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Abstract

This paper presents an approach to estimating a hidden process in a continuous-time
setting, where the hidden process is a diffusion. The approach is simply to minimize the
negative log-likelihood of the hidden path, where the likelihood is expressed relative to
Wiener measure. This negative log-likelihood is the action integral of the path, which
we minimize by calculus of variations. We then perform an asymptotic maximum-
likelihood analysis to understand better how the actual path is distributed around the
least-action path; it turns out that the actual path can be expressed (approximately)
as the sum of the least-action path and a zero-mean Gaussian process which can be
specified quite explicitly. Numerical solution of the ODEs which arise from the calculus
of variations is often feasible, but is complicated by the shooting nature of the problem,
and the possibility that we have found a local but not global minimum. We analyze
the situations when this happens, and provide effective numerical methods for studying
this. We also show how the methodology works in a situation where the hidden positive
diffusion acts as the random intensity of a point process which is observed; here too it
is possible to estimate the hidden process.

1 Introduction.

The basic problem tackled in this paper is to try to estimate the hidden part (Xt)0≤t≤T of a
vector1 diffusion process Zt ≡ [Xt;Yt] given the observations (Yt)0≤t≤T . Of course, this is an
idealized question, because in practice we would only observe the signal at discrete instants of
time, which for simplicity we will assume are equally spaced with a spacing of h > 0. It would
then in principle be possible to write down the likelihood2 of (Znh)0≤n≤N , and maximize this
over the unobserved variables (Xnh)0≤n≤N , with the Y -values known and fixed.

1We use the Scilab/Matlab notation, where z = [x; y] denotes the column vector z formed by stacking the
column vector x above the column vector y.

2We suppose that T = Nh.
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There are two quite substantial obstacles on this path. The first is that (except in a few
special examples) there is no closed-form expression for the transition density of a general
diffusion, so evaluating the likelihood is already problematic. The second is that we are
faced with a maximization over a space of dimension proportional to N , a number which will
be large if h is small, as we envisage. The approach of this paper avoids these difficulties
completely by passing to a limiting form of the problem in which the (negative of the) log-
likelihood expression to be maximized converges to an integral, the action integral. This
can be minimized by calculus of variations, so that instead of having to do some numerical
nonlinear optimization, we find ourselves having to solve a second-order non-linear ordinary
differential equation (ODE), which is a far easier task. The only issue to be dealt with is that
the ODE is of shooting type, with boundary conditions at t = 0 and t = T , so that some
iterative solution scheme is needed: the analysis is explained in Section 3.

The action integral is only the negative log-likelihood of the path in some formal sense,
since it involves derivatives of the paths of the diffusion, and diffusion paths are not differen-
tiable. Nevertheless, it is a useful heuristic3 which leads to a rigorous approximation result
for the limiting form of the maximum-likelihood path as h ↓ 0 : see Theorem 1.

This gives us a way to identify effectively the ‘most likely’ path x∗ of X given the path
of Y , but we would also like to have some idea of how the random path of X is distributed
around x∗. This involves a study of the log-likelihood in a neighbourhood of x∗ which we
find is (to leading order) quadratic in the perturbation ξ = x − x∗. Thus the perturbation
ξ is approximately a Gaussian process, whose mean is identically zero, and whose law can
be precisely characterized by expressing ξ as the solution of a linear stochastic differential
equation: see Section 4.

Inference on a hidden diffusion intensity for a point process is discussed in Section 5,
and the relationship with SMC methodologies is discussed briefly in Section 6. Section 7
concludes.

The idea of studying the action of a diffusion path is quite ancient already, and even as a
tool for estimation there is a literature: see, for example, [4], [1], [2]. Markussen [4] arrives at
essentially the same identification of the maximum-likelihood path as we do; the expression
derived here for the Gaussian law of the perturbation is considerably more explicit. The
approach of Archambeau et al [1] has superficial similarities, but is different in major respects;
in particular, they use a minimum relative entropy criterion to identify a ‘best’ Gaussian
approximation to the hidden process, whose structure appears to require the calculation of
expectations of non-linear functionals of the path. In contrast, the approach followed here
requires only the solution of ordinary differential equations4 This is particularly advantageous
in higher dimensions, as the numerical solution of ordinary differential equations still works
quite effectively in moderately large dimension, whereas methods such as particle filtering

3This heuristic leads in a few lines to (non-rigorous) derivations of the Cameron-Martin-Girsanov change
of measure, and to large-deviation rate functions for various diffusion asymptotics.

4Archambeau et al work with a more restricted diffusion dynamic (which they assert can be extended),
and a somewhat different structure for the relation between observations and the hidden process.
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struggle in dimension much above about seven, as we shall discuss in Section 6.

2 The setting.

Suppose that we have some stochastic differential equation (SDE) in R
d

dZt = σ(t, Zt) dWt + µ(t, Zt)dt, (1)

where Z is partitioned Z = [X;Y ] and whereX is n-dimensional, Y is s-dimensional, n+s = d.
We shall suppose also that σ, σ−1 and µ are in C1

b . The problem we address is to estimate
the hidden part (Xt)0≤t≤T of Z given observations of (Yt)0≤t≤T ; the possibility that Y is non-
informative about X is included in the analysis, so what follows applies to the distribution of
an unobserved diffusion also.

