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A MARTINGALE APPROACH TO SOME WIENER-HOPF PROBLEMS, I

r
by

R.R. London, H.P. McKean, L.C.G. Rogers and David Williams

This is one of two companion papers. Thig paper, I, studies how certain
of "Feller's Brownian motions on [O,W}" may be obtained from Brownian motion
via time-substitutions based on fluctuating clocks. Paper 11 starts afresh

with a look at time substitutions for symmetrizable Markov chains; and in that
context it is possiblerto see rather more clearly what is going on. Much of
the fascination of Wiener-Hopf theory lies in the difficulty of obtaining
explicit answers in concrete cases, The second half of Paper II is a detailed
analysis, partially motivated by our study of the chain case, of a concrete
example of the problem discussed here in Paper I; and whether or not it makes

good reading, it was fun to do.

1. Introduction and summary

1.1. Let {Bt:t > 0} be a Brownian motionm omn IR with BO = 0. Let
{Lt(x):t 2 0, x € R} denote the jointly continuous local~time process of B,

normalised so that for each x,

B, -~ x| - L (x)

is a martingale. Hence L is twice the standard Brownlan local time of
A
Tto-McKean [ 1.
Let m be a measure on (-=,0]. [Note. 'Measure' always implies:

'taking values in [O,m]']

Define the additive funciionals:

t

(1a) bp 5 | Teg ey (Bd8, b,

0 _ (~c,0]

Lt(x)m(dx),



We emphasize that throughout the whole paper, m is understood to satisfy

convention (2).
The possibility that ¢_ can jump to infinity reguires us tc specify the

lifetimes C(X") of X and C(Y~) of Y more precisely.

Let p = inf{t:¢t = w}, Then
(3) (X ) I lim ¢; , L(Y ) = -inf ¢
stp s<p”
+
1.2, We wish to study the law of the process Y . It is easy to show
that
+
4(1i} Y is a strong Markov process with state-space [0,);

and it is c¢lear that

+ ;
4(ii) Y behaves 88 a Brownlan motion while inside the open interval (0,w),

+ + +
so that if G is the infinitesimal generator of Y , then G f = if"

within (0,«).

+
The results 4(i) and 4(ii) exactly comprise the statement that Y is a

) A
Feller Brownian motion in the sense of §5.7 of Ito-McKean [‘4]. Now the

domain of the infinitesimal penerator of an arbitrary Feller Brownian motion Z

is specified by a side condition of the following type:

(8)  p,2(0) - p,£7(0) + $p 27(0) = L£(x) - £¢0)Ip,(dx)
(0,=)
where pl, p2 and p3 are nonnegative constants, p4 is A measure on (0,=)
such that
. ~X
(6) 1 -e )p4(dX) < o,

and £7(0) = £'(0+), £1'0) = £7"(0+).



+
measure [t:Yt = 0} = 0,

+
and this 'must' hold since ¢ has 'no Lt(O) component’. We shall
give a proper (analytic) proof later.]
Of course, the 'abstract' statement of Theorem 7 needs to be complemented

by the more interesting solution to the 'practical' problem: How does one make

explicit the one-one correspondence between measures m and triples (pl,pz,J)

(considered projectively)? The solution is described in §1.7 after we have

introduced the necessary terminology.

1.4, Qur basic method is the 'martingale-problem' appreach to this type
of problem employed in Barlow-Rogers-Williams [ {7 and Rogers-williams [ & 1.
For each 0 > 0, we find a bounded function fe on TR such that

] 2 3|
(10) Mt = exp($d ¢t)fe(Bt) defines a martingale M .

8 +
Since M is bounded on each interval of the form [O,Tt], we may apply the
optional-gampling theorem to deduce that
2 + . .
exp(30 t)fe(Yt) is a martingale,

+ +
whence, with G again denoting the infinitesimal generator of Y , we have

(11) faeﬁ((}*’)- (and G+f6 = —%ﬂzfe).

Our hope is that on feeding the information (11) into formula (5), we can
determine the characteristics (pl,pz,ps,p4) of Y+; and this proves to be
justified.

