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Summary. We firstly consider an investor faced with the classical Merton problem
of optimal investment in a log-Brownian asset and a fixed-interest bond, but con-
strained only to change portfolio (and, if relevant, consumption) choices at times
which are a multiple of h. We show that the cost of this constraint can be well
described by a power series expansion in h, the first few terms of which we deter-
mine explicitly. Typically, this cost is not too large. We then compare this with the
cost of parameter uncertainty, as modelled by supposing that the rate of return on
the share has a prior Gaussian distribution. We find that the effect of parameter
uncertainty is typically bigger than the effects of infrequent policy review.
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1 Introduction.

In the classical Merton investment/consumption model (Merton (1969)), an agent
who may invest in a log-Brownian share® and a constant interest rate money market
account seeks to maximise the expected integrated utility of consumption, subject
to the constraint that wealth remains non-negative at all times. For the case where
the utility is constant relative risk aversion (that is, U(c) = ¢! ®/(1 — R) for some
R > 0), Merton finds that the optimal behaviour of the agent is always to invest
a fixed proportion of wealth in the risky asset, and always to consume at a rate
proportional to wealth. The constants of proportionality have explicit expressions
in terms of the parameters of the problem?*.

One feature of this solution is that the agent trying to implement it will be con-
tinuously adjusting the share holding and the consumption rate, which is clearly
impractical. A more realistic scenario would be that the agent chooses to review

2Supported partly by EPSRC grants GR/J97281 and GR/L10000.

3We consider only a single share throughout this paper; multiple shares can be handled similarly,
with slightly more tiresome notation.

4Merton solves the problem by solving the associated HIB equation. This technique is restricted
in its scope, but the problem can be solved in much greater generality; see, for example, Karatzas
(1989)



his investment and consumption decisions on a regular basis, at intervals of some
fixed positive h; think of the agent as lazy (or relaxed!) if you wish, or perhaps as
having other things to do with his life. Alternatively, the agent may be reluctant to
rebalance often due to the presence of transactions costs, and we can consider this
study as an attempt to decouple the two effects which act in a transactions-costs
problem; the losses due to imperfect portfolio balance induced by infrequent port-
folio revision, and the losses due to transactions costs. We shall have more to say
on this in the conclusions section.

For brevity, we call an agent constrained in this way an h-investor. The class of
investment/consumption policies available to the h-investor is a subset of those
available to the Merton investor, so his objective will be smaller than that of the
Merton investor - but by how much? It appears to be impossible to answer this
question in closed form, but by deriving a series expansion in the (small) parameter
h, we shall find remarkably good approximations which allow us to conclude that
the cost of a relaxed approach is surprisingly small, at least if the Merton proportion
is in [0,1]. At first sight, we might expect that the Merton solution should be the
limit as h | 0 of the solution for the h-investor, but this turns out to be true only if
the Merton proportion is in [0, 1]; the h-investor will never borrow to buy the share,
nor sell the share short, because in a time interval of length h the share price could
move disastrously, and the investor would be wiped out. The Merton investor on
the other hand would simply adjust his holding of the share as the price moved and
would keep his wealth non-negative. Thus if the Merton proportion is not in [0,1],
there is a difference between the Merton investor and the 0+4-investor, and this is
the main effect. It is worth remarking that situations where the Merton proportion
is not in [0,1] are not common in practice.

The h-investor’s problem reduces to a problem in discrete time, the form of whose
solution is known from the work of Hakansson (1970); nevertheless, this solution is
less explicit than the solution of Merton, in that it involves the solution of a one-
step optimisation problem which cannot be found in closed form. In this paper, we
take the view that the parameter h is small, and we find a series expansion for the
optimal solution. It turns out that the first three terms of this expansion are already
enough for the selection of situations we took for numerical examples.

The paper is organised as follows. In Section 2, we briefly review the two classical
Merton problems, the wealth problem (where the agent’s objective is to maximise
the expected utility of wealth at some fixed terminal time), and the consumption
problem (where the objective is to maximise the expected integrated utility of con-
sumption over all future time). Then in Section 3 we investigate the impact of the
lag on the wealth problem, and find a power-series expansion in powers of h for
the loss of efficiency, as well as the optimal investment policy. ® In Section 4, we
perform the corresponding analysis for the Merton consumption problem. In both
cases, we check our results against exact numerically computed answers, and find

5There is a growing literature on approximate hedging under finite rebalancing restrictions; see,
for example, the preprint of Martini & Patry (2000) and the references therein.
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that the power series is very accurate, and also that the magnitude of the effect is
small. Section 5 discusses why this should be a small effect; the main reason is that
the payoff of a fixed-proportion rule is quite insensitive to the chosen proportion in
a neighbourhood of the Merton proportion. However, the neighbourhood where the
payoff is affected little is actually quite small compared to the confidence interval
for the rate-of-return parameter which one would get from a typical length of data;
so this leads us in Sections 6 and 7 to investigate the effect of uncertainty in the
rate-of-return parameter. We assume that this parameter has a Gaussian prior dis-
tribution, and then use techniques of filtering theory to derive the optimal rules.
The use of such techniques in financial economics is far from new; Bawa, Brown
& Klein (1979), Klein & Bawa (1976), Klein & Bawa (1977), Dothan & Feldman
(1986), Feldman (1989), Gennotte (1986), Lakner (1995), Browne & Whitt (1996),
Lakner (1998), Karatzas & Zhao (1998), Brennan (1998) is a selection of references
dealing with classical economic optimisation problems complicated by a Bayesian
updating of unknown parameter distributions. Browne & Whitt (1996) solve the
Merton wealth problem in the case of logarithmic utility, and Lakner (1995) deals
with general utility.

