers (2001)). To apply the general result one
has to verify the assumptions of Theorem 1 for each concrete example. We
show how the method applies for two examples, first Cuoco & Liu (1992)
and second Cvitanic & Karatzas (1996).

1 Introduction.

In recent years, there has been a great deal of interest in portfolio optimisation
problems of various kinds. The problems are outgrowths of the classical optimal
investment/consumption problem dealt with in various forms by Merton (1969),
Cox & Huang (1989), Karatzas, Lehoczky & Shreve (1987), and deal with a range
of issues where the portfolio may be restricted in some way (Cvitanic & Karatzas
(1992), Cuoco & Liu (1998) Xu & Shreve (1992) ), or where the objective may be
to super-replicate some contingent claim while observing a portfolio constraint,
for example, that the holding of the money-market account should never be below
some fixed value. See Cvitanic & Karatzas (1993), Cvitanic & Karatzas (1996),
Karatzas & Kou (1996) for such papers. We should also mention the work of El
Karoui & Quenez (1995) on pricing in incomplete markets.

A common theme of all these papers is to take the original problem, which involves
a maximisation over a class of policies, and restate it in terms of the ‘dual’
problem, which involves a minimisation over some family of measures. Now in
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most of these examples, it turns out that by stating the problem as a suitable
unconstrained Lagrangian problem, the ‘dual’ problem does indeed turn out to
be as given in the paper, though there is no explicit appeal to the Lagrangian
method in any of the papers under consideration.

Rogers (2001) presented a unified methodology for deriving the dual problem
from the primal, which works in an almost mechanical way on a vast number of
examples. The essence of the methodology is to view the stochastic dynamics of
the controlled system as constraints, just as in the Pontryagin approach, com-
pare also Bismut (1973), (1975). Introducing a Lagrangian semimartingale, the
constraint is absorbed into the Lagrangian form of the problem, converting the
left-hand-side by integration by parts, and then an unconstrained maximisation
is performed over the variables of the problem (in many typical examples, these
would be the consumption rate ct and the wealth process Xt). Since this max-
imisation is typically achieved by maximising individually for each t in the time
set, it is usually easy to do in closed form, and the resulting dual problem, of
minimising over the dual variables, is the dual problem we seek. This approach
illuminates the origins of the dual problems, which previously have seemed to
arise as the result of some computations starting from the solution.

Having found the dual problem, it remains to prove that the values of the dual
and the primal problems are indeed equal, and this is typically where the hard
work lies. A general theorem is presented in Rogers (2001) which covers many of
the one-dimensional examples from the literature4.

However, the example Cvitanic & Karatzas (1996)5 shows that a formulation
broad enough to embrace problems with transaction costs has to consider vector-
valued asset processes; it is not sufficient to consider the aggregate wealth of
the investor. In the present paper we close this gap and formulate a setting
general enough to cover the transaction costs example of Cvitanic & Karatzas
(1996) as well as all problems that were already covered by Rogers (2001). The
method is sufficiently general not only to cover the two–dimensional example of
Cvitanic & Karatzas (including one stock and one bond) but that it could cover
also models with transaction costs with d assets, for example Kabanov & Last
(2002) and with utility Deelstra, Pham & Touzi (2001). However, one has to
verify the conditions of Chapter 3 for each problem and in particular condition
(XY) can be quite a challenge. Moreover the method cannot only be applied
for diffusion models but for general semimartingale models, compare for instance
Rogers (2001), Example 3: Kramkov & Schachermayer (1999).

In the present paper we illustrate the methodology of finding the dual problem

4It should be emphasised that the residual difficulty of the problem often lies in the verifi-
cation of the hypotheses of this theorem.

5See also Cvitanic & Wang (2001) where this example was further analyzed.
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in full detail for the example Cvitanic & Karatzas (1996). We also present the
example Cuoco & Liu (2000) but will refer to Rogers (2001) for details which were
already presented there. We will verify for these two examples the conditions
that are necessary for our main result, Theorem 1 below. Theorem 1 proves
that under certain conditions, the value of the primal problem, expressed as a
supremum over some set, is equal to the value of the dual problem, expressed as
an infimum over some other set. We emphasise that the Theorem does not say
that the supremum in the primal problem is attained in the set, because such
a result is not true in general without further conditions, and is typically very
deep: see the paper of Kramkov & Schachermayer (1999). A further condition on
the utility is needed in general to deduce that the value of the primal problem is
attained. The result presented here is at its heart an application of the Minimax
Theorem; the argument owes a lot to the argument of Kramkov & Schachermayer
(1999) but also needs a certain amount of careful convex analysis.

2 Two examples and their dual formulation

Throughout the paper we use x · y to denote the scalar product of two vectors.

2.1 Example 1: Cuoco-Liu (2000)

The paper of Cuoco & Liu (2000) presents a constrained optimisation problem.
The formulation is sufficiently general to include as special cases the problems
considered in Cvitanic & Karatzas (1992, 1993), El Karoui, Peng & Quenez (1997)
and Cuoco & Cvitanic (1998).

The problem. In an economy with finite time horizon T > 0, n risky assets
S1, . . . , Sn, and a single riskless asset, the wealth process (Xt)0≤t≤T of an agent
satisfies the dynamics

dXt = Xt

[
rtdt+πt ·{σtdWt+(bt−rt1)dt}+g(t, πt)dt

]
−ctdt, X0 = x, (1)

where the various processes have conventional interpretations: r is the riskless
rate of return, W is an n-dimensional Brownian motion, b is the n-dimensional
rate-of-return process, related to the risky assets by

dSit = Sit(σ
i
tdW

i
t + bitdt), i = 1, . . . , n,

π is the n-dimensional portfolio proportions process, and the adapted process
c is the rate of consumption. The symbol 1 denotes the n-vector all of whose
components are 1, and the initial wealth x0 is given.
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The dynamics (1) are completely conventional, apart from the term involving g,
which introduces non-linearity in the following way. We require that the function
g : [0, T ]× Rn × Ω→ (−∞,∞) satisfies the conditions

(i) for each x ∈ Rn, (t, ω) 7→ g(t, x, ω) is an optional process;

(ii) for each t ∈ [0, T ] and ω ∈ Ω, x 7→ g(t, x, ω) is concave and upper semi-
continuous.

(iii) g(t, 0, ω) = 0 for all t ∈ [0, T ] and ω ∈ Ω.

As in Cuoco-Liu we make the following boundedness assumptions:

Assumption (B): b, r, Σ ≡ σσT , Σ−1 are all bounded processes, and there is a
uniform Lipschitz bound on g: for some γ <∞,

|g(t, x, ω)− g(t, y, ω)| ≤ γ|x− y|

for all x, y, t and ω.