Note. We need to be rather careful in checking the validity of the above
application of the optionai—sampling theorem because of the possibility that
T, = %, Now, of course, fe(a) = 0, by the usual convention. So the

essential thing to prove is that (except on a null set of w)



excursion processes from O, and some

independence of the 'up' and 'down'
standard independent-increment properties, we have:
‘ 6, + _ 2 2 + +
(13) ElM (Gt){gt] = expl$67t - %90 CSA(Ut)}fB(Xt),:
where ce is determined via the equation:
: 2 - -1
(14) exp(—cet) = E expl-$97¢ (A ()],
-1 '
where, of course, A “(t) = inf{u:A(u) > t}. The fact that the expression

at (13) defines a martingale implies that

£ e@(/{a) and 94"033 = -30%¢ |

igs the infinitesimal generator of elastic Brownian motion with
must satisfy

where 9LB
5 4
See §2.3 of Ito-McKean [“T'].  Hence, £,

killing constant Cy-
the boundary condition:

! —
£100) = c £ (0),

and we have (using (14)):
-1
= exp(—cet)dt

£,(0) = c
LO, =)

exp[—§02¢_(ﬂml(t))]dt

LO,*)

exp(—%ﬂzt)dA(G;)

[O,5¢X M

By a further elementary application of the optional-sampling thecrem to (10},

the reader can easily show that



If we relax the assumption that m is finite and strictly positive on

every compact subinterval of (-»,0], +then (17) still holds, but now we have

_ G (dr)
(18) £,0) = ¥+ 5 .

2
ro m)r + 0
where -y = inf{u £ O0:m[u,0] = 0} and G 1is again a measure on [0,=).

[EEEE- A certain amount of poetic licence may be needed in the interpretation
of (17) when mfa,0] = = for some a. Then fe(a) = 0, and we may need
licence to interpret O x o).

We thought it instructive to derive the analytic form of fe from the
agsumption that Me is a martingale. We leave the reader to check the converse
result, the one we really need: viz., that if f has the analytic form we have

0
¢
described, then M is indeed a martingale.

1.7. The deep and very remarkable inverse spectral theorem of Krein

(see Dym-McKean [;lj) tells us that (17) and (18) put measures m satisfying

(2) into one-one correspondence with pairs (y,G), where

(19) w2y 20, (r2 + 1)'1G(dr) <, apnd G =0 if y =,

We shall prove that if the pair (v,G) satisfies (19), and if fe(O) is

defined by (1B) and £ on (0,*) wvia (12), then the quadruple (pl,pz,ps,p4)

9

is determined uniquely (modulo multiplication by scalars) by the fact that

fe gatigfies (5) for all 6 > 0, If we temporarily assume (8), we are led via

(18), (12), and (5) to the relation:




1i.

probabilistic insight.

However, it would be totally wrong to imagine that everything of interest
in the present paper can be attributed in some way to the 'dominant’ rgle of
the process ¢ OAvl' Indeed, Paper II makesg. it clear that the way in which the

spectral decomposition of the transition semigroup of ' gaverns the law of

+
Y reflects a general principle for Markov processes. Paper Il also gives

some explanation, rather than only verification, of why the p, measure for

o
Y is completely monotone.

f
1.9. In 83, we show that the martingales M at (10) form a "full'
family in a stronger sense than is implicit in various unigueness assertions

+
made above. In particular, we show that for x < 0, the Px law of YO

is UNIQUELY determined by the Wald identity (optional~sampling result):

X + -
E'E (V) = .00 vo > 0.

This key uniqueness theorem is obtained as a consequence of the Wiener-Hopf

factorization (20) of fe(O).
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Given € > 0, we can fTirst choose & so that the first term on the right-

hand side is less than 4%¢e, and then chocse 80 s0 large that the second
term is less than 4 when 6 > 80. Hence,
-1 .
(% “sin 6x)p4(dx) = o(l) ag 06 + o
Next,
1 on
[ |1 = cosBx)p,(dx)| < | |1 - cosbx|p,(dx) + 2| p, (dx)
0 1
1 ae]
< 8 xp4(dx) + 2 p4(dx) =  0(8).
0 1
Since we are ignoring the case when fe(O) = 0,¥0, we see from (22) that

2
0 £4(0) + Ke (0,o] ag 06 + =, On dividing (23) by esz(O), we see that

Pg

-ép3 foehy = ——— + o(l).
671, (0)

_1'
If K= «w, we see that P, = 0; and if K < «, we obtain —&pa =K Py

so that (since P, 2 0 and Py > 0) we must have Py =P, = 0.