Closely related to (1) is the first-order Euler-Maruyama difference scheme

dz
(n)
t = σ(tn, z

(n)
tn ) dWt + µ(tn, z

(n)
tn ) dt (2)

where tn ≡ 2−n[2nt]. Despite appearances, this can be viewed as a discrete scheme; the
increments of z have conditionally Gaussian distributions. It is known (see, for example, Mao
[3]) that for some constant C

E
[

sup
0≤t≤T

|Zt − z
(n)
t |2

]

≤ C2−n, (3)

so by the first Borel-Cantelli Lemma we conclude that there is almost-sure uniform conver-
gence of the processes z(n) to the solution Z to the SDE.

In the discrete-time approximation (2) to the SDE, the conditional density of x(j2−n)0≤j≤2nT

given y(j2−n)0≤j≤2nT can be written down immediately. The log-likelihood is

λn(x|y) = − 1

2

N−1
∑

j=0

1

h

∣

∣ σ(jh, zjh)
−1

(

zjh+h − zjh − hµ(jh, zjh)
)

∣

∣

2 − ϕ(x0)

= − 1

2

N−1
∑

j=0

h
∣

∣ σ(jh, zjh)
−1

( zjh+h − zjh

h
− µ(jh, zjh)

)
∣

∣

2 − ϕ(x0), (4)

where the prior density of x0 is exp(−ϕ(x)), and h = 2−n. Inspecting (4), we see a difference
quotient of z which it is tempting to replace with a derivative as n → ∞, leading to the
formal limit

Λ(x|y) = − 1

2

∫ T

0

∣

∣ σ(s, zs)
−1

(

żs − µ(s, zs)
)

∣

∣

2
ds− ϕ(x0) (5)

≡ −
∫ T

0

ψ(s, xs, ps) ds− ϕ(x0) (6)
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where the Riemann sum becomes an integral, and we write ps ≡ ẋs. This is a perfectly
sensible functional of a C1 path z, even though for a diffusion process the path will not be
differentiable.

Our viewpoint is that the problem which concerns us is to estimate x(j2−ν)0≤j≤2νT in
the discretely-sampled model (2), for some fixed (quite large) integer ν, and that the SDE
version of the problem is to be used to help us in this. In practice, we will only ever have the
observation data y(j2−ν)0≤j≤2νT in discretely-sampled form (how would it be stored if not?!)
so this is the realistic question. When we minimize the log-likelihood (4) over x, we only
need the values of y at the multiples of h = 2−ν ; we therefore lose no generality in supposing
that y has been interpolated (by cubic splines, say) to be C2 in all of [0, T ]. This does not of
course change (4), but it does mean that the functional Λ is meaningfully defined for any C1

path (xt)0≤t≤T . Given this, we have the following result, where to emphasize again, we are
considering what happens as n ≥ ν tends to infinity, with ν fixed.

Theorem 1 Suppose that σ, σ−1 and µ are C1
b , and that (yt)0≤t≤T is also C1. Suppose further

that
lim

|x|→∞
ϕ(x) = ∞. (7)

Then
lim

n→∞
inf
x

{

−λn(x|y)
}

= inf
x

{

−Λ(x|y)
}

. (8)

Assuming that Λ(·|y) has a unique maximizer x∗, and that xn is a maximizer of λn(·|y), then
xn → x∗ uniformly.

Proof. See Appendix A.

The usefulness of Theorem 1 is that it shows that a minimizer of −λn(·|y) is very close to
the (assumed unique) minimizer of −Λ(·|y); but this minimizer can be found by calculus of
variations without resort to some high-dimensional non-linear optimizer.

Notice that although we make a discretization error when we replace the SDE (1) with
the Euler-Maruyama scheme (2), in most examples of practical interest the magnitude of
this discretization error will be insignificant compared to the observation error that we are
attempting to see past.

3 Finding the least-action path.

Theorem 1 shows that asymptotically as the step size h = 2−n tends to zero, the maximum-
likelihood estimate of the unobserved path converges to the maximizer of the continuous-time
analogue Λ. Resorting now to calculus of variation techniques leads us to the following central
result.
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Theorem 2 The path (x, p) which minimizes the action functional

−Λ(x|y) =

∫ T

0

ψ(s, xs, ps) ds+ ϕ(x0) (9)

satisfies the following ODE with boundary conditions:

0 = Dpj
ψ(0, x0, p0) −Dxj

ϕ(x0) (10)

0 = Dxj
ψ −DtDpj

ψ − ẋkDpj
Dxk

ψ − ṗkDpj
Dpk

ψ (11)

0 = Dpj
ψ(T, xT , pT ) (12)

Proof. The negative log-likelihood to be minimized is

ϕ(x0) +

∫ T

0

ψ(t, xt, ẋt) dt ≡ ϕ(x0) +

∫ T

0

ψ(t, xt, pt) dt, (13)

where we write p ≡ ẋ. This we attack by calculus of variations; if we have found the optimal
x, then any perturbation to x + ξ must to leading order make zero change to the objective.
Writing down the first-order change and integrating by parts gives

0 = ξ0Dϕ(x0) +

∫ T

0

{

ξt ·Dxψ + ξ̇ ·Dpψ
}

dt (14)

= ξ0Dϕ(x0) +
[

ξj
tDpj

ψ
]T

0
+

∫ T

0

ξj
t

{

Dxj
ψ −DtDpj

ψ − ẋkDpj
Dxk

ψ − ṗkDpj
Dpk

ψ
}

dt.