Finally, in Section 8 we conclude, and discuss the relationship between our results
and earlier results on transactions costs.

2 The classical Merton wealth and consumption
problems.

An investor may invest in two assets, a money market account with constant interest
rate r, and a share with price process (S;);>¢ satisfying
for constants ¢ and «, where (W,);> is a standard Brownian motion.

In the Merton wealth problem, the investor chooses to hold 6; in the share at time
t, so that his wealth evolves as

dw; = rwdt + 0 (cdW; + (o — r)dt), (2.2)
and he aims to maximise his objective
E U(wr), (2.3)

where 7" > 0 is some fixed time horizon, and the utility U is constant relative risk
aversion (CRRA):

Ulce) = (2.4)




for some positive R, (R # 1).5 The optimal behaviour is to invest a fixed multiple
of wealth in the risky asset at all times: 6, = mw; for some constant 7. A few lines
of calculations shows that if the agent does indeed follow the rule 8, = 7wy, then
the value of his objective is

U(wo) exp| (1 — RYT{m(a— 1) + 1 — %RHUZ} , (2.5)

which is optimised by taking 7 = m,, where

a—r
T, =
o?R

(2.6)

is the so-called Merton proportion, though we note that in general it does not need
to lie in [0, 1]. The optimised value is

U(wy) exp((1 — RYT(r + %ﬁmf)). (2.7)

In the Merton consumption problem, the investor chooses to hold #; in the share at
time ¢ and to consume at rate c¢; at time ¢, so that his wealth at time ¢, w;, evolves
according to the wealth equation

dwy = (rwy — ¢;)dt + 0,(cdW, + (o — 7)dt). (2.8)

Subject to the constraint that w; > 0 for all ¢, his objective is to maximise

E /oo e " U(c,)dt (2.9)

where p > 0 is constant, and the utility U is as at (2.4) Denoting the value function
for this problem by V3, Merton [5] finds the following explicit form for the solution:

Vir(w) = 7, U(w), (2.10)
gt = TyWy, <211)
. = YWy, (2.12)

where 7, is the Merton proportion (2.6), and

_ p+(R-1)(r+(a—r1)?/2R0?)
Yo = 7
p+ (R—1)(r+ Lo*Rn?)

= 7 . (2.14)

(2.13)

There is no need to repeat Merton’s proof here. In view of the scale-invariant
nature of the problem, the form of the solution is not perhaps surprising; under the

6The case of R = 1 corresponds to logarithmic utility and needs to be treated separately, but
the results remain very similar; the details of this case are left to the interested reader.
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assumption that the investor is going to choose to hold 6; = mw; and consume at
rate yw; for some constants m and -y, the wealth of the investor is easily seen to be

w; = wo exp(mroW, + (r — v + (o — 1) — 7°6%/2)t)

and his payoftf is easily computed to be

)1—R

E /000 e P U(yw;)dt = () [ p+(R—1)(r—vy+m(a—r)—Rx20?/2) |". (2.15)

1-R

Once again, a little calculus shows that the optimal choices of 7 and ~y are as stated.

3 The h-investor’s wealth problem.

Suppose we take the Merton wealth problem for the h-investor with a fixed time hori-
zon T = Nh; the investor is only going to change his portfolio at times which are mul-
tiples of h and aims to maximise the objective (2.3). His problem is a discrete-time
dynamic programming problem, whose value function V,,(w) = sup E[U(wy)|wny, =
w] has the form

Vi(w) = AN7"U(w), (3.1)

where p R
1— Ty
A=(1-R) SupE(p + (1 —p)e™)
pE[O,l] 1 - R

= (1 - R). (3.2)

Here, Z = exp(cW), + (a—0?/2)h) is the random return on the risky asset in a time
interval of length h. Notice that A is positive whatever the value of R.

PROOF OF (3.1). The Bellman equation links V,, and V,, 1 by

Vo(w) = sup E Vi (pwZ + (1 — p)we™); (3.3)
p€[0,1]

the agent chooses the proportion p of his wealth to invest in the risky asset (and this
proportion must be in [0, 1] as discussed in the introduction), and aims to maximise
the expected derived utility of wealth at the next time point. We know that Vy = U,
and so by induction if (3.1) holds for all n > m, we have from (3.3)

Vi(w) = sup E AN ™ W (pwZ + (1 — p)we™)
pe(0,1]

7 1— rh\1-R
W' F sup B (pZ + (1 = p)e™)
p€[0,1] 1-R

= U(w)AN—

AN—m—l

as required. |



We therefore have an expression ANU (wyq) for the optimal value of the objective of
the h-investor which we can compare with the value (2.6) of the Merton investor.
But how should we compare the two? The natural measure is the efficiency.

