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Abstract

We use embedding techniques to analyse the error of approximation of an optimal stopping
problem along Brownian paths when Brownian motion is approximated by a random walk.
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1 Introduction

The purpose of this paper is to estimate the rate of convergence of the approximation of an optimal
stopping problem along Brownian paths, when Brownian motion is approximated by a normalized
random walk. Our analysis of the approximation relies on embedding techniques à la Skorohod. In
[4, 5], completely different methods have been used to tackle the same problem and we will compare
our results below (see Remark 2.3).

Throughout the paper, we will use the following notations. Let (Bt)t≥0 be a standard Brownian
motion and F = (Ft)t≥0 its (augmented) natural filtration. We denote by T the set of all F-stopping
times and set

T0,1 = {τ ∈ T | 0 ≤ τ ≤ 1 a.s.}.
We denote by X a real valued random variable satisfying

E X2 = 1, E X = 0,

and by (Xk)k≥1 a sequence of iid random variables with the same distribution as X. Let

S0 = 0, Sk =
k
∑

j=1

Xj , k ≥ 1.

We denote by T S the set of all stopping times with respect to the natural filtration of the sequence
S = (Sk)k∈N and set

T S
0,n = {ν ∈ T S | 0 ≤ ν ≤ n a.s.}.
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Let f be a continuous bounded function on [0, 1] ×R and

P = sup
τ∈T0,1

E f(τ,Bτ ).

Given an integer n ≥ 1, we can approximate P by

P (n) = sup
ν∈T S

0,n

E f

(

ν

n
,
Sν√
n

)

.

It is well known (see [1, 2, 3]) that limn→∞ P (n) = P . We will prove that, if EX4 < ∞, and if f
satisfies some regularity conditions, P (n) − P = O(1/

√
n).

2 Embedding the random walk

We denote by T an embedding time for X, i.e. a stopping time T ∈ T such that

ET = EX2 = 1,

and BT has the same distribution as X. Various constructions of such a stopping time exist. One
of them, due to Azéma and Yor, is very explicit in terms of the so-called barycentre function of X
(see [7], chapter VI, section 5, or [8], chapter VI, section 51, for details). We note that the condition
EX4 < ∞ implies that T 2 is integrable. Given the embedding time T , we have the following result.

Theorem 2.1 Assume EX4 < ∞ and f : R+ ×R → R is bounded and continuous and has bounded
and continuous derivatives ∂f/∂t and ∂2f/∂x2. Let Lf = (∂f/∂t)+(1/2)(∂2f/∂x2) and σ =

√
Var T .

We have
P (n) − P ≤ σ√

n
(||Lf ||∞ + ||∂f/∂t||∞)

and

P − P (n) ≤ σ√
n
(2||Lf ||∞ + ||∂f/∂t||∞) +

||Lf ||∞
n

.

It should be noted that the L∞ norms here refer to suprema on the whole set R+ × R and not on
[0, 1] ×R.

Remark 2.2 The constants in the above estimate depend criticallly on the variance of the embedding
time T . This variance may be different for different embedding times and we do not know of any
construction of an embedding time with minimal variance. An upper bound for ET 2 in terms of
moments of X can be derived as follows. The process (B4

t − 6tB2
t +3t2)t≥0 being a martingale (see for

instance [7], chapter 4, proposition 3.8), we have

ET 2 = 2E(TB2
T )−

1

3
EB4

T .

Using the inequality 2TB2
T ≤ εT 2 + 1

ε
B4

T , for ε > 0, we get, for 0 < ε < 1,

ET 2 ≤ 3− ε

3ε(1 − ε)
EX4.

Therefore (by choosing ε = 3−
√
6),

ET 2 ≤ 5 + 2
√
6

3
EX4.
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Remark 2.3 The fact that P−P (n) = O(1/
√
n) has been proved in [5] by completely different methods,

under slightly different assumptions on f . More precisely, the pay-off functions considered in [5] are
of the form f(t, x) = e−rtg(µt+ x), where g is a continuous bounded function on the real line, with g′

bounded and g′′ bounded below. In particular, the results of [5] apply to standard American options.
So far, we have not been able to capture non smooth pay-off functions using embedding techniques.
The interest of our method lies in the simplicity of the proofs and in the explicit form of the constants
involved.

Another limitation of the embedding approach is that, with the additional condition EX3 = 0,
one may expect a better rate of convergence (see [5], Theorems 1.2 and 5.1 for partial results in that
direction). We have not been able to exploit this zero third moment condition to improve the estimates
of Theorem 2.1 by embedding techniques.

