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THE JOINT LAW OF THE MAXIMUM AND TERMINAL VALUE

OF A MARTINGALE

by

L. C. G. Rogers

Queen Mary & Westfield College, University of London

1. Introduction. Let (Mt)t≥0 be a uniformly integrable (UI) martingale and let
M̄t ≡ sup{Mu : u ≤ t} be its supremum process. The fact that M is a martingale
imposes certain distributional constraints on the laws of M∞ and M̄∞, and these have
been investigated by a number of authors: see, for example, Blackwell & Dubins [3],
Dubins & Gilat [4], Azéma & Yor [2], Perkins [7], Kertz & Rösler [6], Vallois [10]. If ν
denotes the law of M∞, then it was shown by Blackwell & Dubins that

(1.1) ν � P (M̄∞ ∈ ·) � ν∗,

where � denotes stochastic ordering of probabilities on R (so that ν1 � ν2 means that
ν1((a,∞)) ≤ ν2((a,∞)) for all a ∈ R), and ν∗ denotes the Hardy transform of ν.
[Recall the definition of ν∗ in the case where ν has no atoms: if

(1.2) bν(x) ≡

{
∫

[x,∞)
yν(dy)/ν([x,∞)) if ν([x,∞)) > 0;

x if ν([x,∞)) = 0

is the barycentre function of ν and if Z has law ν, then ν∗ is the law of bν(Z).] Kertz
& Rösler went on to prove that if λ is any probability on R satisfying

(1.3) ν � λ � ν∗,

where ν has a finite first moment, then there exists a UI martingale such that the law
of M∞ is ν and the law of M̄∞ is λ. Vallois [10] subsequently characterised those laws
λ which could arise if M was assumed also to be continuous.

While these earlier works have discussed only stochastic inequalities between
M∞ and M̄∞, in this paper, we characterise the possible joint law of the variables
(M̄∞,M∞). The characterisation which we obtain is extremely simple, and allows
many of the earlier results to be deduced as corollaries. Suppose that µ is the law of
(M̄∞, M̄∞ −M∞); thus µ is a probability measure on R× R

+. If we define

(1.4) c(s) ≡

{∫ ∫

(s,∞)×R+(x− y)µ(dx, dy)/µ((s,∞)× R
+) if µ((s,∞)× R

+) > 0

s if not,

then c has the interpretation

(1.5) c(s) = E(M∞|M̄∞ > s).
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It is easy to see that c(·) must be increasing and c(s) ≥ s (Proposition 2.1), so that the
conditions

(1.6i)
∫ ∫

|x− y|µ(dx, dy)(= E|M∞|) < ∞

(1.6ii) c(·) is increasing;

(1.6iii) c(s) ≥ s for all s

are necessary for µ to be the joint law of (M̄∞, M̄∞ − M∞) for some UI martingale:
the first result of §2 is that conditions (1.6i–iii) are also sufficient for µ to be the joint
law of (M̄∞, M̄∞ − M∞) for some UI martingale M (Theorem 2.2). On the way to
proving this, we establish the useful result (Lemma 2.3) that if X is an a.s. convergent
continuous local martingale, X0 = 0, then X is a UI martingale if and only if

(1.7i) E|X∞| < ∞;

(1.7ii) EX∞ = 0;

(1.7iii) lima↑∞ aP (supt Xt > a) = 0.

If we now restricted attention to UI martingales M such that M0 = 0, the law
µ of (M̄∞, M̄∞ −M∞) would have to satisfy the further obvious conditions

(1.6iv) µ is concentrated on R
+ × R

+;

(1.6v)
∫ ∫

(x− y)µ(dx, dy)(= EM∞) = 0.

The second result of §2 (Corollary 2.4) is that conditions (1.6i–v) are sufficient for µ
to be the law of (M̄∞, M̄∞ −M∞) for some UI martingale M vanishing at 0.

The hard part of the proofs, the sufficiency, requires construction of a martin-
gale, given the law µ satisfying (1.5) and (1.6). The construction used is a variant of
the Azéma–Yor [2] embedding (see also Rogers [8]). It magically produces the ‘right’
martingale, and can be applied to prove the result of Kertz & Rösler in a few lines.
The proof makes essential use of excursion theory.

Section 3 of this paper concentrates on the continuous case with M0 = 0. While
the problem sounds similar to that of section 2, the methods used are different. The
first result characterises the possible laws µ of (M̄∞, M̄∞−M∞), where M is a conver-
gent continuous local martingale (equivalently, a Brownian motion stopped at a finite
stopping time T .) We prove that the condition

(1.8) µ((t,∞)× R
+)dt ≥

∫

(0,∞)

yµ(dt, dy)

is necessary and sufficient for µ to arise in this way, and that equality holds for a UI
martingale. The proof is based on compensating a jump down from the maximum, and
is given in Section 3.

Finally in Section 4 we use the earlier methods to characterise the joint laws of
(M̄∞, M̄∞ −M∞) for uniformly integrable continuous martingales vanishing at 0, and
deduce from this the characterisation due to Vallois [9] of all possible laws of M̄∞ in
that case.