We shall habitually omit the third argument from appearances of g. The agent
is free to choose a portfolio proportions process π and a consumption process c
with the aim of maximising the objective

E
[ ∫ T

0

U(s, cs)ds+ U(T,XT )
]
, (2)

where we assume that for every t ∈ [0, T ] the map c 7→ U(t, c) is strictly increas-
ing, strictly concave, and satisfies the Inada conditions6. This last assumption
means that the utility of negative wealth must be −∞, so only non-negative
wealth processes X and consumption processes c are admissible. We shall some-
times write Ut(c) for U(t, c).

The first step: identifying the dual problem. As was explained in the
introduction, we now regard the dynamics (1) as a constraint to be satisfied by
X, π, and c, and introduce the Lagrangian semimartingale Y satisfying

dYt = Yt{ αt · σtdWt + βtdt } (3)

where the previsible processes α and β are to be determined. Then two differ-
ent expressions for

∫
Y dX have to be developed, one by integration by parts,

the second by using the dynamics of X. Then state the Lagrangian and so on
(compare also the detailed derivation in Example 2). We refer to Rogers (2001),

6The derivative U ′(t, c) tends to ∞ as c ↓ 0 and tends to 0 as c ↑ ∞, where U ′ denotes the
derivative with respect to the second variable.
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Exercise 4, for the explicit derivation of the dual problem. It is shown there that
the dual problem is

inf
Y
E
[ ∫ T

0

V (t, Yt) dt+ V (T, YT ) + x · Y0

]
(4)

where the process Y solves

Y −1
t dYt = Σ−1

t (rt1− bt − νt) · σtdWt − (rt + g̃(t, νt))dt (5)

for some adapted process ν bounded by γ, and where g̃(t, ·) is the convex dual of
g(t, ·). This is exactly7 the dual problem of Cuoco & Liu (2000), Section 4.

2.2 Example 2: Cvitanic & Karatzas (1996)

The problem. This is a simple example incorporating transaction costs. The
financial market consists of one riskless asset, the bank account or bond, with
price Bt given by

dBt = Btrtdt, B0 = 1

and of one risky asset, the stock, with price per share St given by

dSt = St

[
ρtdt+ σtdWt

]
,

for simplicity let S0 = 1. T is the time horizon and (Wt)t∈[0,T ] is a standard Brow-
nian motion. The processes σ, ρ, σ−1, r are assumed to be uniformly bounded.

A trading strategy is a pair (L,M) of adapted processes with right continuous,
increasing paths and L(0) = M(0) = 0, where Lt represents the total amount of
funds transferred from bank account to stock, Mt the total amounts transferred
from stock to bank account. Given proportional transaction costs 0 < δ, ε < 1
for such transfers and initial holdings x0, x1 in bank and stock, the holdings X0

t

of cash and the holdings X1
t of the share at time t satisfy the dynamics

dX0
t = rtX

0
t dt+ (1− ε)dMt − (1 + δ)dLt − ctdt

dX1
t = X1

t (σtdWt + ρtdt)− dMt + dLt. (6)

The consumption out of the cash holdings is at rate ct ≥ 0. Trading strategies L
and M and consumption c are to be chosen such that the processes X0

t and X1
t

satisfy the solvency conditions

X0
t + (1− ε)X1

t ≥ 0, X0
t + (1 + δ)X1

t ≥ 0 ∀t. (7)
7We have a term for utility of terminal wealth, which Cuoco & Liu omitted for the sake of

simplicity in their formulation.
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The set of points C = {(x0, x1) : x0 + (1− ε)x1 ≥ 0, x0 + (1 + δ)x1 ≥ 0} defines
a closed convex cone in R2.

Suppose the objective is to obtain

supE

[∫ T

0

U(s, cs)ds+ u(XT )

]
, (8)

for some concave utility functions u : C → R and U(t, .) : R+ → R which are
assumed to be strictly increasing in the relevant order.

Step 1: identifying the dual problem. We regard the dynamics (6) as
a constraint to be satisfied by X0, X1, L,M, c and introduce Lagrangian semi-
martingales Y 0 and Y 1 satisfying

dY 0
t = Y 0

t (αtdWt + βtdt)

dY 1
t = Y 1

t (atdWt + btdt), (9)

where α, β, a and b are to be determined.

We develop two different expressions for
∫
Y 0dX0 +

∫
Y 1dX1, firstly by an appli-

cation of the integration by parts formula, (see, for example, Rogers & Williams
(2000), Theorem VI.38.3) and the expression (9) for Y :∫ T

0

Yt · dXt = YT ·XT − Y0 ·X0 −
∫ T

0

Xt− · dYt − [X1, Y 1]T

= YT ·XT − Y0 ·X0 −
∫ T

0

X0
t−Y

0
t {αtdWt + βtdt}

−
∫ T

0

X1
t−Y

1
t {atdWt + btdt} −

∫ T

0

X1
t Y

1
t σtatdt

.
= YT ·XT − Y0 ·X0 −

∫ T

0

X0
t Y

0
t βtdt−

∫ T

0

X1
t Y

1
t {bt + σtat}dt (10)

The symbol
.
= signifies that the two sides of the equation differ by a local mar-

tingale vanishing at zero. Secondly we use the dynamics of X (6):∫ T

0

Y 0
t dX

0
t +

∫ T

0

Y 1
t dX

1
t

=

∫ T

0

Y 0
t X

0
t rtdt+

∫ T

0

Y 0
t {(1− ε)dMt − (1 + δ)dLt − ctdt}

+

∫ T

0

Y 1
t X

1
t−{σtdWt + ρtdt}+

∫ T

0

Y 1
t {dLt − dMt}

.
=

∫ T

0

Y 0
t {X0

t rt − ct}dt+

∫ T

0

Y 1
t X

1
t ρtdt
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+

∫ T

0

{(1− ε)Y 0
t − Y 1

t }dMt +

∫ T

0

{Y 1
t − (1 + δ)Y 0

t }dLt (11)

If (X0, X1,M, L, c) satisfy the constraints implicit in the dynamics (6), then the
two expressions (10) and (11) must agree, so for any such feasible tuple the value
of the objective (8) will be the same as the value of the Lagrangian

Λ ≡ supE
[∫ T

0

U(t, ct) dt+ u(X0
T , X

1
T )

+

∫ T

0

{rtX0
t − ctY 0

t } dt−X0
TY

0
T +X0

0Y
0

0 +

∫ T

0

X0
t Y

0
t βt dt

+

∫
ρtX

1
t Y

1
t dt−X1

TY
1
T +X1

0Y
1

0 +

∫ T

0

X1
t Y

1
t {bt + σtat} dt

+

∫ T

0

{(1− ε)Y 0
t − Y 1

t } dMt +

∫ T

0

{Y 1
t − (1 + δ)Y 0

t } dLt

]
(12)

To arrive at this, we have assumed that the means of all stochastic integrals with
respect to W will vanish. This needs justification, but recall that the justification
will come at the second step; in the first step, we are simply identifying the dual
problem which the second step will prove is the dual problem.