Since ξ is arbitrary, we deduce the conditions (10), (11), (12) for optimality. �

Remarks. (i) We have found a (generally non-linear) first-order ODE (11) for (x, p), with
initial condition (10) and terminal condition (12). This will generally have a unique solution,
though the ‘shooting’ nature of the ODE is rather clumsy in practice.
(ii) We expect that this methodology will be advantageous in higher-dimensional problems;
algorithms for solving ODEs in high dimension tend to degrade less rapidly than (for example)
gradient optimization methods, or particle filtering.
(iii) If the time horizon T is too large, it may be that the shooting ODE is not able to identify
the initial and terminal conditions with sufficient accuracy.

To illustrate the methodology in action, we present here some simple examples.

Example 1. Here we take independent one-dimensional Ornstein-Uhlenbeck processes X, y

dX = σXdW − βXXdt

dy = σydW
′ − βyY dt
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where σX = 1.053, σy = 1.0127, βX = 0.1054 and βy = 0.0253. We observe Y = X + y. Then
Z = [X;Y ] solves

dZ =

(

σX 0
σX σy

)(

dW
dW ′

)

+

(

−βX 0
−βX + βy −βy

)(

X
Y

)

dt

≡ σ

(

dW
dW ′

)

+ A

(

X
Y

)

dt,

which is a simple linear SDE. For this example,

ψ(t, x, p) =
1

2

( (

p

Ẏt

)

− A

(

x
Yt

) )T

q

( (

p

Ẏt

)

−A

(

x
Yt

) )

.

A sample path of the SDE was simulated, and the results are displayed in Figure 1. The true
path is dashed in green, the noisy observation is in blue, and the least-action path is in red.

Example 2. This time we have a two-dimensional linear example, with X satisfying

dXt = dWt +

(

0 −1
1 0

)

Xt dt ≡ dWt + A0Xt dt,

and Y = X + y, where y is an independent OU process

dyt = σdwt − λyt dt,

with λ = 0.005, σ = 20. The results of the least-action analysis are displayed in Figure
2. Once again, the estimates are quite impressive, but since the underlying dynamics are a
perturbation of uniform motion in a circle, this is perhaps not so surprising.

Example 3. This is another one-dimensional example, but this time non-linear. We have
dynamics

dXt = σXdWt − b sin(aXt) dt

for X, where σX = 3, b = 12 and a = 2π/5. Thus the drift tries to keep the diffusion near
to multiples of 5. The observation Y is as before of the form Y = X + y where y is an
independent OU process

dyt = dW ′
t − λyt dt

with λ = 0.05. The results of the analysis are shown in Figure 3. As can be seen, the
hidden Markov process stays close to multiples of 5, occasionally moving from one value to a
neighbouring value, and as the observational error gets larger, the filtering performs less well.

Example 4. The final example is a more demanding test of the methodology. Here, we take
a two-dimensional non-linear dynamic for X

dXt = ΣdWt − b sin(aXt) dt
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where

Σ2 =

(

0.9 0.27
0.27 0.9

)

(15)

a, b as for the previous example. The observation is univariate, and takes the form Y = v·X+y
where y is an independent OU process

dyt = σdwt − λyt dt

where v = (1, 2), λ = 0.05, and σ = 1. It would be indeed remarkable if the methodology
was able to unscramble the two hidden components of the diffusion from observation of just
one component, and the results are shown in Fig 4; sometimes the estimate is close to the
true values, sometime less so. But it should be understood that this is not a limitation
of the methodology, which is after all discovering the maximum-likelihood estimator of the
hidden process; the relatively poor recovery of the hidden path is because we have a small
signal-to-noise ratio for this example.

4 Second-order analysis.

The first problem we focused on is maximizing the log-likelihood as given for the discretized
problem by (4). The unknown in this situation is the sequence X ≡ (xj2−ν )0≤j≤2νT , and as in

classical asymptotic ML theory, having identified the ML estimator X̂ of the unknown X , we
can enquire about the distribution of X about X̂ . This amounts to understanding the second
derivative of the log-likelihood at the MLE. Given suitable regularity of the likelihood, a Taylor
expansion shows that the distribution of X around X̂ will be approximately Gaussian, with
covariance equal to the second derivative of the log-likelihood. However, we have seen that
there are considerable methodological advantages in passing from the discrete problem (4) to
the continuous analogue (6), and these advantages apply also at the level of the second-order
terms in the expansion of the log-likelihood, as we shall now see.