Definition 1 The efficiency ©(h) of the h-investor relative to the Merton investor
18 the amount of wealth at time 0 which the Merton investor would need to obtain
the same maximised expected utility at time h as the h-investor who started at time
0 with unit wealth:

1
O(h) = A0 exp(—h(r + S0 Rr?)). (3.4)

It appears that there is no simple closed-form expression for the efficiency for this
problem, but as we shall see it is perfectly possible to derive a good expansion for
© in powers of h. The only part of the expression (3.4) for the efficiency which is
mysterious is
p= sup B PZHA=p)TE
P€[0,1] 1-R

which we aim to explain. Thinking of A as a small parameter, the two terms Z and

e™ in the expression for x are both close to 1, so we make a binomial expansion of
(pZ + (1 — p)e"™)1"E. Defining

X = p(Z-1)+(1-p)e" - 1)
p(exp(oWy, + (a — 6®/2)h) — 1) + (1 — p)(e™ — 1),

we have for any N > 0

p (L X)F E[ 1 X r2-R X/
1-R 1-R &< T(2-R-j) j
1 I'(2— R) X 2N+
1 X -R-2N _“
ToRTR-R_aN_1) T (2N+1)!]’
(3.5)

where the random variable 6 takes values in [0, 1]. In order to control the remainder
term, we need the estimation provided by the following result.

Proposition 1 For each N € Z™*, there exists Cy = Cn(R,0,,r) such that for
every 0 < h < 1, for any random wvariable 0 with values in [0,1], and for any
p € [0,1] we have

E |(1 +9X)_R_2N X2N+1| < CNh(2N+1)/2.



PROOF. See Appendix. |

Hence the Taylor expansion (3.5) reduces to the statement

2N ;
(1+X)-% 1 [(2—-R) EX’ oN
E = O(RN+1/2 3.6

1-R 1—R§F(2—R—j) o ) (36)
and all of the expectations appearing in this expression can be evaluated in closed
form, since X is raised to an integer power.

When 7, ¢ (0,1), the optimal choice for p to pick the point of [0, 1] nearest to
7., and this is covered in Theorems 1 and 3 below. The interesting case is when
7. € (0,1), Theorem 2, when we express the optimal p as an analytic function” of
h, p(h) = >_,>0Pn k™, and to use (3.6) to obtain as many terms in the expansion
as are required. The calculations were done using Maple, and we present below the
expansion of p up to terms in A of order 2, as well as the corresponding expansion
of the optimal consumption rate, and the efficiency. There are three cases to be
considered, according as the Merton proportion 7, is less than 0, in [0,1], or greater
than 1, and we present the three cases separately.

Theorem 1 In the case m, < 0, the optimal choice of p s 0. The efficiency is

o(h) = exp(—%RhaQWf). (3.7)

Theorem 2 In the case 0 < m, < 1, the expansion ©(h) = }_ ., O,h", of the
efficiency is given up to order 3 by

SN (3.8)

0, = 0 (3.9)
1

0, = —ZRﬂ'fOA(l — )2 (3.10)

O3 = —Rr2o®(1—m)?(4Rr? — 4Rm, —1)/24 (3.11)

The optimal proportion has a power series erpansion the first three terms of which
are

p = m (3.12)
1

p1 = o’m(m, — 5)(1 — ) (3.13)

p, = —o'm(2n, —1)(m —1)(6R72 — 6Rm, —1)/12 (3.14)

"The analyticity of the optimal p as a function of h follows from the analyticity of x in a
neighbourhhod of p = 7., h = 0, by the Implicit Function Theorem.
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Theorem 3 In the case w, > 1, the optimal choice of p 1s 1. The efficiency is

O(h) = exp(—%RhaQ(l - (3.15)

In the situation of Theorem 1, the optimal choice of p is 0, and so from (3.2) we
find that A = €™, and the stated expression (3.7) for the efficiency follows from the
definition (3.4).

Similarly, in the situation of Theorem 1, the optimal choice of p is 1, and so from
(3.2) we find that A = exp(ah — 02Rh/2); substituting into the definition (3.4) of
the efficiency yields (3.15), using the definition (2.6) of ..

The expansion reported in Theorem 2 was obtained using Maple. As a check, we
computed the exact values of k for the lags h = 272, i = —4,...,6 and compared
them with the asymptotics of Theorem 2. The parameter values used were ¢ = 0.35,
r = 0.1, « = 0.18 and R = 4, resulting in the value 0.1632653 for 7,, and Figure
1 displays a graph of the numerically-computed values (marked as dots) together

with the asymptotic values, computed from the power series expansion up to terms
in h°.

efficiency
1.000 1.005 1.010

0.995

0.990

Figure 1: Efficiency as a function of lag h for the wealth problem. Parameters for
Case B.

We see that the asymptotic is very accurate out to lags of 2 years, which would be
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a long time for most investors to leave their portfolio unchanged. We also see that
the numerical values of the efficiency are very close to unity; even for a 4-year lag,
the loss of efficiency is only 0.36 %.

In Theorem 2 we find that the loss of efficiency is O(h?). What we typically have in
mind is that the investor has a time horizon 7' > 0 and will review the portfolio NV
times before the time horizon, at intervals of length h = T'/N. Thus if we compare
the performance over [0, 7] of the Merton investor and the h-investor, we shall find
that the efficiency of the h-investor is ©(h)", and therefore to leading order the loss
of efficiency is ;Rn20*(1 — m,)?Th. This O(h) loss of efficiency is seen also in the
effect on the Merton consumption problem.