We now simply maximise (12) over admissible (X0, X1,M, L, c), which is very
easy. Maximising over increasing M and L, we see that we must have the dual
feasibility conditions

(1− ε)Y 0
t ≤ Y 1

t ≤ (1 + δ)Y 0
t (13)

and the maximised value of the integrals dM and dL will be zero. The maximisa-
tion over c and over (X0

T , X
1
T ) is straightforward and transforms the Lagrangian

to

Λ = supE
[∫ T

0

V (t, Y 0
t ) dt+ v(YT ) +X0 · Y0

+

∫ T

0

X0
t Y

0
t (rt + βt) dt+

∫ T

0

X1
t Y

1
t (ρt + bt + σtat)

]
,

where V (t, z) = Vt(z) = supx{U(t, x)−xz} and v(y) = sup(x0,x1){u(x0, x1)−x·y)}

are the convex dual functions of Ut and u, respectively.

Maximising over X0 and X1 yields the dual feasibility conditions

βt + rt ≤ 0 (14)

bt + σtat + ρt ≤ 0 (15)
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with the final form of the Lagrangian as

E
[∫ T

0

V (t, Y 0
t ) dt+ v(YT ) +X0 · Y0

]
.

A monotonicity argument shows that in trying to minimise this over multipliers
(Y 0, Y 1) we would have the two dual-feasibility conditions (14) and (15) satis-
fied with equality and these processes correspond to the processes Z0 and Z1 of
Cvitanic & Karatzas(1996) via Z0

t = BtY
0
t and Z1

t = StY
1
t .

So we believe that the dual problem must be

inf
Y
E
[∫ T

0

V (t, Y 0
t ) dt+ v(YT ) +X0 · Y0

]
,

where Y satisfies the dual feasibility conditions (13) and has the dynamics

dY 0
t = Y 0

t (αtdWt − rtdt)
dY 1

t = Y 1
t (atdWt − (ρt + σtat)dt).

3 The general formulation.

We shall present here a general formulation which applies to a wide range of
examples from the literature, in particular to Example 1 and 2 above. The
multidimensional version is needed for examples with transaction costs, see for
instance Example 2. The formulation is sufficiently general for examples in higher
dimension than Example 2 (where the dimension is 2). It could in particular be
applied to the transaction costs setting of Kabanov & Last (2002) or rather Deel-
stra, Pham & Touzi (2001) where the utility comes in. However the verification
of the conditions which are given below have to be done for each example and in
particular condition (XY) is typically the most difficult.

We give the following general model. Suppose we have some finite measure space
(S,S, µ) and a closed convex cone C in Rd, with dual cone C∗ ≡ {y ∈ Rd : x ·y ≥
0 ∀x ∈ C}, both of which we shall assume have non-empty interior. The cone C
induces an order on Rd, defined by

x � y ⇔ y − x ∈ C. (16)

We introduce the notation

L0
C(S,S, µ) ≡ {f : S → C | f is S-measurable}
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usually to be abbreviated to L0
C . Clearly, L0

C is a convex cone, closed in the L0

topology. We shall suppose that for each x ∈ C we have a convex subset X (x)
of L0

C , with the properties

(X1) X (x) is convex;

(X2) X (λx) = λX (x) for all λ > 0;

(X3) if g ∈ L0
C and g � f for some f ∈ X (x), then g ∈ X (x) also;

(X4) for some x0 ∈ int(C) the constant function f : s 7→ x0 is in X ,

where we have used the notation

X ≡
⋃
x∈C

X (x). (17)

in stating (X4). The set X is not necessarily convex. Notice that because x0 ∈
int(C), for any n there is λn > 0 so large that

λnx0 −Bn ⊆ C, (18)

where Bn ≡ {z ∈ Rd : ‖z‖∞ ≤ n}. In other terms,

Bn � λnx0, equivalently, Bn ⊆ λnx0 − C, (19)

so that by (X3), any function taking values in Bn ∩ C is in X ; in particular,
constant functions are in X . Notice also the useful property

x ∈ int(C)⇒ ∃δ = δ(x) > 0 such that x · y ≥ δ‖y‖∞ ∀y ∈ C∗. (20)

For the dual part of the story, we need for each y ∈ C∗ a subset Y(y) ⊆ L0
C∗ with

the property

(Y1) Y(y) is convex;

(Y2) for each y ∈ C∗, the set Y(y) is closed under convergence in µ-measure.

Once again, the notation

Y ≡
⋃
y∈C∗
Y(y). (21)

will serve in future.

The primal and dual quantities are related by the key polarity property which
we state as assumption (XY).
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(XY) for all f ∈ X and y ∈ C∗

sup
g∈Y(y)

∫
f · g dµ = inf

x∈Ψ(f)
x · y

where we have used the notation

Ψ(f) = {x ∈ C : f ∈ X (x)}.

An immediate consequence of (XY) is the useful inequality∫
f · g dµ ≤ x · y f ∈ X (x), g ∈ Y(y).

Finally, we shall need a utility function U : S × C → R ∪ {−∞} with the basic
properties

(U1) s 7→ U(s, x) is S-measurable for all x ∈ C;

(U2) x 7→ U(s, x) is concave, strictly �-increasing, and finite-valued on int(C)
for every s ∈ S.

We shall without comment assume that the definition of U has been extended to
the whole of S × Rd by setting U(s, x) = −∞ if x 6∈ C.

Since we have not assumed that U is differentiable, the gradient of U may not be
defined in places. However, the notion of the supergradient

∂U(s, x) ≡ {z : U(s, y) ≤ U(s, x) + z · (y − x) ∀y ∈ C}

stands in for the gradient (and reduces to it where the function is differentiable.)
Because U is finite-valued on int(C), the supergradient is non-empty there. Be-
cause U is �-increasing, it follows that ∂U(s, x) ⊆ C∗. We require the Inada-type
conditions:

(U3) there exists a measurable map ∇U : S × int(C)→ R
d such that ∇U(s, x) ∈

∂U(s, x) for all s and x ∈ int(C), and such that

∇U(s, nx0) ≡ εn(s)→ 0 µ− a.e. (22)

as n→∞, with

sup
n

∫
|εn(s)| µ(ds) <∞. (23)
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(U4) there exists some x∗ ∈ int(C) such that the concave function

u(λ) ≡ inf
s∈S

U(s, λx∗)

is finite-valued on (0,∞) and satisfies the Inada condition

lim
λ↓0

∂u

∂λ
=∞;

Two more mild conditions are imposed:

(U5) there exists ψ ∈ X , taking values in int(C), such that for all ε ∈ (0, 1)

sup
z∈C
|∇U(s, z + εψ(s))| ∈ L1(S,S, µ);

(U6) for each s ∈ S,

|U(s, x)|/|x| → 0 (|x| → ∞).