2. The uniformly-integrable case. We begin this section with a simple result of
interest in its own right.
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PROPOSITION 2.1. Let M be a uniformly-integrable martingale, and define

(2.1) c(s) ≡

{

E(M∞|M̄∞ > s) if P (M̄∞ > s) > 0
s if P (M̄∞ > s) = 0

Then the function c(·) is increasing, and c(s) ≥ s for all s.

Proof. We take x < y and prove that c(x) ≤ c(y). If P (M̄∞ > y) = 0, then c(x) ≤ y
and there is nothing left to prove, so we suppose that P (M̄∞ > y) > 0. Now define for
each a ∈ R

τa ≡ inf{u : Mu > a}

and observe that {M̄∞ > x} = {τx < ∞}, and

c(x) ≡ E(M∞|M̄∞ > x) = E(M(τx)|τx < ∞) ≥ x

by uniform integrability. The statement that c(s) ≥ s is now obvious.
Let X ≤ Y be two random variables, X ∈ L1, such that for all t ∈ R,

E(X |Y > t) ≥ t.

Then if x < y and we define A = {Y > y}, B = {x < Y ≤ y}, we have the estimates

E(X |Y > x) =
E(X : A) + E(X : B)

P (A) + P (B)

≤
E(X : A) + yP (B)

P (A) + P (B)

≤
E(X : A)

P (A)
,

since E(X : A) ≥ yP (A). Taking X = M∞ and Y = M̄∞ yields the desired result. �

The principal result of this section is the following.

THEOREM 2.2. In order that the probability measure µ on R× R
+ should be the law

of (M̄∞, M̄∞ −M∞) for some UI martingale M , it is necessary and sufficient that

(2.2i)
∫ ∫

|x− y|µ(dx, dy) < ∞;

(2.2ii) c(·) is increasing;

(2.2iii) c(s) ≥ s for all s,

where c is defined in terms of µ by

(2.3) c(s) ≡

{∫ ∫

(s,∞)×R+(x− y)µ(dx, dy)/µ((s,∞)× R
+) if µ((s,∞)× R

+) > 0

s if not,

Proof. The necessity of (2.2i) is obvious, and the necessity of (2.2ii–iii) follows from
Proposition 2.1.
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For the converse, suppose given (X, Y ) with law µ satisfying (2.2i–iii). By
shifting the law µ in the x-direction, we may and shall assume that

(2.4)

∫ ∫

(x− y)µ(dx, dy) = 0.

The proof now consists of three main steps:

Step 1: Reduce the problem to the situation where for some function v : R → R
+,

y = v(x) µ−a.e.;

Step 2: Construct the martingale by embedding in a Brownian motion;

Step 3: Confirm that the martingale constructed has the desired properties.

The heart of the proof, Step 2, is a modification of the Azéma-Yor Skorokhod embedding
[2].

Proof of Step 1. Let µ(dy|x) be a regular conditional distribution for Y (to be thought
of as M̄∞ −M∞) given X = x. Let λ be the marginal law of X (to be thought of as
M̄∞), so that

(2.5) µ(dx, dy) = λ(dx)µ(dy|x).

Define also

(2.6)
v(x) ≡

∫

R+

yµ(dy|x)

= E[Y |X = x].

This allows us to express c as

(2.7) c(s) =

∫

(s,∞)

(x− v(x))λ(dx)/λ̄(s)

where
λ̄(s) ≡ λ((s,∞)).

We claim that it will be sufficient to construct a UI martingale M with the properties

(2.8i) M̄∞ has law λ;

(2.8ii) M̄∞ −M∞ = v(M̄∞).

Indeed, suppose that we take such a martingale, and on a suitably enlarged probability
space we define a new martingale

Nt =







M(t/(1− t)) (0 ≤ t < 1)
M∞ (1 ≤ t < 2)
Z (2 ≤ t)
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where the law of Z given (Mt)t≥0 is specified by

M̄∞ − Z ∼ µ(·|M̄∞).

[To see that N is a martingale, we need only check

E[N2|F̃1] = E[Z|F̃1]

= M̄∞ −

∫

yµ(dy|M̄∞)

= M̄∞ − v(M̄∞)

= M∞. ]

Then we claim that (N̄∞, N̄∞ − N∞) has law µ. Indeed, M̄∞ − Z ≥ 0, so that
N̄∞ = M̄∞, and

P (N̄∞ ∈ dx, N̄∞ −N∞ ∈ dy) = P (M̄∞ ∈ dx, M̄∞ − Z ∈ dy)

= λ(dx)µ(dy|x)

= µ(dx, dy)

from (2.5). So we may replace µ(dx, dy) by λ(dx)δv(x)(dy), and suppose in addition to
(2.2) that y = v(x) µ-a.e..