4 The h-investor’s consumption problem.

In this Section, we turn to the consumption problem of Merton.The A-investor makes
a sequence of decisions at the times nh, n € Z. Specifically, at time nh he sets aside
an amount ch of wealth to be consumed at rate ¢ during the interval [nh,nh + h),
and then chooses a proportion p = 1—q of his remaining wealth w—ch to be invested
in the risky asset until the next decision time nh + h. Of course, all of the decisions
have to be non-anticipating. We call such an investment/consumption strategy an
h-discrete policy, and define the value function as

Vi(w) = sup E[/ e U (c;)dt|wy = w),
0
the supremum being taken over h-discrete policies. We may now write down the
Bellman equation for the h-investor:
1 - e_ph h h
Vaw) = sup  Ulc) ——— + e " E[Va((w — ch)(pZ + (1 —p)e™))], (4.1)
¢>0,p€[0,1] Y

where Z = exp(cW), + (a—0?%/2)h) is the random return on the risky asset in a time
interval of length A. As in the original Merton problem, scale-invariance implies that

Vi(w) = a(h)U(w)

for some constant a(h) > 0, and our goal is to understand the dependence of a(h)
on h.

As before, we shall describe the effect of the constraint in terms of the efficiency of
the h-investor, defined as

O(h) = (alh)y™)"/ P, (4.2)

The interpretation of the efficiency is that if the Merton investor were given O(h)
at time 0, and the h-investor were given 1 at time 0, then both would achieve the
same maximised payoft.

10



Using the scaling of V},, the Bellman equation for the problem becomes

a(h) - iR o ern (PZ+ (1 —p)eh)-E
= 1— )

4.3
1—=R  >o0pep1 1—R (4.3)

where b = (1—e ")/ p. Inspection of (4.3) reveals a decoupling of the maximisation
problem; indeed, if we take as before

(pZ + qe™)' "

k= sup F , 4.4
p€(0,1] - R ( )
then the Bellman equation (4.3) can be expressed more simply as
a(h) -y R —ph 1-R
= h h)e™?"(1 — vh
A —sup [ A e (1 =2 |
and this can be maximised explicitly over v. We find that
h(h/h)!/"
1/R 4
a(h) 1— (k(1 = R)ePh)1/R”’ (45)
vy = b [1 ~ (kePh(1 — R))l/R] (4.6)
= ~(h). (4.7)

Now we saw in the previous section how to deal with k, by supposing that the
optimal proportion has an analytic expansion in powers of h, and computing the
leading terms in that expansion. Once again, there are three cases to be considered,
according as the Merton proportion =, is less than 0, in [0,1], or greater than 1, and
we present them separately.

Theorem 4 In the case 7, < 0, the optimal choice of p is 0, and the optimal K 1is

exp(r(l1—R)h)/(1—=R). Using (4.2), (4.4), (4.5), and (4.6), the efficiency O(h) and
consumption rate y(h) have explicit expressions, with expansions ©(h) =3, ., O,h"
and y(h) =3, 50 Wh™ given up to order 2 by -

(om.)?R(R — 1)1 P

O, = |1+ 4.8
0 2(p+ (R —1)r) (4.8)
@1 = —T@0/2 (49)
4r°R — (r — p)?
0, = iR O, (4.10)
and
+(R-1)r
vo = PO (R ) (4.11)
2
" o= —72—0 (4.12)
3
n = & (4.13)



Theorem 5 In the case 0 < m. < 1, the expansions ©(h) = > -, ©,h", and
Y(h) = 3,50 ah" of the efficiency up to order 2, and the consumption rate up to
order 1 are given by

9 = 1 (4.14)
1 1 m20*R(1 — m,)?
0, = —-r—-mo’R— - 4.15
4r? — R(r — 7,)?
0, = - (r =) (4.16)
24
+R02 (=Rry,r + 0* + 37102 + Rv,? + 37v,0% + 4~,r) 1,2
24+,
_Ro'(—2Ro*+3r+3y. +0*)m°
12+,
Ro* (42v,Ro? — 127,% + R?>y,2 — 30* — 47,02 — 12v,r — 4 Ry,*) 7,
962
+R06 3Ry, —o*)T,° B Ro® (5 Ry, —90%) 7,° B Rr,’0® RnB0
87,2 48,2 87,2 3272
and
o = (4.17)
1 1
no= —pn - gomI-m)(R-1) (4.18)

The expansion of the optimal proportion to invest in the share is as given in Theorem
2.

Theorem 6 In the case m, > 1, the optimal choice of p is 1, and the resulting
expression for k 1s exp(h(l — R)(a — Ro?/2)/(1 — R). Using (4.2), (4.4), (4.5) and
(4.6), the efficiency ©(h) and consumption rate y(h) have explicit expressions with
ezpansions O(h) =Y, O,h™ and y(h) =" o, ¥=h" given up to order 2 by

LR — 1)o2(m, — 1)21 %/
0, — [1 _ (B =Lo(m. — 1) (4.19)
e
1
0, = —ZGO(JZR(ZW* —1)+2r) (4.20)
AR — 1)o* — 4Ro?(7, 1672 — 4 . —1)2
0, — 6, [R( R—1)o Ro*(7y. + 3r) + 167 R(v. — ) (4.21)
96
_7T*R0'2(4R0'2 —6r — 02 — 2,)
24
m2Ro?(302(3R — 1) + 2(R— 1)(vy, — 1))
_l’_
48
_7rfR04(R -1) miRo* (R — 1)?
24 96

12



and
1

Yo = %= 50 (m - 1DHR-1) (4.22)
Mmo= —é(oj(w* —1)*(R—1) — 2v,)? (4.23)
vy = (0*(me — 1)?(R — 1) — 2,)3 (4.24)

48

Remarks. In Theorem 4, the main effect on efficiency is in the limit as A | 0, when
we find the efficiency ©, which is no greater than 1, and will be equal to 1 in the
limiting case m, = 0. Notice that in this case we also have vy = .. Apart from that
effect on efficiency, the linear term is given by ©¢(1 — 2rh), which will not be very
far from O since %7‘ is usually in the range 0-10 %.