One last condition on the utility U is needed, which is most naturally expressed
in terms of the convex dual function

V (s, y) ≡ sup
x∈C
{U(s, x)− x · y}, (24)

which is evidently convex and �∗-decreasing. Regularity of V is assured by the
following simple result, whose proof is deferred to the Appendix.

Proposition 1 For every s ∈ S, for each z ∈ int(C∗) we have V (s, z) <∞, and

V (s, z) = max
x∈C
{U(s, x)− x · z}.

The final condition on U is this:

(U7) for each s ∈ S, −∂V (s, z) is �∗-decreasing on int(C∗).

In more detail, this says that if z �∗ z′ are two elements of int(C∗), and x ∈
−∂V (s, z), x′ ∈ −∂V (s, z′), then x′ � x.
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In terms of U , we define the functions u : C → [−∞,∞) and v : C∗ → (−∞,∞]
by

u(x) ≡ sup
f∈X (x)

∫
U(s, f(s))µ(ds) (25)

and

v(y) ≡ inf
g∈Y(y)

∫
V (s, g(s))µ(ds). (26)

To avoid vacuous statements, we make the following finiteness assumption:

(F) for some f0 ∈ X and g0 ∈ Y we have∫
U(s, f0(s))µ(ds) > −∞,∫
V (s, g0(s))µ(ds) < ∞.

Notice immediately one simple consequence of (F) and the assumption (XY): if
f ∈ X (x) and g ∈ Y(y), then∫

U(s, f(s)) µ(ds) ≤
∫ [

U(s, f(s))− f(s) · g(s)
]
µ(ds) + x · y

≤
∫
V (s, g(s)) µ(ds) + x · y. (27)

Taking g = g0 in this inequality tells us that u < ∞, and taking f = f0 tells us
that v > −∞.

Theorem 1 The functions u and v are dual:

v(y) = sup
x∈C

[ u(x)− x · y ], (28)

u(x) = inf
y∈C∗

[ v(y) + x · y ]. (29)

Proof. Firstly, notice that part of what we have to prove is very easy: indeed,
using the inequality (27), by taking the supremum over f ∈ X (x) and the infimum
over g ∈ Y(y) we have that

v(y) ≥ u(x)− x · y (30)

for any x ∈ C and y ∈ C∗. The other inequality is considerably more difficult,
and is an application of the Minimax Theorem.
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Define the function Φ : X × Y → [−∞,∞) by

Φ(f, g) ≡
∫

[ U(s, f(s))− f(s) · g(s) ] µ(ds), (31)

and introduce the sets An ⊆ C by

An ≡ C ∩ (nx0 − C).

The sets An are clearly increasing in n, closed and convex, and are bounded
because int(C∗) is assumed non-empty. In view of (19), for any n we shall have
for all large enough m that Bn ∩ C ⊆ Am.

We now introduce certain subsets of L∞C (S,S, µ) defined in terms of the sets An:
for each n we define

Bn ≡ {f ∈ L∞C (S,S, µ) : f(s) ∈ An ∀s}. (32)

Then Bn is convex, and compact in the topology σ(L∞, L1). We need the following
result.

Lemma 1 For each y ∈ C∗, for each g ∈ Y(y), the map f 7→ Φ(f, g) is upper
semicontinuous on Bn and is sup-compact: for all a

{f ∈ Bn : Φ(f, g) ≥ a} is σ(L∞, L1)-compact.

Proof. The map f 7→
∫
f · g dµ is plainly continuous in σ(L∞, L1) on Bn, so it

is sufficient to prove the upper semicontinuity assertion in the case g = 0,

f 7→
∫
U(s, f(s)) µ(ds).

Once we have upper semicontinuity, the compactness statement is obvious. So
the task is to prove that for any a ∈ R, the set

{f ∈ Bn :

∫
U(s, f(s)) µ(ds) ≥ a}

=
⋂
ε>0

{f ∈ Bn :

∫
U(s, f(s) + εψ(s)) µ(ds) ≥ a}

is σ(L∞, L1)-closed. The equality of these two sets is immediate from the Mono-
tone Convergence Theorem and the fact that ψ ∈ X , and the fact that U(s, ·) is
�-increasing for all s. We shall prove that for each ε > 0 the set

Nε = {f ∈ Bn :

∫
U(s, f(s) + εψ(s)) µ(ds) < a}
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is open in σ(L∞, L1). Indeed, if h ∈ Bn is such that∫
U(s, h(s) + εψ(s)) µ(ds) = a− δ < a,

we have by (U2) that for any f ∈ Bn∫
U(s, f(s) + εψ(s)) µ(ds)

≤
∫ [

U(s, h(s) + εψ(s)) + (f(s)− h(s)) · ∇U(s, h(s) + εψ(s))
]
µ(ds)

≤ a− δ +

∫
(f(s)− h(s)) · ∇U(s, h(s) + εψ(s)) µ(ds)

Since ∇U(s, h(s) + εψ(s)) ∈ L1(S,S, µ) by (U5), this exhibits a σ(L∞, L1)-open
neighbourhood of h which is contained in Nε, as required. �

We now need the Minimax Theorem, Theorem 7 on p 319 of Aubin & Ekeland
(1984), which we state here for completeness, expressed in notation adapted to
the current context.

Minimax Theorem. Let B and Y be convex subsets of vector spaces, B being
equipped with a topology. If

(MM1) for all g ∈ Y , f 7→ Φ(f, g) is concave and upper semicontinuous;

(MM2) for some g0 ∈ Y , f 7→ Φ(f, g0) is sup-compact;

(MM3) for all f ∈ B, g 7→ Φ(f, g) is convex,

then
sup
f∈B

inf
g∈Y

Φ(f, g) = inf
g∈Y

sup
f∈B

Φ(f, g),

and the supremum on the left-hand side is attained at some f̄ ∈ B.

We therefore have

sup
f∈Bn

inf
g∈Y(y)

Φ(f, g) = inf
g∈Y(y)

sup
f∈Bn

Φ(f, g). (33)

From this,

sup
f∈Bn

inf
g∈Y(y)

Φ(f, g) = inf
g∈Y(y)

∫
Vn(s, g(s)) µ(ds) ≡ vn(y), (34)

say, where
Vn(s, z) ≡ sup{U(s, x)− z · x : x ∈ An} ↑ V (s, z). (35)
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Consequently, vn(y) ≤ v(y). Now in view of the property (19), we have that

Bn ⊆ X =
⋃
x∈C

ξ−1(x),

so

vn(y) = sup
f∈Bn

inf
g∈Y(y)

Φ(f, g) = sup
f∈Bn

inf
g∈Y(y)

∫
{U(s, f(s))− f(s) · g(s)}µ(ds)

= sup
f∈Bn

[∫
U(s, f(s))µ(ds)− sup

g∈Y(y)

∫
f · g dµ

]
= sup

f∈Bn

[∫
U(s, f(s))µ(ds)− inf

x∈Ψ(f)
x · y

]
= sup

f∈Bn
sup
x∈Ψ(f)

[∫
U(s, f(s))µ(ds)− x · y

]
≤ sup

f∈X
sup
x∈Ψ(f)

[∫
U(s, f(s))µ(ds)− x · y

]
= sup

x∈C
sup

f∈X (x)

[∫
U(s, f(s))µ(ds)− x · y

]
= sup

x∈C

[
u(x)− x · y

]

The sequence vn(y) clearly increases with n, so the proof will be complete provided
we can prove that

lim
n
vn(y) = v(y), (36)

for which we fashion a variant of the argument in Kramkov & Schachermayer
(1999); some points require a little care, and we present the proof through a
sequence of lemmas whose proofs occupy the Appendix.