[Note. The reader should perform the exercise of spelling out the more

informative probabilistic proof described after the statement of Theorem 7.1

(25) THEOREM. The guadruple (pl,pz,o,p4) is uniquely determined (modulo

scalar multiples) by the fact that equation (23) holds for every 0 > O.

Proof, This proof is a modification of the proof due to Kingman which was

given in §5 of Rogers-Williams [6].

Let

H = {2¢e¢€ : Im(z) = 0}, m = {z ¢ € : Im(z) > 0}.



are determined up to a consgtant multiplier; and, by standard results, so too

is the quadruple (pl,pz,o,p4).

Note. In &3 below, we present a deeper unigueness result which is more useful
in practice.

2.2. We continue on the course mapped out in §1.7. If we assume (8) and

substitute (8) and (22) into (23), then we obtain the following equation,

previously labelled as (20):

[

_Jd{dr)
Po 2 2
G(dry Jro + 8
(30) Y| ey
2 2 [
r + 0
2 J(dr)
Py + 0 2 2
jr(zx +07)
We shall prove the following theorem,
(31) THEOREM. Equation (30) sets up a one-omne correspondence between pairs

(v,G) satisfying (19) and triples (pl,pz,J) (considered modulo scalar

multiples) where Py =z 0, b, 2 0, and J satisfies (9).

Let us briefly recall the logic of the situation, A measure m determines

a pair (y,G). Part of Theorem 31 guarantees the existence of a triple

(pl,pz,J) such that (30) holds. Theorem 25 guarantees that

(32) p (dx) = dx e 3 (ar)

.and also that (pl,pz,J) is unique. Conversely, if a triple (pl,pz,J) is
given, then Theorem 31 guarantees the existence of a unique pair (y,G) such
that (30) holds, and Krein's inverse spectral theorem guarantees existence and

uniqueness of the corresponding m.



7.

of atoms of masses Gi at points /(”Q (0 £ i £ n), then (30) holds where

p1= p2 =0 and J consists of atoms of masses Ji at /(ui) (0 < i = n).

'(34)  LEMMA. Suppose that G, > 0 (0 = i<n) and that

0 Wy e 1

Then there exist strictly positive constants Ji (0 £ 1 2 ny and

v, 0 <1 <mn) with

{(35) H, < v <y <y, < ..., 7 ”ﬁ < W

such that for all =z in € (with the obvious interpretation at various poles)

J,
i
G, Z + V.,
(36) ot =
i 2ty T
(z+-vk)/(uk)
Proof of Lemma 34. First, assume that (36} holds. Let =z - —Uj in (36)
to obtain;:
G
5 i _ 1
- = =Ty
i M4 vJ <vj)

Hence, the values Vv must be roots of the equation:
(37) : L — = = 1
Vx

But, on sketching the graphs of the two sideg of (37), we see that (37} has

exactly (n+1) roots v _,v

0 1,...,vn within €0,»), and that the order-

relations (35) hold.

On putting 2z = ~ui(i #Z 0) in (36), we obtain:
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2
r + 1

_Gldr)  _ x *+1 A
¥ o+ rz N 92 rz . 82 G(dr)
L0,=) Lo,=]
where
A 3 - A
(41) G(dr) = (r +1) 1G(dr) on (0,0, G{=} = ¥.

A
Since we are ignoring the case whem Yy = =, +the measure G 1s a bounded

- . *
measure on [0,e], In the sense of weak convergence of bounded measures on
, : A A (1) .
[0,~], we can approximate G by measures G each consisting of an atom
at 0 together with a finite number of atoms within (0,®). From Lemma 34,

we know that

r(r+ 1) A(n)
—E?———E-J (dr)

2 r + 6
1 A o
42) r. o+ 3 G(n)(dr) _ Jlo,=]
2T 4+ 07 2
o 8
[0,«] (r+1) Aln) (dr)
r2 + 82
[0,=]
A(n) . s
for some atomic measure J on [0,»] which we can take to be a probability
A * . Adn) '
measure, If J is any weak limit of J as n -+ ®, we have
f
r{r + 1) T(dr)
r2 + 82
- _G@ny  _ ‘lo,=]
r2 + 62 f o
o * A
[0,0) 87 (r+1) 5 car)
2 2
+ 0
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But for u > 0,

- k
b > /p L
v, - (v, ~ W)
k
vk> ok vk> u k
- 5 Jk < —yu_ z Jk
v - | v - WY,
vk> u k k< ok H
Hence for i = 1,2,...,n,
I e Jk
b > Y{u) ¥ 0,
k Vx M vy bV
and Gi > 0, 0f course,
_ . 3/2
(44) Go = (LJi/vi)(ZJk/Uk Yy > 0.