The most interesting case is Theorem 5, where we see the effect on efficiency dom-
inated by the linear term ©;. Notice that ©/0, is actually a C' function of m,,
for m, € R. The effect on the optimal proportion invested in the share is also note-
worthy: if 7, exceeds %, then the h-investor invests more in the risky asset, else he
invests less. And irrespective of the value of 7, the h-investor will consume more
slowly than the Merton investor. Both p; and 7; depend continuously on =, but

the dependence is not C'.

Theorem 6 once again reveals a fixed cost for the h-investor, since ©q is again no
more than 1. The linear term in the cost, ©1h/©y, is greater than the corresponding
cost in Theorem 1. Generally, the higher-order terms in the expansion do not
admit such clear interpretations, and are reported more for completeness. Numerical
results make it clear that we may indeed need more than just the linear term in the
expansion.

As stated previously, Theorems 4, 5 and 6 were obtained using Maple. What should
constitute a proof of these statements? A conventional proof would be far too
laborious to check; alternatively, the sequence of Maple commands used could be
regarded as proof (and these are available to any interested reader on application to
the author). What we shall do is present the results of an independent verification
of the solution. This involved a separate (Fortran) computation of x as defined at
(3.4) for a range of parameter values. In all cases, we took ¢ = 0.35, r = 0.1, and
for a and R we took the three pairs

Case « R Ty
A 0.08 4.0 -0.0408163
B 0.18 4.0 0.1632653
C 0.18 0.5 1.3061224

We display in Figure 2 the surface of the efficiency as a function of (h, u) (where
= 1/p - the ‘mean impatience’ - is a more meaningful parameter than p).
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Figure 2: Plot of efficiency against u = 1/p and h for the Merton consumption
problem in case A
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Figure 3: Plot of efficiency against lag, showing true values (marked as large dots)
and the values obtained from the asymptotic formula using terms up to and including
order h? (plotted as a continuous curve), for the Merton consumption problem in
case B, with four different values of p

14



In this case, Theorem 4 applies, and the efficiency is given in closed form. Notice
how for h < 1 we are getting of the order of 95 % efficiency, and even for A up to 2
the efficiency is of the order of 90 % .

The next pictures Figure 3 show the efficiency in case B for four values of p: 0.1, 1,
4 and 8. The numerically computed values are given by the dots, and the asymp-
totic is shown by the continuous line. For the first two cases, the asymptotic is
extremely good. For the third and fourth, the asymptotic is good certainly out to
2/p years, which is a long time in terms of the impatience parameter p. Notice how
the numerically computed values exhibit pronounced curvature, in contrast to the
first two cases. This shows that there is sometimes need of higher-order terms in
the expansion than just the first. It is of interest to compare the size of the loss of
efficiency for this case with the previous case of the wealth problem. There we lost
0.36% for lag of 4, here we lose ten times as much, 3.6%, for lag 0.6 when p = 0.1
or 1, for lag 0.33 when p = 4, and for lag 0.20 when p = 8. Thus the h-effect on the
consumption investor is much greater than on the wealth investor, though not very
great even so.

Figure 4: Plot of efficiency against u = 1/p and h for the Merton consumption
problem in case C

Figure 4 displays the efficiency as a function of (h, ) for case C. The effect of h up
to a year is no worse than a 10 % loss of efficiency. An interesting feature is that
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the efficiency is not monotone in p.

5 Why are the effects so small?

In both the Merton consumption problem and especially the Merton wealth problem,
we find that the effect of the h-delay is numerically very small; the relaxed investor
is not losing very much. Why should this be?

To understand this better, we display in Figure 5 the efficiency of a Merton con-
sumption investor who uses the wrong value for o in the Merton policy. Specifically,
we suppose the parameters are as for Case B with p = 0.1, and that the investor
puts a constant proportion (a — 7)/0?R of wealth into the share, and consumes at
rate (p + (R — 1)(r + (a — 7)?/2R0?)/R times wealth. If a = 0.18, the true value
of «, then the investor is following the Merton policy, otherwise he is behaving sub-
optimally. The expression for the efficiency is easily derived from the expression
(2.7) for the maximum payoff. Figure 5 shows also the levels 0.9 and 0.95. We see
that the efficiency drops off quite slowly from the maximum, being over 0.95 in the
interval [.10819,.23000] and over 0.9 in the interval [.07904,.24761].