Proposition 2 There exists some sequence (hn) in Y(y) such that hn → h µ-
almost everywhere, and such that

lim
n

∫
Vn(s, hn(s)) µ(ds) = lim

n
vn(y).

The limit h is in Y(y), by property (Y2).

Proposition 3 For all n ≤ m, for all z ∈ C∗, for all s ∈ S,

Vm(s, εn(s) + z) = V (s, εn(s) + z). (37)
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Proposition 4 The family {V (s, εn(s) + g(s))− : n ∈ N, g ∈ Y(y)} is uniformly
integrable.

Let us now complete the proof of Theorem 1, using these results. We have

v(y) ≤
∫
V (s, h(s)) µ(ds)

≤ lim inf
n

∫
V (s, εn(s) + h(s)) µ(ds)

≤ lim inf
n

lim inf
m≥n

∫
V (s, εn(s) + hm(s)) µ(ds)

≤ lim inf
n

lim inf
m≥n

∫
Vm(s, εn(s) + hm(s)) µ(ds)

≤ lim inf
n

lim inf
m≥n

∫
Vm(s, hm(s)) µ(ds)

≤ lim sup
n

vn(y)

≤ v(y)

using respectively: the definition (26) of v and the fact (Proposition 2) that
h ∈ Y(y); Fatou’s Lemma, Proposition 4, and (22); Fatou’s Lemma, Proposition
4; Proposition 3; the fact that Vm is �-decreasing; Proposition 2; the fact that
vn(y) ≤ v(y) for all n. This chain of inequalities of course establishes (36), which
finishes the proof of Theorem 1. �

4 The examples concluded.

Now we complete the analysis of Example 1 and 2 using the theory we have
developed in Chapter 3. This closes the gap and proves that the dual problems
indeed are as assumed in Chapter 2.

4.1 Example 1: Cuoco-Liu (2000)

The second step: proving duality. In order to use Theorem 1 to prove the
dual form of the problem, we have to cast the Cuoco-Liu example in the form
of Section 3, and verify the conditions of Theorem 1. The dimension d of the
problem is 1, and the convex cone C is R+.

For the finite measure space (S,S, µ) we take

S = [0, T ]× Ω, S = O[0, T ], µ = (Leb[0, T ] + δT )× P,
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where O[0, T ] is the optional8 σ-field restricted to [0, T ]. The set X (x) is the
collection of all bounded optional f : S 7→ R

+ such that for some non-negative
(X, c) satisfying (1), for all ω,

f(t, ω) ≤ c(t, ω), (0 ≤ t < T ), f(T, ω) ≤ X(T, ω). (38)

Remark. The assumption that f is bounded is a technical detail without which it
appears very hard to prove anything. The conclusion is not in any way weakened
by this assumption, though, as is discussed in Rogers (2001), Chapter 4.

Next we define Y0(y) to be the set of all solutions to (5) with initial condition
Y0 = y. From this we define the set Y(y) to be the collection of all non-negative
adapted processes h such that for some Y ∈ Y0(y)

h(t, ω) ≤ Y (t, ω) µ-almost everywhere.

Finally, we define a utility function U : S×R+ 7→ R∪{−∞} in the obvious way:

U((t, ω), x) = U(t, x),

and we shall slightly abuse notation and write U in place of U henceforth.

We have now defined the objects in terms of which Theorem 1 is stated, and we
have to prove that they have the required properties.

The proof of (X1)-(X4) and (Y1) can be found in Rogers (2001).

(Y2) In view of Assumption (B), we know that

g̃(t, x, ω) = +∞ ∀|x| > γ,∀t, ω.

Suppose that (hk) is some sequence in Y(y) converging in µ-measure; we may
(and shall) by passing to a subsequence suppose that the sequence converges µ-
almost-everywhere to limit h. The aim is to prove that h is dominated by some
element of Y0(y).

For each k there exists a process νk such that the process Y k, solution to

dY k
t = Y k

t

[
Σ−1
t (rt1− bt − νkt ) · σtdWt − (rt + g̃(t, νkt ))dt

]
, Y k

0 = y, (39)

dominates hk µ-a.e.. We may without loss of generality assume that |νkt | ≤ γ for
all t and ω. To see this, if we define the function

Φ(x) ≡ x
γ ∧ |x|
|x|

,

8That is, the σ-field generated by the stochastic intervals [τ,∞) for all stopping times τ of
the Brownian motion. See, for example, Section VI.4 of Rogers & Williams (2000).
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and replace the process νk by ν̄k ≡ Φ(νk), then Y k is changed to Ȳ k, which agrees
with Y k up to the stopping time

τ k ≡ inf{t :

∫ t

0

I{|νks |>γ}ds > 0}.

However, Y k vanishes on (τ k ∧T, T ], so we have throughout [0, T ] that Y k ≤ Ȳ k,
and it will be sufficient to prove that some limit of the Ȳ k is in Y(y) and dominates
h.

Since we now have that νkt lies in the compact closed unit ball of radius γ, we
can apply Lemma A1.1 of Delbaen & Schachermayer (1994) to deduce that we
may find θk ∈ conv(νk, νk+1, . . .) which converge µ-a.e. to some limit θ. If we
now define Ŷ k to be the solution to (39) with νk replaced by θk, we have

log(Ŷ k
t /y) =

∫ t

0

Σ−1
s (rs1−bs−θks ) ·dZs−

∫ t

0

(rs+ g̃(s, θks )+
1

2
θks ·Σ−1

s θks ) ds. (40)

Passing to a subsequence if necessary, and using the uniform boundedness of
the θk, we may suppose that the stochastic integral terms on the right of (40)
converge uniformly almost surely. We may not be able to deduce the convergence
of the Lebesgue integral terms involving g̃, but the Fatou inequality works the
right way for us, and yields

lim sup log(Ŷ k
t /y) ≤

∫ t

0

Σ−1
s (rs1− bs − θs) · dZs

−
∫ t

0

(rs + g̃(s, θs) +
1

2
θs · Σ−1

s θs) ds

≡ log(Ŷt/y), (41)

say. Now Ŷ ∈ Y0(y), and if θk =
∑

j≥k p
k
jν

j represents θk as a finite convex

combination of the νj, by the argument that establishes (Y1) we have∑
j≥k

pkjh
j
t ≤

∑
j≥k

pkjY
j
t ≤ Ŷ k

t . (42)

But the limit of the leftmost expression in (42) is µ-a.e. equal to h, and the limit
superior of the rightmost expression in (42) is at most Ŷt, which establishes that
h ∈ Y(y), and hence gives property (Y2).