Theorem 3 Suppose that x∗ is a local minimizer of the functional Λ(·|y), and define the
matrix-valued n× n functions of time

Aij
t = Dxi

Dxj
ψ, Bij

t = Dxi
Dpj

ψ, qij
t = Dpi

Dpj
ψ, (16)

evaluated along the path x∗. Then:

(i) the ODE
At + θ̇t = KT

t qtKt = (Bt + θt)q
−1
t (BT

t + θt), θT = 0 (17)

has a unique solution;
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(ii) writing x = x∗ + ξ, we have that

−Λ(x|y) + Λ(x∗|y) = Q0(ξ) + o(

∫ T

0

(|ξs|2 + |ξ̇s|2) ds), (18)

where

Q0(ξ) = 1

2
ξ0 ·

{

D2ϕ(x∗0) + θ0
}

ξ0 +

∫ T

0

1

2
(ξ̇t +Ktξt) · qt(ξ̇t +Ktξt) dt, (19)

and where
Kt = q−1

t (BT
t + θt). (20)

Remarks. (i) If we write ẇt = q
1/2
t (ξ̇t + Ktξt), then the integral term in (19) takes the

form
∫ T

0
|ẇt|2 dt, which is the action integral for standard Brownian motion. Thus informally

what we learn from Theorem 3 is that the perturbation ξ ‘looks like’ a continuous zero-mean
Gaussian process obtained by solving the linear SDE

dξt = −Ktξt dt+ q
−1/2
t dWt, (21)

and started with initial precision D2ϕ(x∗0)+θ0. The covariance of ξ can thus be obtained from
an Itô expansion of ξξT :

dξξT .
= (−Ktξtξ

T
t − ξtξ

T
t K

T
t + q−1

t )dt, (22)

where
.
= signifies that the two sides differ by a (local) martingale. Hence

V̇t = −KtVt − VtK
T
t + q−1

t (23)

and this allows us to calculate the covariance at time t, again by solving an ODE.

(ii) The ODE (17) for θ is quadratic, so there is no general result which guarantees that it
has a solution; the solution may explode. However, in this situation we can be sure that it
will not, because Λ(·|y) is minimized at x∗, as we shall see in the proof.

(iii) It has to be admitted that the relationship between Theorem 3 and the original discretized
problem is somewhat tenuous. With effort it would no doubt be possible to establish an
analogue of Theorem 1 for the second-order effect, but it is harder to see what the use of such
a result would be. The way we envisage using Theorem 3 would be to generate an approximate
distribution for the posterior of X given y, which could be checked numerically against a full
posterior5, and which could be used to give approximate moments of the posterior law of X .

5It would be rare that this could be found in closed form, so we would typically need to resort to particle
filtering to make a numerical approximation.
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Proof of Theorem 3. Let us begin by assuming the first statement (i) of the theorem
and showing how this leads to the more interesting statement (ii). We will return to prove (i)
subsequently.

If we go back to the action functional (9) and consider expanding around the local mini-
mizer x∗ by perturbing to x∗ + ξ for small ξ, the second-order contribution we get is

Q(ξ) ≡ 1

2
Dxi

Dxj
ϕ(x∗0)ξ

i
0ξ

j
0 +

∫ T

0

{

1

2
ξiξjDxi

Dxj
ψ + ξiξ̇jDpj

Dxi
ψ + 1

2
ξ̇iξ̇jDpi

Dpj
ψ

}

dt

≡ 1

2
Dxi

Dxj
ϕ(x∗0)ξ

i
0ξ

j
0 +

∫ T

0

{

1

2
ξi
tA

ij
t ξ

j
t + ξi

tB
ij
t ξ̇

j
t + 1

2
ξ̇i
t q

ij
t ξ̇

j
t

}

dt (24)

where the matrix-valued functions of time A, B and q are defined by (16). This quadratic
functional of ξ characterizes the (approximate) Gaussian distribution of the perturbation. Let
us notice that because x∗ is assumed to be a minimizer of the action functional, this quadratic
functional of ξ must be non-negative.

Now suppose that we have some C1 symmetric-matrix-valued function of time, θ, such
that θT = 0. Then we may write

Q(ξ) = Q(ξ) + 1

2
ξ0 · θ0ξ0 +

[

1

2
ξt · θtξt

]T

0

= 1

2
ξ0 · (D2ϕ(x∗0) + θ0)ξ0

+

∫ T

0

{

1

2
ξt · Atξt + ξt ·Btξ̇t + 1

2
ξ̇t · qtξ̇t + 1

2
ξt · θ̇tξt + ξt · θtξ̇t

}

dt. (25)

The quadratic form inside the integral can be expressed as

1

2
ξ̇t · qtξ̇t + ξt · (Bt + θt)ξ̇t + 1

2
ξt · (At + θ̇t)ξt = 1

2
(ξ̇t +Ktξt) · qt(ξ̇t +Ktξt), (26)

where Kt ≡ q−1
t (BT

t + θt), provided

At + θ̇t = KT
t qtKt = (Bt + θt)q

−1
t (BT

t + θt), (27)

that is, provided θ solves the ODE (17). Therefore we have shown that the second statement
of the theorem follows once we have established the first.