1
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0.8
0.7-
06"

05

04; — 1 T 1 T T T T T 1 T T T T T
0 005 01 015 02 025 03 035
Estimated apha

Figure 5: Plot of efficiency against estimated « for the Merton consumption problem
in case B, with p = 0.1
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This then is a qualitative explanation of the small magnitude of the loss of efficiency
for the h-investor; even for moderately large values of A, it is unlikely that the
portfolio balance will be so far away from the Merton proportion to cost too much.
It is obvious once one sees it, but the efficiency as displayed in Figure 5 is a smooth
function of a, and so near the maximum looks like a quadratic - a departure from
the Merton proportion of § only incurs a loss of order §2. This is relevant also to
the issue of transactions costs, as we shall briefly discuss in Section 8.

One might from Figure 5 conclude that it should not matter too much if the Merton
consumption investor has poor knowledge of the rate of return « on the share. How-
ever, typically the rate of return is known with very little precision, and the range
[-0.00206, 0.36206] for a which was used in Figure 5 represents a 90 % confidence
interval for o based on ten years’ observations of the share price process!!

The magnitude of the error in our estimate of « is huge; it is a point made before,
but well worth reiterating. Suppose we have daily observations on the price of an
asset which has volatility ¢ = 20% and rate of return @ = 20%. As we observe
more and more days, our estimates ¢ and & improve, but how long would we need
to observe in order to be 95% certain that we knew the values to within 5% (that is,
|6 — 0| <0.01, |&— «| <0.01)?7 For our estimate of o, the answer is about 3 years;
but after 3 years we only have 95% confidence that a is positive! To obtain the
desired precision in our estimate of o, we would need to go on observing the share
for another 1530 years!! And this level of uncertainty is intrinsic to the problem; we
could sharpen up our estimates of o by observing more frequently than daily, but
this would do nothing to improve the estimate of «!

Having seen that effects of parameter uncertainty are likely to be much greater than
the effects of delay, we now turn to a study of the effects of uncertainty in «.

6 The impact of uncertainty on the wealth prob-
lem.

In this section, we consider a Merton investor who may invest in the money-market
account with constant interest rate r, and the share (2.1), but with this difference:
the return parameter a is a random variable. We shall suppose that distribution
of A = a/o is N(\g,vp), and in order that the problem be well posed we have to
assume that R > 1. The case of the Merton wealth problem is treated in a paper
by Lakner (1995); we shall briefly summarize the relevant results below. Much
of the essential of the problem is covered also by Browne & Whitt (1996) in the
case of logarithmic utility. Brennan (1998) derives the dynamics in the observation
filtration, and finds an expression for the optimal investment rule in terms of a
solution of a HJB equation. We shall make the optimal rule explicit in what follows.

We shall investigate the cost of uncertainty, by comparing the maximised expected
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utility obtained by the investor who does not know the value of o (and so has to
filter it from observations of the share) with the maximised expected utility obtained
by an investor who is told at time 0 what the (random) value of « is, and who then
follows the Merton optimal rule for that case.

The dynamics of the share price can be expressed as

= O'Stht,

so the uninformed investor attempts to filter the value of A from observations of
X; = W, + M. We assume that A and W are independent. This is a standard
Kalman filtering problem, whose solution is given by

v Xt + Ao

dX, = dW, + 22t T 70 gy 6.2
¢ et 1+ vt (6.2)

where W is a Brownian motion in the observation filtration (X;). The distribution
of A conditional on (&}) is Gaussian with mean

o X+ Ao
At = -
1+ U()t
and variance
Vo
vy = .
1+ U()t

For more detail on the derivation of these results, see for example Bawa, Brown &
Klein (1979). The effect of this is that the investor is now investing in a risky asset
whose dynamics are given by (6.1) and (6.2). The change-of-measure martingale
which converts X in (A;) into a Brownian motion with drift r/o is

1 v T Ao t 2 r?
Z, = (1+vt) /2 exp | — = X2 (——7))( —< 0 ——) . (6.3
¢ = (14vot) " exp 5Tttt T\ T Tt T2\ T o2 (6.3)

As is well known (see, for example, Karatzas (1989)), the optimal solution to the
Merton wealth problem with fixed horizon T is found by taking the marginal utility
of terminal wealth w? to be a multiple of the state-price density process (; = e™""Z;:

U'(wy) = Cr
for some v chosen to match the initial wealth condition. In the case of CRRA utility
U(c) = ct7®/(1 — R), we can compute everything explicitly 8, to obtain

sup B[ (wr) p = w] = U(w) (B0 (6.4)

8The value function at an intermediate time will be a function of w; and 5\t. Since ;\0 = )Xo is
deterministic, there is no need to make it explicit in the notation
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Now a few calculations with the explicit expression (6.3) lead to
Ele—(l/R) — ~r(R-DT/R (1 -+ voT)(R—l)/ZR o | ()\0 _ (’I"/O'))ZCT |
(14 cuT)1/? 2R(1 + cvoT)
where ¢ =1 — (1/R), so that
sup E[U(wr)|we =w] = U(w)V(T, Ao, vo)
(1 4 vT)E-1/2
(14 cvT)B/2 -

(6.5)

= U(w)

(Mo — (r/0))?cT
— —r(R-=-1)T]|. (6.6
exp[ T < r(R =T (0)
The optimal wealth process w; will satisfy
—1/R
Wy = i E; qu"_(l/R)a
G

with optimal proportion 7; to be invested in the risky asset being given as the
coefficient of dW in the expansion of dw/w. Here, E; denotes conditional expectation
given (X:). From this we find that

(X — ) (1 + vot)
02R(1 + voT — (T —t)vy/R)’

As remarked by Brennan (1998), when R = 1 we find the standard Merton rule,
confirming the results of Feldman (1992). We also find that if the Merton proportion
is positive, then the derivative of m; with respect to R at R = 1 is negative, exactly
as one would expect, and in agreement with Brennan; the more risk averse the agent,
the less he will invest in the risky asset under uncertainty. Notice also that ast 1 7',
the investor is following more and more closely the Merton rule, and as 7" — oo, the
proportion of wealth in the risky asset goes to zero (unless R = 1); both of these
conclusions seem intuitively reasonable.