The properties of the utility, and the finiteness assumption are dealt with as fol-
lows: properties (U1) and (U2) are evident, moreover x 7→ U(s, x) is differentiable
and (U7) holds. The remaining properties must be checked on each particular
case. For example, if the utility has separable form

U(s, c) = h(s)f(c)
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then provided h is bounded, and f is strictly increasing, concave and satisfies
the Inada conditions, the conditions (U3)–(U6) are satisfied. For the finiteness
condition (F), we must once again check this for each particular case.

The proof of (XY) is the tricky part and is done in Rogers (2001), Chapter 4.
This (and the corresponding part of Example 2) requires a condensation argument
to construct a limiting optimal process; such arguments are presented in much
more general settings in the paper of Guasoni (2002), and various other papers
referred to there. However, the presence of running consumption in the objective
is a point of difference between our examples and the situations studied in those
references, which means that their results cannot be immediately carried over to
the present context.

Remark: convex constraints. If we take the Cuoco-Liu problem and impose
the constraint that the portfolio should always lie in some closed convex set K,
then the dynamics are still represented by (1), where now g is modified to be
−∞ off the set K. However, such a modified g no longer satifies the global
Lipschitz condition needed for the proof of the duality relationship. While it is
easy to think of ways of approximating the modified g by globally Lipschitz g to
which our result does apply, establishing that the duality relation holds in the
limit appears to be impossible at the level of generality that we have worked at
so far. For example, Cuoco & Liu (1998) require global growth conditions on
the derivative of U , and that the original g is globally Lipschitz. The details of
passing from the original g to the portfolio-constrained g must depend on context,
just as establishing (XY) must depend on context, and it seems pointless to try
to frame a set of sufficient conditions.

4.2 Example 2: Cvitanic, Karatzas (1996)

Step 2: proving duality.

The finite measure space (S,S, µ) is

S = [0, T ]× Ω, O[0, T ], µ = (Leb[0, T ] + δT )× P.

Define a cone C ⊆ R2 as follows, x denotes the vector

(
x0

x1

)
,

C =
{
x : x0 + (1− ε)x1 ≥ 0, x0 + (1 + δ)x1 ≥ 0

}
. (43)

For each x ∈ C the set X 0(x) is the collection of all optional X : S → C fulfilling
dynamics (6) with starting value X0 = x. Define X (x) to be the set of all optional
f = (f 0, f1)t : S 7→ C such that for some X ∈ X 0(x), for all ω,
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f(t, ω) � (c(t, ω), 0)t (0 ≤ t < T ), f(T, ω) � X(T, ω), (44)

where � is the partial order induced by the cone C.

The dual cone C∗ is given by the following, where y =

(
y0

y1

)
,

C∗ =
{
y : (1 + δ)y0 ≥ y1 ≥ (1− ε)y0

}
. (45)

For y ∈ C∗, we define Y0(y) to be the set9 of all processes Y = (Y 0, Y 1)
t

which
can be represented for some bounded previsible processes a and α as solutions to
the SDEs

dY 0
t = Y 0

t (αtdWt − rtdt)
dY 1

t = Y 1
t (atdWt − (ρt + σtat)dt) (46)

with initial conditions Y 0
0 = y0, Y 1

0 = y1, and such that Yt ∈ C∗ for all t.

Let Y1(y) be all optional g : S → C∗ such that there is Y ∈ Y0(y) with g �∗ Y ,
where �∗ is the partial order induced by the cone C∗. We then take Y(y) to be
the closure of Y1(y) with respect to convergence in µ.

Remark. We take here the closure in L0(µ) of the convex set Y1(y) since it is not
clear whether the condition (Y2) is satisfied for such a set of processes dominated
by exponential semimartingales in Y0(y). However, Y(y) remains convex, satisfies
(Y2) by definition, and by Fatou’s lemma

sup
g∈Y(y)

∫
f · g dµ = sup

g∈Y0(y)

∫
f · g dµ,

so all we need to confirm (XY) is to check the statements for g ∈ Y0(y). There
is of course a price to pay, and that is that the statement of the main result is
somewhat weaker.

(X1), (X2) and (X3) are trivial.

(X4) By taking (M,L) ≡ (0, 0) and c ≡ 0 and using the fact that r is bounded,
we see from the dynamics of X that, for some small enough γ > 0, the constant
function (t, ω) 7→ (γ, 0) is in X = ∪x∈CX (x) and it is clear that (γ, 0) ∈ int(C).

(Y1) The proof of the convexity of Y(y) is similar to the proof of property (X1)
in the Cuoco-Liu example, compare Rogers (2001), Chapter 4.

9... which is non-empty, as may be seen by taking α = a = (r − ρ)/σ.
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Remark. An analogous proof shows that for y ∈ C∗ and z ∈ C∗ we have that

Y(y) + Y(z) ⊆ Y(y + z) (47)

(Y2) is trivial as we have defined Y(y) as a closure.

Before we prove condition (XY) which is the difficult part of this section we
say a few words about the utility conditions. Assume we are given the utilities
U(t, .) : R+ → R and u : C → R as above (8); as in Cvitanic & Karatzas
(1996), we suppose that for each t ∈ [0, T ] the map x 7→ U(t, x) is a strictly
increasing, strictly concave, continuously differentiable function that satisfies the
Inada conditions. We shall make the convention that U(t, x) = −∞ for x < 0.

We now aim at defining a utility U : S × C → R ∪ {−∞} that fits the general
theory (Section 3) and, moreover, gives exactly the objective we want. That is,
for f fulfilling (44), we need∫

U(t, f)dµ ≤ E

[
u(X0

T , X
1
T ) +

∫ T

0

U(s, cs)ds

]
.

Construction of U : the linear map L : C → R
2
+ defined by the matrix(

1 1 + δ
1 1− ε

)
is a linear bijection of C with R2

+ that respects the cone orderings. We propose
to define a map Φ : R2

+ → R+ by

Φ(x, y) =
√
x2 + y2ϕ(θ)

(where θ = tan−1(y/x)) in such a way that the following properties are satisfied:

(u1) Φ is strictly increasing on R2
+;

(u2) Φ is concave;

(u3) ∇U(Φ) is onto (0,∞)2.

(u4) U(Φ) is concave.