We now turn to the issue of the existence6 of a solution to (17). The proof that the
quadratic ODE (17) has a solution exploits the only piece of information we have about
the quadratic form Q, namely that it is non-negative, since x∗ maximized Λ(x|y). We may
therefore consider the optimal control problem

G(t, x) ≡ inf

{
∫ T

t

{

1

2
ξs · Asξs + ξs · Bsξ̇s + 1

2
ξ̇s · qs ξ̇s

}

ds : ξt = x

}

(28)

6Uniqueness of the solution is not a problem, because the right-hand side of the ODE (17) is locally
Lipschitz in θ, and once we know that there exists a solution this is enough to guarantee uniqueness.
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which is well posed, and the solution G has a quadratic form:

G(t, x) = 1

2
x ·Htx, (29)

which is centred, since clearly G(t, 0) = 0 for all t. Since G is the value function, we shall
have that

h(t) ≡
∫ t

0

{

1

2
ξs · Asξs + ξs · Bsξ̇s + 1

2
ξ̇s · qs ξ̇s

}

ds+G(t, ξt) (30)

is non-decreasing whatever ξ we choose, and will be constant if we choose the optimal ξ.
Differentiating (30) gives us

ḣt = 1

2
ξt · Atξt + ξt · Btξ̇t + 1

2
ξ̇t · qt ξ̇t + 1

2
ξt · Ḣtξt + ξtHtξ̇t. (31)

Minimizing over ξ̇t and equating to zero to find the optimal ξ̇t gives us

ξ̇t = −q−1
t

(

BT
t ξt +Htξt

)

, (32)

so that the minimized value of ḣt becomes

1

2
ξt · Atξt + 1

2
ξt · Ḣtξt − 1

2

(

BT
t ξt +Htξt

)

· q−1
t

(

BT
t ξt +Htξt

)

.

At optimality, this must be zero; so

0 = At + Ḣt − (Bt +Ht) q
−1
t (BT

t +Ht). (33)

Evidently from the definition we have G(T, ·) ≡ 0, so that H solves (17) with the zero
boundary condition at t = T . In other words, we have found θ, and θ = H . Notice in
particular that the equation (32) becomes ξ̇t = −Ktξt.

�

Numerical aspects.

Theorem 3 characterizes the behaviour of the path x around the local minimizer x∗, but in
any given example, this is not the end of the story. The point is that when we seek x∗ we
resort to numerical means7 to solve the ODE (11) subject to the boundary conditions (10),
(12), and it may be that the solution found is not the global minimizer. It could be that
the solution obtained is only a local minimizer; it could be that the solution found is a only
stationary point of Λ(·|y); or it could be that the numerical method has got into difficulties
and what it returns is not a solution. An obvious approach to this problem is simply to try
numerical solution of (17) back in time from initial value θT = 0; however, if the ODE solver
fails, usually the entire calculation stops, and no attempt to continue is possible. We can
avoid this issue if we transform the first-order non-linear Riccati ODE into a second-order
linear ODE. The following result gives all we need.

7All the calculations for this paper were performed in Scilab www.scilab.org which is a free and very
versatile package able to perform a wide range of numerical and graphical tasks.
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Proposition 1 Suppose that x∗ is a solution to (10), (11), (12), and that A, B and q are
defined in terms of x∗ by (16). Then:

(i) If the ODE (17) has a unique solution, then the n×n-matrix-valued function Ft defined
as the unique solution to the first-order linear ODE

Ḟt = −KtFt ≡ −q−1
t (BT

t + θt)Ft, FT = I (34)

solves the second-order linear ODE

0 = (At − ḂT
t )Ft + (Bt −BT

t − q̇t)Ḟt − qtF̈t (35)

with boundary conditions

FT = I, BT
TFT + qT ḞT = 0. (36)

(ii) If the (unique) solution to (35) with boundary conditions (36) is non-singular for all
time, then θ defined by

BT
t + θt = −qtḞtF

−1
t (37)

solves (17), and is the unique solution.

(iii) If the (unique) solution to (35) with boundary conditions (36) fails to be non-singular
for all time, then x∗ cannot be a local minimizer of Λ(·|y).

Proof. (i) Suppose that θ is the unique solution to (17), and use this to define a function
F using (34) with conditions (36) at T . Since (34) is a linear ODE with bounded continuous
coefficients, it has a unique solution. Multiplying (34) on the left by qt and differentiating
leads to

−qF̈ − q̇Ḟ = (ḂT + θ̇)F + (BT + θ)Ḟ

= (ḂT − A+ (B + θ) q−1(BT + θ))F + (BT + θ)Ḟ (38)

= (ḂT − A)F − (B + θ)Ḟ + (BT + θ)Ḟ

= (ḂT − A)F − (B −BT )Ḟ

which is the ODE (35), as required. Here, we have used (17) at line (38).

(ii) Using (37) to define a function θ of time, we see from (36) that θT = 0, so it remains to
check that θ so defined satisfies (17). Multiplying on the right by F and differentiating (37)
gives us

(ḂT + θ̇)F + (BT + θ)Ḟ = −q̇Ḟ − qF̈ = (ḂT − A)F + (BT − B)Ḟ (39)

leading to the equation

(A+ θ̇)F = −(B + θ)Ḟ = (B + θ) q−1(BT + θ)F. (40)

11



Since F is assumed to be invertible for all t, we can clear out the common factor of F on each
side and recover the ODE (17) for θ.