The following Proposition, which follows easily from the scaling property of Brownian motion and
the strong Markov property, shows how the approximating random walk can be embedded in the paths
of Brownian motion.

Proposition 2.4 Given an embedding time T and a positive integer n, there exists a sequence of

stopping times (T
(n)
k )k∈N such that T

(n)
0 = 0 and, for every k ∈ N,

(

T
(n)
k+1 − T

(n)
k , B

T
(n)
k+1

−B
T

(n)
k

)

is

independent of F
T

(n)
k

and has the same distribution as

(

T

n
,
BT√
n

)

.

3 Proof of the main result

Let (T
(n)
k )k∈N be a sequence of stopping times as in Proposition 2.4. Observe that the sequence

(

B
T

(n)
k

)

k∈N
has the same distribution as (Sk/

√
n)k∈N. We denote by F(n) the discrete time filtration

(F
T

(n)
k

, k ∈ N), and by T (n) the set of all F(n)-stopping times. We also set

T (n)
0,n =

{

ν ∈ T (n) | 0 ≤ ν ≤ n a.s.
}

.

Our first Lemma relates P (n) to the embedded random walk.

Lemma 3.1 We have P (n) = sup
ν∈T (n)

0,n

E f
(

ν/n,B
T

(n)
ν

)

.

Proof: Let P̄ (n) = sup
ν∈T (n)

0,n

E f
(

ν/n,B
T

(n)
ν

)

. Applying dynamic programming (see for instance [6],

chapter VI), we have P̄ (n) = Ū0, where the sequence (Ūk)0≤k≤n is defined by the following backward
recursive equations:











Ūn = f
(

1, B
T

(n)
n

)

Ūk = max

(

f

(

k
n
, B

T
(n)
k

)

,E

(

Ūk+1 | FT
(n)
k

))

, 0 ≤ k ≤ n− 1.

On the other hand, P (n) = U(0, 0), where the sequence (U(k, ·))0≤k≤n is defined by

{

U(n, ·) = f (1, ·)
U(k, x) = max

(

f
(

k
n
, x

)

,E U
(

k + 1, x+ X√
n

))

, 0 ≤ k ≤ n− 1, x ∈ R.
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Now, let Uk = U

(

k,B
T

(n)
k

)

. We have Un = f
(

1, B
T

(n)
n

)

and

E

(

Uk+1 | FT
(n)
k

)

= E

(

U

(

k + 1, B
T

(n)
k+1

)

| F
T

(n)
k

)

= E

(

U

(

k + 1, B
T

(n)
k

+B
T

(n)
k+1

−B
T

(n)
k

)

| F
T

(n)
k

)

= V

(

k + 1, B
T

(n)
k

)

,

where

V (k + 1, x) = EU

(

k + 1, x+
X√
n

)

.

Here, we have used the fact that B
T

(n)
k

is F
T

(n)
k

-measurable and B
T

(n)
k+1

−B
T

(n)
k

is independent of F
T

(n)
k

,

with the same distribution as X/
√
n. It follows that Uk = Ūk. ⋄

Lemma 3.2 Let P̃ (n) = sup
ν∈T (n)

0,n

E f
(

T
(n)
ν , B

T
(n)
ν

)

. We have

∣

∣

∣P̃ (n) − P (n)
∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂t

∣

∣

∣

∣

∣

∣

∣

∣

∞

σ√
n
.

Proof: For any ν ∈ T (n)
0,n , we have

∣

∣

∣

∣

f
(

T (n)
ν , B

T
(n)
ν

)

− f

(

ν

n
,B

T
(n)
ν

)∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂t

∣

∣

∣

∣

∣

∣

∣

∣

∞

∣

∣

∣

∣

T (n)
ν − ν

n

∣

∣

∣

∣

.

Hence, using Lemma 3.1,

∣

∣

∣P̃ (n) − P (n)
∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂t

∣

∣

∣

∣

∣

∣

∣

∣

∞
sup

ν∈T (n)
0,n

E

∣

∣

∣

∣

T (n)
ν − ν

n

∣

∣

∣

∣

.

Now, (T
(n)
k − (k/n))k∈N is an F(n)-martingale, so that

sup
ν∈T (n)

0,n

E

∣

∣

∣

∣

T (n)
ν − ν

n

∣

∣

∣

∣

= E
∣

∣

∣T (n)
n − 1

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣T (n)
n − 1

∣

∣

∣

∣

∣

∣

L2

=
σ√
n
.

⋄
Theorem 2.1 follows easily from Lemma 3.2 and from Lemma 3.3 and Lemma 3.4 below.

Lemma 3.3 We have P̃ (n) − P ≤ ||Lf ||∞
σ√
n
.