It is readily verified that by choosing the function

ϕ(x) =
1 +
√

4 sin x cosx

2 +
√

2
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all the properties (u1)-(u4) hold. Hence the map U : [0, T )× C → R defined by

U(t, x) = U(t,Φ(Lx)) (48)

is concave, strictly �-increasing on C, and is easily seen to have the property
that

U(t, (c, 0)) = U(t, c). (49)

We complete the definition of U by specifying that

U(T, x) = u(x). (50)

Then, for f ∈ X (x) we have that∫
U(s, f)dµ = E

[
U(T, fT ) +

∫ T

0

U(s, fs)ds

]
≤ E

[
u(XT ) +

∫ T

0

U(s, cs)ds

]
,

as (44) is fulfilled and (49) and (50) hold. And this is exactly what we need,
compare with the objective (8).

Now the conditions (U1) to (U7) have to be checked, as well as the finiteness
condition (F). Some uniformity in t needs to be assumed for U ; sufficient is the
condition that for each a > 0, ∫ T

0

U ′(s, a)ds <∞. (51)

(U1), (U2) are trivial.

(U3) Taking x0 = (1, 0), it is a simple application of the chain rule that

∇U(t, x) = U ′(t,Φ(Lx))∇Φ(Lx)L. (52)

Since ∇Φ(nx0) is uniformly bounded, (U3) follows easily by monotone conver-
gence from (51).

(U4) If condition (U4) holds for U , then U will inherit it.

(U5) This follows quickly from (51) when we take ψ = (1, 0).

(U6) will follow if for each t ∈ [0, T ]

lim
x↑∞
|U(t, x)|/|x| = 0,

which we assume is satisfied.
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(U7) For this, we have to show that if z �∗ z′ ∈ int(C∗) and x, x′ ∈ C are such
that z ∈ ∂U(s, x), z′ ∈ ∂U(s, x′), then x′ � x. Since any z ∈ int(C∗) can be
represented as z = (a, b)L for some positive a, b, from the chain rule expression
(52) we see that it will be sufficient to show that the relation

U ′(t,Φ(x))∇Φ(x) = (a, b) (53)

between x ∈ R2
+ and (a, b) ∈ (0,∞)2 is decreasing. Now it is clear that given

(a, b) ∈ (0,∞)2 there exists a unique x ∈ R2
+ such that (53) holds, because the

ratio a/b determines the angular part of x, and then the distance of x from the
origin is derived easily, using the Inada condition and the fact that U is C1. To
see that the relation is decreasing, we have to show that if either component of
x increases, then neither component of (a, b) increases. In terms of derivatives,
this condition is

U ′′(Φ)Φ2
x + U ′(Φ)Φxx ≤ 0,

U ′′(Φ)ΦxΦy + U ′(Φ)Φyx ≤ 0,

U ′′(Φ)Φ2
y + U ′(Φ)Φyy ≤ 0.

(54)

But the concavity of Φ and U together with their monotonicity deals with the
first and the last, and the middle condition is satisfied because

Φ2
yx ≤ ΦxxΦyy

by concavity of Φ, and the consequent inequalities

|ΦyxU
′(Φ)|2 ≤ ΦxxΦyyU

′(Φ)2 ≤ (−U ′′(Φ)Φ2
x)(−U ′′(Φ)Φ2

y),

the last by the first and last parts of (54).

(XY)

In order to get condition (XY) we will need an analogue of Theorem 3.2 of Ka-
banov & Last (2002) for our setting, see Proposition 5 below. The proof consists
in reproving some results of Kabanov & Last (2002), this is rather straightfor-
ward but not completely trivial. The proofs are assembled in a technical report
of the ISDS: Some details of Example 2 in Klein & Rogers (2005), Klein (2005).
Recall the definition of Ψ(f) = {x ∈ C : f ∈ X (x)}.

Proposition 5

Ψ(f) = ∩y∈C∗{x ∈ C :

∫
f · g dµ ≤ x · y ∀g ∈ Y(y)}

= ∩y∈C∗{x ∈ C : sup
g∈Y(y)

∫
f · g dµ ≤ x · y}
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Proof. The proof is in principle reproving Theorem 3.2 of Kabanov & Last
(2002) for this setting. The details can be found in Klein (2005).

Proposition 6 Let f ∈ X . Then condition (XY) holds, that is

sup
g∈Y(y)

∫
f · g dµ = inf

x∈Ψ(f)
x · y (55)

Proof.

AsX·Y+
∫
cY 0dt ≥ 0 for allX ∈ X0(x) and Y ∈ Y0(x) it is rather straightforward

to show that X · Y +
∫
cY 0dt is a supermartingale. Hence

E[XT · YT +

∫ T

0

ctYtdt] ≤ x · y

Moreover, for elements f ∈ X (x) we have that (44) holds and each g ∈ Y(y) is
a limit of elements of Y1(y) (which are dominated by elements of Y0(y)). So we
learn that the left-hand side of (55) is no greater than the right-hand side, by the
definition of the measure µ and by Fatou.

For the proof of the reverse inequality, denote Ψy(f) = {x ∈ C : supg∈Y(y)

∫
f ·

gdµ ≤ (x, y)}, hence, by Proposition 5,

Ψ(f) = ∩y∈C∗Ψy(f).

Observe that λY(y) = Y(λy) for y ∈ C∗ and λ > 0, so that Ψy(f) = Ψλy(f).
This means, it is enough to consider y = (y0, y1)t ∈ C̃∗ = {y ∈ C∗ : y1 = 1},
therefore

Ψ(f) = ∩y∈C̃∗Ψy(f). (56)

Defining Ay = supg∈Y(y)

∫
f · g dµ, we have

Ψy(f) = {x ∈ C : x · y ≥ Ay}

so by Proposition 5, Ψ(f) is an intersection of closed half-spaces.

Assume now that (XY) does not hold, that is, there is y ∈ C̃∗ such that

Ay < inf
x∈Ψ(f)

x · y.

Ψ(f) is a closed, convex set in R2. There is xy ∈ Ψ(f) with xy · y = infx∈Ψ(f) x · y
and

Ay < xy · y.
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It is clear that xy has to lie in the boundary ∂Ψ(f) of the set Ψ(f). Now it’s a
geometric argument. We distinguish three cases:

A) There is a unique tangent to ∂Ψ(f) in xy and it touches ∂Ψ(f) in more than
one point. That’s the trivial case, by (56) there is only one possibility for Ψ(f)
to look like that, and that is xy · y = Ay, a contradiction.

B) There is a unique tangent to ∂Ψ(f) in xy and it touches ∂Ψ(f) only in xy. By
(56) there exist sequences yn and zn ∈ C̃∗ with lim yn = lim zn = y and y0

n < y0

and z0
n > y0 such that limAyn = xy · y and limAzn = xy · y. For each n we can

write y as convex combination y = λnyn + (1 − λn)zn. Then, for a subsequence
such that λn converges, still lim(λnAyn + (1 − λn)Azn) = xy · y. On the other
hand

λnAyn + (1− λn)Azn

= sup
g∈Y(λnyn)

∫
f · g dµ+ sup

h∈Y((1−λn)zn)

∫
f · h dµ

= sup
k∈[Y(λnyn)+Y((1−λn)zn)]

∫
f · k dµ

≤ sup
g∈Y(y)

∫
f · g dµ = Ay

< xy · y,

where the first equation comes from the fact that λY(y) = Y(λy) and the in-
equality in line 4 comes from (47), i.e., Y(y) + Y(z) ⊆ Y(y + z). But that’s a
contradiction, for n→∞.