To show that (36) must hold if the Gi (G < 1 5 u) are defined via (43)

and (44), we can apply the 'polynomial' argument at the end of §2.3, or else

appeal to the Mittag-leffler theorem.

The proof of Theorem 31 is now complete.

2.6. Notes on equation (21). The Greenwood-Pitman paper [3] explains

very clearly the probabilistic significance of equation (20) viewed as a
VWiener-Hopf factorization of ¢o A—l, and equation (21) makes up one part of

the Greenwood-Pitman path decomposition,.

The partial result provided by equation (213 alsc admits & direct proof
by our martingale method. If m consists only of a finite number of atoms

within (-«,0], +then we can find a bounded function g, oo IR such that

=z
@
t

2 N _ 8
exp(-46 t)g,(B,) defines a martingale N ;
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Notes.

(a) Obsgerve that part (1) would be false if the interval (0,%) were

replaced by [0,=). For if py = p, = 0 and p, is a probability measure,

then in the functional notation for measures, we have p4(fe) = 60(fe),

¥8 > 0, where 50 is the unit mass at O,

(b) The case when £ (0} = = must of course be interpreted as the
cosine-transform theoremn. We continue to ignore that case.
Proof of (i). Suppose that ul and u? are probability measures on (0,«)
such that (47) holda. Because of the Wiener-Hopf factorization (30Q), we may

rewrite (47) as follows:

(48) Fonu (dy) = |F(»u, @y, Vo > 0,
where
Gri(dr) SEK(d')
F (v} = gp,, + l—5—>>lcos by +|p, + [—— t sin Qy ,
5 2 2 2 1 2
. r o+ 0 6" + r J
; -1 .
K{dr) being the r "J(dr) of our previous notation. Recall that
-1
{r+1) J(dr) < o,
As before, define
+
M = {z e C:Im(z) = 0}, H £ {z e €:Im(z) > O},
= ; izK(dr)
hi(z) = p1 1pzz - iz "
+
Then h 1is analytic in IH and continucus on IH, Moreover, if =z = a + ib

(of course, a no longer has the significance it had at (2)), then
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By

- -0 -0
(55) A-e Hu @y = (- uyddy) + el +py0+ ((1-e V)p, (dy)

By examining what happens when 0 - », it is trivial to show that ¢ = 0.
[Note that it is here that we need the fact that the Uj Are probability measures

on (0,») not [0,«),] Hence Wy = “2

We must now prove (54). To ensure that a funetion g, which is harmonic
in the open first quadrant and continuous on the closed first quadrant except
perhaps at O, 13 determined by its values on the edges of the quadrant, it is

enough to show that g is bounded near 0 and that g(z) = 0(|z|) as

|z| + o, We apply this principle not to the function Wj(z) but to the

-1
function ?j(l/z), that i3, to the function Wjo z defined on the fourth
quadrant, Translating back to the first quadrant,: we see that to prove (54),

we need to egtablish:

(56) Wj(Z) is bounded near <« (within the first quadrant),
(57) z?j(z) + 0 as =z -+ 0 (within the first quadrant).
Note that |§j| <2 on M. TFrom (49), |[b[ zp, on I, so that if
-1
p1 > 0 then (see (50)) ijl < 2p1 on IH, and (56) and (57) follow.
It remaing to prove (56) and (57) when pl = 0, [As usual, we ignore the
case when (p2 # 0 and) the measure K ig zero. The theorem is classical in

that case.] From (49},

2
b{r+b) + a2 K(dr)

[h¢z)| =
(r+by + a

2-5 B 5 5 K{(dr) =z -=l———— K({dr)
r + a + b r + 1
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