(iii) Suppose that x∗ were a local minimizer of Λ(·|y); then by Theorem 2, the ODE (17) has
a unique solution. We may therefore define a n×n matrix-valued function ft of time to solve

ḟt = −Ktft, fT = I

where Kt = q−1
t (BT

t +θt). Notice that K is bounded on [0, T ], so we may also define the n×n
matrix-valued function ϕt by

ϕ̇t = ϕtKt, ϕT = I.

Calculus shows that ϕtft is constant, and therefore equal to I; in particular, ft is always
invertible. According to the first statement of the Proposition, f solves the ODE (35) subject
to the boundary conditions (36), which has a unique solution. But by hypothesis, this solution
becomes singular at some time in [0, T ], which is a contradiction. The conclusion follows.

�

Remarks. The way Proposition 1 gets used in practice is that we firstly identify what we
think may be the action-minimizing path x∗ and then we solve the second-order linear ODE
(35) with the boundary conditions (36). There is never any problem with this ODE, since
it is linear with bounded continuous coefficients. Having solved for F , we now calculate the
determinant of Ft along the path of F . If this ever vanishes, it indicates that x∗ was not a
local minimizer of Q0.

5 An extension.

We have so far considered a situation where a diffusion X is observed through some continuous
process Y of observations, and we are required to estimate X. Another quite natural situation
we might want to consider would be where the hidden process X is some positive diffusion,
which acts as the intensity process of some observed point process. So suppose that there is
some non-negative diffusion x satisfying

dxt = σ(t, xt) dWt + µ(t, xt) dt (41)

which serves as the stochastic intensity of a counting process N . The times 0 < τ1 < τ2 <
. . . < τNT

< T of events are observed, and we have to filter x from these observations. In this
case, the action integral ( = -log-likelihood) to be minimised is just

ϕ(x0) +

∫ T

0

ψ(s, xs, ẋs) ds+

∫ T

0

xs ds−
n

∑

i=1

log xτi
, (42)

12



where we have abbreviated n ≡ NT , and ψ is as before

ψ(s, x, p) = (p− µ(s, x))2/2σ(s, x)2. (43)

Once again, we consider a small perturbation ξ away from the optimal x, and equate the
first-order change to zero. Assuming for simplicity that σ and µ are independent of time gives
us8

0 = ϕ′(x0)ξ0 +

∫ T

0

{ψxξ + ψpξ̇ + ξ} dt−
n

∑

i=1

ξ(τi)

x(τi)

= ϕ′(x0)ξ0 +
n

∑

j=0

∫ τj+1

τj

{ψxξ + ψpξ̇ + ξ} dt−
n

∑

i=1

ξ(τi)

x(τi)

= ϕ′(x0)ξ0 +

n
∑

j=0

[
∫ τj+1

τj

{ψx − ψpxẋ− ψppṗ+ 1}ξ dt+
[

ξtψp(xt, ẋt)
]τj+1

τj

]

−
n

∑

i=1

ξ(τi)

x(τi)
.

In order for this to be zero whatever perturbation ξ is used, we have to have a number of
conditions:

0 = ψx − ψpxẋ− ψppṗ+ 1 in each interval (τj , τj+1) ; (44)

0 = ϕ′(x0) − ψp(x0, p0) ; (45)

0 = −ψp(xτi
, pτi+) + ψp(xτi

, pτi−) − x(τi)
−1 ; (46)

0 = ψp(xT , pT ). (47)

Thus the least-action path must be constructed piecewise in each of the intervals between
observations.

Example 5. To illustrate this situation, we suppose that the positive diffusion x is a log-
Brownian motion:

dxt = xt(σdWt + µdt). (48)

Some calculations reveal that the ODE (44) is

0 =
p2 − xṗ+ σ2x3

σ2x3
. (49)

Notice that any solution of the ODE (49) must be convex while it is positive. The non-linear
ODE (49) has various solutions, and can indeed be solved explicitly. However, the explicit
solutions are explosive, so it turns out that to calculate the solution it is more effective to
work numerically, which allows us to truncate the coefficients to prevent explosions. Once a

8We write τ0 = 0, τn+1 = T .
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solution is found, the truncation is no longer necessary. Since ψp = (p − µx)/σ2x2, the final
condition (47) tells us that we must have pT = µxT , and (46) gives that

∆pτi
≡ pτi+ − pτi− = −σ2xτi

, (50)

which determines the change of derivative over the observation points. Since the gradient
drops at the observation points, this allows that the solution x found does not have to be
convex globally, even though we have observed that it must be convex in each interval between
observations.

Figure 5 illustrates the results of applying the method to this example. Despite the fact
that there were only 49 points observed in the observation period, the general shape of the
hidden intensity is well captured.

6 Relationship to particle filtering.

For the kind of problems discussed in this paper, the particle filtering9 methodology provides
a natural approach. But some simple thought experiments highlight significant limitations
of the methodology, and suggests ways in which the approach of this paper could in some
circumstances supplement or replace conventional particle filtering.