C) The tangent to ∂Ψ(f) in xy is not unique. As ∂Ψ(f) is convex there is a
tangent from the left hand side and a tangent from the right hand side. By (56)
there are y1 and y2 in C̃∗ defining the two tangents and such that y0

1 < y0 < y0
2 (i.e.

such that the tangents cross the y-axes in xy · y1, xy · y2 respectively). Moreover,
there exist sequences yn and zn ∈ C̃∗ with lim yn = y1 and limn zn = y2 such that
limAyn = xy · y1 and limAzn = xy · y2. We can write y = λy1 + (1−λ)y2. Choose
subsequences such that y = λnyn + (1− λn)zn and limλn = λ. Then

lim(λnAyn + (1− λn)Azn) = λ(xy · y1) + (1− λ)(xy · y2) = xy · y.

As before this leads to a contradiction. And so we found that Ay = xy · y for all
y ∈ C∗, which gives (XY). �
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5 Appendix: Proofs of auxiliary results.

Proof of Proposition 1.The point to prove, of course, is that there cannot
be a sequence (xn) of points tending to infinity in C at which ever larger values
of U(s, x)−(x, z) are attained. So suppose that for some s this were not the case,
and that there exist xn ∈ C, |xn| → ∞, such that

a ≤ U(xn)− xn · z (57)

where for notational simplicity we temporarily drop the explicit dependence on
s, and a is some finite real less than V (z). Passing to a subsequence if necessary,
we may suppose that xn/|xn| → ξ ∈ C ∩ Sd−1; since z ∈ int(C∗), it must
be that (ξ, z) = 2ε > 0. Now we use property (U6); for all large enough n,
|U(xn)| ≤ ε|xn|. But this is incompatible with the inequality (57). �

Proof of Proposition 2. From (34) we may take gn ∈ Y(y) such that∫
Vn(s, gn(s)) µ(ds) ≤ vn(y) + n−1,

and hence by Lemma A1.1 of Delbaen & Schachermayer (1994) there can be
found convex combinations hn ∈ conv(gn, gn+1, . . .) which converge µ-almost ev-
erywhere.

In more detail, since the interior of C is non-empty, there exist x1, x2, . . . , xd ∈
int(C) which are linearly independent. Since for each j = 1, 2, . . . , d the sequence
xj · gn consists of non-negative functions, by applying Lemma A1.1 of Delbaen &
Schachermayer (1994), we can find a sequence g′n ∈ conv(gn, gn+1, . . .) such that
x1 · g′n converges µ-almost everywhere to a limit in [0,∞]. Applying the same
result again, we can make a sequence g′′n ∈ conv(g′n, g

′
n+1, . . .) such that xj · g′n

converges µ-almost everywhere for j = 1, 2. Proceeding in the same way, we
end up with the required sequence (hn), such that xj · hn is µ-almost everywhere
convergent to a limit in [0,∞] for each j = 1, 2, . . . , d. In view of property
(19), Fatou’s Lemma, and (XY), the limits must be µ-almost surely finite. This
implies that there exists hn ∈ Y(y) converging µ-a.e. to h, which is in Y(y) using
property (Y2), and for which∫

Vn(s, hn(s)) µ(ds) ≤ sup
m≥n

[ vm(y) +m−1 ].

�

Proof of Proposition 3.For notational simplicity, we omit the appearance of
s. It is a simple result on dual functions that z ∈ ∂U(x) if and only if−x ∈ ∂V (z),
and then

V (z) = U(x)− x · z. (58)
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Hence −nx0 ∈ ∂V (εn). Moreover, εn ∈ int(C∗), for if not, there would be some
x̃ ∈ C such that x̃ · εn = 0, and then the inequality

U(nx0 + tx̃) ≤ U(nx0) + t(x̃ · εn) = U(nx0)

contradicts the strict �-increase of U .

Using property (U7), for any x′ ∈ −∂V (εn + z) it must be that x′ � nx0, and so
x′ ∈ An. The proposition will be proved if we can show that

V (εn + z) ≡ sup
x∈C
{U(x)− x · (εn + z) } = U(x′)− x′ · (εn + z),

which is simply an application of (58). �

Proof of Proposition 4.This proof is a slight modification of Lemma 3.2 of
Kramkov & Schachermayer (1999), exploiting condition (U4). Firstly we note
that

−V (s, z) ≡ inf
x∈C
{x · z − U(s, x) }

≤ inf
λ>0
{ (λx∗) · z − U(s, λx∗) }

≤ inf
λ>0
{λ(x∗ · z)− u(λ) }

≡ ψ(x∗ · z),

where the concave increasing function ψ is the dual function of u. We suppose
that supa ψ(a) =∞, otherwise there is nothing to prove, and let ϕ : (ψ(0),∞)→
(0,∞) denote its convex increasing inverse. We have

lim
x→∞

ϕ(x)

x
= lim

y→∞

y

ψ(y)
= lim

t↓0

u′(t)

tu′(t)− u(t)
= lim

t↓0

∫ 1

t
u′′(ds)∫ 1

t
su′′(ds)

=∞,

using the property (U4). Now we estimate∫
ϕ(V (s, εn(s) + g(s))−)µ(ds) ≤

∫
ϕ(max{0, ψ(x∗ · (εn(s) + g(s)))}µ(ds)

≤ ϕ(0)µ(S) +

∫
ϕ(ψ(x∗ · (εn(s) + g(s))))µ(ds)

= ϕ(0)µ(S) +

∫
x∗ · (εn(s) + g(s))µ(ds).

This is bounded by a finite constant independent of n and g, in view of (23), the
fact that the constant function x∗ is in X , and property (XY). �

There is a useful little corollary of this proposition.
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Corollary 1 For each y ∈ C∗, there is some g ∈ Y(y) for which the infimum
defining v(y) in (26) is attained.

Differentiability of U implies strict convexity of V , which in turn implies unique-
ness of the minimising g.

Proof. Take gn ∈ Y(y) such that

v(y) ≤
∫
V (s, gn(s))µ(ds) ≤ v(y) + n−1. (59)

By again using Lemma A1.1 of Delbaen & Schachermayer (1994) we may suppose
that the gn are µ-almost everywhere convergent to limit g, still satisfying the
inequalities (59) Now by Proposition 4 and Fatou’s lemma,

v(y) ≤
∫
V (s, g(s))µ(ds) ≤ lim inf

n

∫
V (s, gn(s))µ(ds) ≤ v(y),

as required. The uniqueness assertion is immediate. �
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