Lemma 3.4 We have P − P̃ (n) ≤ ||Lf ||∞
(

1

n
+

2σ√
n

)

.
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Proof of Lemma 3.3: Fix ν ∈ T (n)
0,n . We observe that T

(n)
ν ∈ T . Indeed, for t ≥ 0, we have

{

T (n)
ν ≤ t

}

=
n
⋃

k=0

{

T
(n)
k ≤ t

}

∩ {ν = k} .

Since ν is an F(n)-stopping time, {ν = k} ∈ F
T

(n)
k

, for k = 0, . . . , n. Hence
{

T
(n)
ν ≤ t

}

∈ Ft.

Using the definition of P and Ito’s formula, we have

E f
(

T (n)
ν , B

T
(n)
ν

)

= E f
(

T (n)
ν ∧ 1, B

T
(n)
ν ∧1

)

+E f
(

T (n)
ν , B

T
(n)
ν

)

−E f
(

T (n)
ν ∧ 1, B

T
(n)
ν ∧1

)

≤ P +E

∫ T
(n)
ν

T
(n)
ν ∧1

Lf(s,Bs)ds

≤ P + ||Lf ||∞E
(

T (n)
ν − 1

)

+

≤ P + ||Lf ||∞
∣

∣

∣

∣

∣

∣T (n)
n − 1

∣

∣

∣

∣

∣

∣

2

= P +
σ√
n
||Lf ||∞.

⋄
For the proof of Lemma 3.4, we need the following result, which will be proved at the end.

Lemma 3.5 Let (Zk)k∈N be a sequence of iid square integrable random variables. We have

E sup
0≤k≤n

Zk ≤ E Z0 +
√

(n+ 1)Var Z0.

Proof of Lemma 3.4: Fix τ ∈ T0,1 and let

ν = inf
{

k ∈ N | T (n)
k ≥ τ

}

.

We observe that ν ∈ T (n). Indeed,

{ν ≤ k} = {T (n)
k ≥ τ} ∈ F

T
(n)
k

.

We have

E f(τ,Bτ ) = E f
(

T
(n)
ν∧n, BT

(n)
ν∧n

)

+E f(τ,Bτ )−E f
(

T
(n)
ν∧n, BT

(n)
ν∧n

)

≤ P̃ (n) +E f(τ,Bτ )−E f
(

T
(n)
ν∧n, BT

(n)
ν∧n

)

.

Now, let

A1 = E
(

f(τ,Bτ )− f
(

T
(n)
ν∧n, BT

(n)
ν∧n

))

1{ν>n}

and
A2 = E

(

f(τ,Bτ )− f
(

T
(n)
ν∧n, BT

(n)
ν∧n

))

1{ν≤n}.
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We have

A1 = E
(

f(τ,Bτ )− f
(

T
(n)
ν∧n, BT

(n)
ν∧n

))

1{T (n)
n <τ}

= E

∫ τ

T
(n)
n

Lf(Bs)ds1{T (n)
n <τ}

≤ ||Lf ||∞E (τ − T (n)
n )+

≤ ||Lf ||∞E (1− T (n)
n )+ ≤ ||Lf ||∞

σ√
n
.

We now estimate A2.

A2 = E
(

f(τ,Bτ )− f
(

T (n)
ν , B

T
(n)
ν

))

1{ν≤n}

= E
(

f(τ,Bτ )− f
(

T (n)
ν , B

T
(n)
ν

))

1{T (n)
ν ≥τ}∩{ν≤n}

= −E

∫ T
(n)
ν

τ
Lf(s,Bs)ds1{T (n)

ν ≥τ}∩{ν≤n}

= −E

∫ T
(n)
ν

τ
Lf(s,Bs)ds1{1≤ν≤n}

≤ ||Lf ||∞E
(

T (n)
ν − T

(n)
ν−1

)

1{1≤ν≤n}

≤ ||Lf ||∞E sup
0≤k≤n−1

(

T
(n)
k+1 − T

(n)
k

)

Applying Lemma 3.5 with

Zk = T
(n)
k+1 − T

(n)
k ,

we obtain

A2 ≤ ||Lf ||∞
(

1

n
+

σ√
n

)

⋄
Proof of Lemma 3.5: We may assume without loss of generality that EZ0 = 0. In that case, we
have

E sup
0≤k≤n

Zk ≤
√

E sup
0≤k≤n

Z2
k

≤
√

√

√

√E

n
∑

k=0

Z2
k

=
√

(n+ 1)Var Z0.

⋄
Aknowledgement We are grateful to C. Stricker for pointing out the argument of Lemma 3.5, which
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