Arguably one of the greatest strengths of particle filtering is that it evolves an estimate
of the posterior distribution of the hidden variables; this guards most effectively against the
common mistake of underestimating the error in parameter estimation. However, the method-
ology though simple is hard to apply effectively. One place where problems arise is in evolving
the posterior distribution (represented by a finite collection of N point masses) forward to
the next time point. The simplest version of particle filtering allows each point to make a
jump according to the Markovian transition mechanism, and then reweights the new particles
according to their likelihood given the new observation. One often finds10 that the likelihood
of almost all (or indeed, all) the new particles is tiny; most of the new randomly-selected
particles are miles away from the observation.

To understand the magnitude of the effect, imagine that there is a ball B of radius b
hidden in the unit cube C = [0, 1]d in R

d; think of this ball as the set where f(y|x) > ε,
where f(·|x) is the density of the new observation given the true state x of the hidden Markov
process, and ε > 0 is some fixed threshold value of likelihood. If points are cast at random
into C, how many on average will be needed before one hits the ball B? The answer of course
is just b−dV −1

d , where

Vd ≡ (2π)d/2 2−d/2

Γ(1 + 1

2
d)

9The signal processing literature refers to Sequential Monte Carlo (SMC) methods.
10This is particularly problematic when there is Gaussian observation error.
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is the volume of the unit ball in R
d. If we suppose that the radius is b = 0.1, representing

a moderate amount of observational noise, Figure 6 plots the mean number b−dV −1
d against

dimension d, with the line where the mean number is one million plotted as a red dashed line
across the figure. This crosses the plot at dimension roughly equal to 7. Thus if we want
on average one particle to fall in the ball of radius 0.1 around the observation in dimension
7, we will require about one million attempts. Now of course we would not in practice just
mindlessly fire particles completely at random into C; various forms of importance sampling
will hugely improve the success rate. But this is not quite as straightforward as it first appears.
If we had a representation for the observation as

Yt = Xt + εt (51)

where X is the hidden state of the Markov process, and εt is a Gaussian observation error,
then we would bias the jumps from the particles in the population at time t− 1 towards the
new observation Yt. However, the observation equation (51) is not how it is in most examples;
more generally we have

Yt = Φ(Xt) + εt (52)

for some very complicated function Φ, and in order to bias the jumps of the particles towards
values of x which are likely relative to Yt we have to know what values of x make Φ(x) close
to Yt. In other words, we have in effect to find the ML estimator of Xt given Yt. Thus the
particle-filtering methodology, which is wholeheartedly Bayesian in philosophy and execution,
is often forced to resort to frequentist methodology in practice to help it overcome the curse of
dimension. The least-action approach advanced here is such a ML method, and could be used
to pick out a most likely path x∗ given a path Y of observations; the second-order analysis
would tell us how to simulate paths around the most likely parth x∗ so as to generate a sample
of paths which would have a reasonably high likelihood.

7 Conclusions.

This paper offers an approach to estimating a hidden diffusion process observed either through
other components of a joint diffusion, or through a point process whose intensity is the hid-
den diffusion. The approach is in effect a maximum-likelihood approach, but because of
the continuous time parameter, calculus-of-variations techniques can be applied to identify
the least-action (=maximum-likelihood) path. Moreover, by taking the calculus-of-variations
analysis to second order, we are able to find not only what the most likely path is given the ob-
servations, but also approximately what is the distribution of the hidden path about the most
likely path. One point which is worth emphasizing is that in contrast to other approaches, this
methodology works without any assumption of symmetrizability of the diffusion, and requires
only calculus in R

d. The numerical methods involve shooting solutions of ODEs, so this can
be technically quite delicate, especially if the time interval over which the solutions are to be
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constructed is long. Accordingly, it cannot yet be claimed that this methodology will work
well in all conceivable situations. However, it is a methodology which will in principle work
in quite high dimension, and for this reason shows considerable promise.
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A Appendix

Proof of Theorem 1. If z : [0, T ] → R
d is C1, then let z(n) denote the piecewise-linear

approximation which matches z at each multiple of h = 2−n. Then11 we have

λn(x(n)|y) = − 1

2

N−1
∑

j=0

h
∣

∣ σ(jh, z
(n)
jh )−1

( z
(n)
jh+h − z

(n)
jh

h
− µ(jh, z

(n)
jh )

)
∣

∣

2 − ϕ(x0)

= − 1

2

∫ T

0

∣

∣ σ(sn, zsn
)−1

(

żsn
− µ(sn, zsn

)
)

∣

∣

2
ds− ϕ(x0)

→ − 1

2

∫ T

0

∣

∣ σ(s, zs)
−1

(

żs − µ(s, zs)
)

∣

∣

2
ds− ϕ(x0)

= Λ(x|y)

by dominated convergence. Hence we have

lim sup
n→∞

inf
x

{

−λn(x|y)
}

≤ inf
x

{

−Λ(x|y)
}

. (53)

In the other direction, let Ln = infx

{

−λn(x|y)
}

, and suppose that x(n) is close to minimizing
−λn(·|y) in the sense that

−λn(x(n)|y) ≤ Ln + 2−n. (54)