(6.7)

Tt =

Let us now compare with the investor who is told the value of A at time 0, and
who therefore follows the Merton rule. By time 7" he has made maximised expected
utility (see (2.7)) ,

(Ao —1)

20°R )] (6.8)
which now has to be averaged over the random parameter A which has a N (g, vg)
distribution. After integrating, we find that the informed investor has maximised

expected utility

R 1/ T(R=1)((Ago = 7)% + 2ro?{R+ T(R — 1)v}
Uw) (R Y (R— 1)Tv0) P [_ 202(R+ T(R — 1)vg) ] '

The efficiency ©;(T) of the uninformed investor relative to the informed one is seen

T (Y (w)

U(w)exp [—T(R —1)(r+
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after some calculations. Here, we write 7 = 1/vg. In words, the agent who is
informed at time 0 of the true value of « can do as well with wealth ©,(T) as the
investor who starts with wealth 1, but is given no information other than what he
can deduce from watching the price process.

Notice that the efficiency depends only on the time horizon T and the variance vy of
the initial estimate of A\g. What is the order of magnitude of the efficiency? Imagine
the situation where an investor observes the price of the share for a time period of
length 7 before investing, and then uses the historical data to estimate A (we make
the situation easier by supposing that ¢ is known exactly). Then it is not hard to
show that the variance of the estimator of Ay is 771. So a typical value for vy would
be somewhere in the range 0.5 to 5; observing for longer would not necessarily help,
since the mean return would not necessarily be constant over long periods of time.
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Figure 6: Plot of the values of vy required to give the same efficiency as the h-investor
solving the wealth problem, with horizons 7' = 16 years (open circle symbol), T = 4
years (+) and 7' =1 year (o). Parameters as in Case B.
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Figure 6 shows for a range of values of h the prior variance vy that would be required
to give the same efficiency as the h-investor for the Merton wealth problem. The
plot contains results for time horizons 7" = 1,4,16 years. As expected, the prior
variance at which the efficiencies match increases with h, but the main thing to
notice is the extremely small size of the values of vy - even the highest point on the
plot would require a prior variance of about 0.025, corresponding to 40 years’ worth
of estimation data. For a 1-year horizon, with A = 1, we would need a prior variance
of about 0.002, corresponding to about 500 years’ worth of estimation data. This
shows that the effect of parameter uncertainty on the Merton wealth problem is far
more significant than the h-effect.

7 The impact of uncertainty on the consumption
problem.

The dynamics in the observation filtration of the asset price is once again given by
(6.1)-(6.2), with the state-price density once again given by the change-of-measure
martingale (6.3) multiplied by the discount factor e™"*. As is well known (see, for
example, Karatzas (1989)), the optimal solution to the problem is described in terms
of the state-price density process ( as

e PU'(c}) = ¢ (7.1)
for some constant 7 chosen to match the budget constraint:
E /00 Ciepdt = wy. (7.2)
0
The budget constraint reworks to give
we = 771/RE /oo efpt/RCt(Rfl)/Rdt
0

’Y_I/RQO</\0, Vo)

Il

say, where

= (Lut)BDRR T (= (r/o)ct  p+r(R—1)
_ 3 _ t| dt.
#(%0. ) /0 (14 cvgt)'/? P 2R(1 + cvot) R

There appears to be no simpler expression for ¢. If we next consider the situation
of the investor who is told at time 0 the true value o = o\ of the rate of return
of the share, then the maximised objective of this agent will be obtained by firstly
conditioning on the value of a and then averaging over that value. What results is

* exp(—(z — oXo)%/20%0,) R R
Ulwo) /_oo Noz=on [p TER-Dit @ r)?/zR«ﬂ)] o,
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which once again seems to be impossible to express in any simpler form.

In Figure 7, we plot the surface of the efficiency of the uninformed consumption
investor relative to the informed consumption investor, as a function of yp = 1/p
and the prior variance vy. The efficiency is seen to be falling with increasing vy, but
(perhaps a little more surprisingly) falling with increasing u also.
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Figure 7: Plot of the efficiency of the uninformed consumption investor against the
informed consumption investor, as a function of the prior variance vy and the mean
impatience u = 1/p. Parameters as in Case B.

One way to understand this is that for u very short, the investor is only concerned
with what happens in the very near future, so if the investor makes poor decisions
he does not have to live with them for long. On the other hand, for large u, early
mistakes may be impossible to rectify.