We then extend x(n) by piecewise-linear interpolation to create a path z(n) defined throughout
[0, T ]. We shall compare the discrete integral

D ≡ 1

2

N−1
∑

j=0

h
∣

∣ σ(jh, z
(n)
jh )−1

( z
(n)
jh+h − z

(n)
jh

h
− µ(jh, z

(n)
jh )

)
∣

∣

2

= 1

2

∫ T

0

∣

∣ σ(sn, z
(n)
sn

)−1
(

ż(n)
sn

− µ(sn, z
(n)
sn

)
)

∣

∣

2
ds (55)

≡
∫ T

0

|as|2 ds

with the continuous integral

C ≡ 1

2

∫ T

0

∣

∣ σ(s, z(n)
s )−1

(

ż(n)
s − µ(s, z(n)

s )
)

∣

∣

2
ds (56)

≡
∫ T

0

|bs|2 ds

11Recall that sn = 2−n[2ns].
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and show that the two are very close for large n. Notice that the only difference between (55)
and (56) is that the time index passes through the discrete values j2−n in the first, but moves
continuously through [0, T ] in the second. The comparison goes via

|D − C| ≤
∫ T

0

| |as|2 − |bs|2 | ds

=

∫ T

0

|(as − bs) · (as + bs)| ds

≤
(

∫ T

0

|as − bs|2 ds
)(

∫ T

0

|as + bs|2 ds
)

(57)

by showing that the first factor in (57) is small, and the second is bounded. Firstly we exploit
(54) to give for some positive finite constants Γ and γ and 0 ≤ t ≤ u ≤ T the bounds

Γ ≥
∫ u

t

∣

∣ σ(sn, z
(n)
sn

)−1
(

ż(n)
sn

− µ(sn, z
(n)
sn

)
)

∣

∣

2
ds

≥ γ

∫ u

t

∣

∣ ż(n)
sn

− µ(sn, z
(n)
sn

)
∣

∣

2
ds

≥ γ

∫ u

t

{

1

2

∣

∣ ż(n)
sn

∣

∣

2 −
∣

∣ µ(sn, z
(n)
sn

)
∣

∣

2
}

ds.

Hence we have the inequality12
∫ u

t

∣

∣ ż(n)
sn

∣

∣

2
ds ≤ Γ (58)

which yields the modulus of continuity

|z(n)
u − z

(n)
t |2 =

∣

∣

∫ u

t

ż(n)
sn

ds
∣

∣

2

≤ Γ
√
u− t. (59)

It is easy to see that the analogous inequality

∣

∣

∫ u

t

ż(n)
s ds

∣

∣

2 ≤ Γ
√
u− t. (60)

also holds. The boundedness of the second factor in (57) now follows. Using the modulus
of continuity, it is now straightforward to show that the first factor in (57) can be made
arbitrarily small by taking n arbitrarily large.

Hence given ε > 0, for large enough n we have

inf
x

{

−Λ(x|y)
}

≤ −Λ(x(n)|y) ≤ −λn(x(n)|y) + ε ≤ Ln + 2−n + ε.

12Γ denotes as usual a positive finite constant whose value matters little, and may change from line to line.
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We conclude that
inf
x

{

−Λ(x|y)
}

≤ lim inf
n→∞

Ln

which combines with (53) to give the statement (8).
For the final statement of Theorem 1, we use the condition (7) along with the modulus of

continuity proved above. This shows that the family {xn} is equicontinuous, so by the Arzela-
Ascoli Theorem is relatively compact in the topology of C[0, T ]. Any subsequential limit of
the xn converges to a path for which the value of −Λ(x|y) is minimal; but by assumption
there is only one such path, x∗, and so any subsequential limit of the xn must be x∗, hence
the xn converge in the (uniform) topology of C[0, T ] to x∗.

�

References

[1] C. Archambeau, D. Cornford, M. Opper, and J. Shawe-Taylor. Gaussian process approx-
imations of stochastic differential equations. In N. D. Lawrence, A. Schwaighofer, and
J. Q. Candela, editors, Gaussian Processes in Practice, pages 1–16. Journal of Machine
Learning Research, 2007.

[2] P. Fearnhead, O. Papaspiliopoulos, G.O. Roberts, and A.M. Stuart. Random-weight
particle filtering of continuous time stochastic processes. Journal of the Royal Statistical
Society B., 72:497–512, 2010.

[3] X. Mao. Stochastic Differential Equations and Applications. Horwood Publishing, Chich-
ester, 2007.

[4] B. Markussen. Laplace approximation of transition densities posed as Brownian expecta-
tions. Stochastic Processes and their Applications, 2009.

19



0 20 40 60 80 100 120 140 160 180 200
−15

−10

−5

0

5

10

OU process X observed as Y+z, where z is OU

Xhat_1

X_1

Y_1

Figure 1: Result of least-action filtering.
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Figure 2: Result of least-action filtering.
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Figure 4: Result of least-action filtering.
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Figure 5: An example of least-action estimation of a hidden diffusion.
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Figure 6: Limitations of particle filtering.

25