Figure 8 presents for a range of values of lag parameter h the prior variance for which
the loss of efficiency of the uninformed consumption investor is exactly the same as
the loss of efficiency of the h-investor. The four panels show four different values of
p. In contrast to the similar picture Figure 6 for the wealth problem, we find that
the values of vy are not unimaginably small: taking vy = 0.2 (corresponding to an
estimate based on 5 years’ data) we find that the loss of efficiency is the same as for
h=1.6for p=0.1, h=0.76 for p=1, h =0.2 for p =4, and h = 0.09 for p = 8.
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As we see, these values are not unrealistic; h = 0.09 would correspond to an investor
who would review his portolio about once a month. So the effect of uncertainty and
the h-effect are of similar order here, in contrast to the situation of the previous
section, where we found that the effect of uncertainty was far larger. Even so, we
find that the effect of uncertainty is somewhat larger than the h-effect.

Rho=0.1 Rho=1

2 o
o o
S N
° g ° o
> < >
o -
N o
o
o o
o o
00 05 10 15 20 25 00 02 04 06 08 10
h h
Rho=4 Rho=8
™
Q o
o
oI o| N
> o > ©
-
o —
o
o o
o o
00 0.05 0.10 0.15 0.20 0.25 0.0 0.02 0.04 0.06 0.08 0.10 0.12
h h

Figure 8: Plots of the values of vy required to give the same efficiency as the h-
investor solving the consumption problem for four different values of p. Parameters
as in Case B.

8 Conclusions and discussion.

In this paper, we have modelled the effect of infrequent policy review, by allowing
the agent to change his portfolio and consumption only at times which are a multiple
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of some positive h. ? Taking as the natural yardstick the efficiency of the h-investor
(that is, the quantity of money at time 0 which the ideal Merton investor would
require to gain the same payoff), we have shown that:

(8.1) the effect of infrequent policy review can be well approximated by a power
series expansion in h, for both the wealth problem and the consumption problem;

(8.2) the magnitude of the effect is quite small in the consumption problem, and
very small for the wealth problem;

The small size of the effect is explained to some extent by the relative insensitivity
of the payoff in the standard Merton problems to the policy used, as we have seen.
This is related to results on transactions costs (see for example Constantinides (1986)
Davis & Norman (1990), Morton & Pliska (1995), Dumas & Luciano (1991)) where
one finds that introducing a small transaction cost means that the optimal policy for
the Merton consumption investor involves very infrequent portfolio rebalancing. As
is explained in Rogers (1999), the loss in the classical problem of Davis & Norman
(1990) is made up of two components, the loss due to the transactions costs, and the
loss due to being imperfectly invested, which means that the value of the portfolio
is not growing as fast as it would in the ideal Merton situation. It turns out that
these two losses are of comparable size; our analysis here shows that the loss due to
imperfect portfolio balance is typically small, and so therefore will be the loss due
to transactions costs. This explains qualitatively the fact that optimal rebalancing
in the transactions costs situation is infrequent.'’

The small size of the effect of imperfect portfolio balance led us to compare with the
magnitude of the effect of parameter uncertainty, especially in the rate of return.
Here we were able to come up with the explicit form of the optimal portfolio choice
(apparently for the first time) in the case where there is a prior Gaussian distribution
over the parameter.

By comparing the losses of efficiency due to the lag effect and due to parameter
uncertainty, we showed that:

(8.3) losses due to parameter uncertainty were far higher than the losses due to the
lag effect for the wealth problem, requiring prior estimates based on many decades
of data to match the lag effect for lags of several years;

(8.4) losses due to parameter uncertainty for the consumption problem were larger
than (but comparable with) the lag effect losses.

9Tt might be argued that we should allow the agent to change consumption between reviews of
the portfolio - the times when reviews take place are the only times the agent has access to the
market, but he can observe in the meantime what is going on. A problem of this kind is treated
by Rogers & Zane (1998).

10Tf there is a proportional transaction cost &, then the loss due to transactions costs in the
problem considered by Davis & Norman (1990) is O(6%/%) - see Shreve (1995) and Rogers (1999).
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It appears then that the Merton wealth investor can be very relaxed; his losses due
to infrequent portfolio review are far smaller than likely losses due to parameter
uncertainty. On the other hand, the Merton consumption investor can be fairly
relaxed about reviewing his portfolio, but he cannot neglect this effect in comparison
with parameter uncertainty.
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Appendix: proof of Proposition 1. Through the proof, Cy = Cn(R,0,«,r)
denotes some constant whose value changes from line to line. By the Cauchy-
Schwartz inequality, we have

1/2 1/2
E|(1+0X)~B-2N x2N+1) < (E 1+ 0X‘—2R—4N) (E ‘X‘4N—|—2) _
This gives us two terms to estimate. For the first,

E[14+0X|72F — g [|1 FOX[HEAN X > o} +E [\1 X[ L X < 0]

1+ FE [(p exp(cWy, + (o — 0°/2)h) + quh)_QR—‘lN}

14 pE exp(—(2R + 4N) (W), + (o — 62/2)h)) 4 ge~ BTNk
Cn(R,0,a,T).

ININIA

For the second, we write ¢(h) = p(e*"—1)+¢(e”"—1). Notice that supg<,<, B~ |e(h)| <
oo. Thus

E |X|4N—|—2 — |peah<eaWhﬂr2h/2 _ 1) + (p(h)|4N+2
< On(R,0,0,r)h*M,
for all 0 < h <1, since by the Burkholder-Davis-Gundy inequalities (see, for exam-
ple, Rogers & Williams (1987), IV.42) E|e”Wr—o*h/2 _ 1|7 < ¢;h//? for all h € [0, 1].
O
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