Proof of Step 2. Take a Brownian motion B, B0 = 0, and define

St ≡ sup
u≤t

Bu,

T ≡ inf{u : Bu ≤ h(Su)},

where h : R+ → R is the function

(2.9) h(s) ≡ c−1(s)− v(c−1(s)).

It will turn out that T < ∞ a.s. with this choice of h.
To give the construction, we define

At ≡

∫ t

0

I{Bu<c−1(Su)}du,(2.10i)

τt ≡ inf{u : Au > t},(2.10ii)

Mt ≡ B(τt ∧ T ).(2.10iii)

The process M is a UI martingale with M̄∞ ∼ λ, M̄∞ −M∞ = v(M̄∞). The task of
Step 3 is to prove this.

[Explanatory remarks. (i) Azéma & Yor took h = b−1
ν and thereby embedded the law

ν: BT ∼ ν. However, in view of the definition of the Hardy transform ν∗ of ν, we have
(at least when ν has no atoms) that for the Azéma-Yor embedding

ST = bν(BT ) ∼ ν∗
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and the supremum of BT is stochastically as large as it can be! In order to embed the
given joint law with a stochastically smaller supremum, we cut out parts of the time
axis so that the supremum of the Brownian motion on the part of the time axis which
remains is smaller than S.

(ii) It is not a priori clear that the process M defined by (2.10) is a UI martingale.
However, we shall prove in Step 3 that B(·∧T ) is a UI martingale, and it will therefore
follow that M is a UI martingale.

(iii) Notice that lims↓−∞ c(s) = 0 (in view of the assumption (2.4)), c is right-continuous
increasing and c(s) ≥ s (Proposition 2.1), and most importantly,

(2.11) M̄∞ = c−1(S(τt ∧ T )).

Look at Figure 1, which shows a sample path of (Bt, St). The lower (triangular-
shaped) shaded region, is never entered, and the process stops when it enters the upper
(irregularly-shaped) shaded region. The sample path of the process (B, S) consists of
lots of horizontal spikes sticking out from the line B = S. Some of these are shown;
the dotted parts of the lines correspond to parts of the sample path that are excised by
the time-change τ , because on these parts of the path, B > c−1(S). Thus the path of
the process M as drawn begins suddenly at some negative value, from which it reflects
like a Brownian motion for some time before jumping up to a higher value.]

Proof of Step 3. The variables M̄∞ and M∞ which concern us are functions of ST :

(2.12) M̄∞ = c−1(ST ), M∞ = h(ST ).

Thus from the form (2.9) of h,

M̄∞ −M∞ = v(M̄∞)

and so (2.8i) holds. Next we prove (2.8ii). From excursion theory, it is immediate that

(2.13) P (ST > x) = exp
(

−

∫ x

0

dt

t− h(t)

)

-see Rogers [8] for numerous examples of such calculations. Notice that each side of
(2.13) is continuous except possibly at σ ≡ inf{x : P (ST > x) = 0}. The elementary
implications

c−1(S) > y ⇒ S ≥ c(y), S > c(y) ⇒ c−1(S) ≥ y

together with (2.13) yield

P (M̄∞ > y) ≤ P (ST ≥ c(y)) = P (ST > c(y)) ≤ P (M̄∞ ≥ y)

at least for c(y) 6= σ. Thus we see that we can achieve (2.8) provided we can pick h so
that

(2.14) exp
(

−

∫ c(y)

0

dt

t− h(t)

)

= λ̄(y) for all continuity points y of λ;

7



In view of the right-continuity of each side of (2.14) it is equivalent to prove that

(2.15)

∫ c(y)

0

dt

t− c−1(t) + v(c−1(t))
= − log λ̄(y)

for y < σ. Since c(y) → 0 as y ↓ −∞, each side of (2.15) has the same value at −∞.
The two sides of (2.15) jump at the same values of y; if a is some such value, the jump
of the left-hand side at a is

∫ c(a)

c(a−)

dt

t− a+ v(a)
= log

[

ca − a+ v(a)

ca− − a+ v(a)

]

= log[λ̄a−/λ̄a]

as is readily confirmed from the definition (2.3) of c. Finally, writing C for the set of
continuity points of λ, the continuous part of the left-hand side of (2.15) is (using (2.6))

IC(t)
dct

ct − t+ vt
=

IC(t)

ct − t+ vt

[

−
(t− vt)dλt

λ̄t

+
ctdλt

λ̄t

]

= IC(t)
dλt

λ̄t

which is the continuous increasing part of the right-hand side of (2.15). Thus (2.14)
holds, so in particular

(2.16) P (ST > c(y)) = λ̄y → 0 as y ↑ ∞

implying that P (ST < ∞) = 1 = P (T < ∞).
To confirm that the process Mt ≡ B(τt ∧ T ) not only satisfies (2.8) but is also

a UI martingale, we invoke the following pretty result.

LEMMA 2.3. Let X be a continuous local martingale, X0 = 0, 〈X〉∞ < ∞ a.s.. Then
X is a UI martingale if and only if

(2.17i) X∞ ∈ L1;

(2.17ii) EX∞ = 0;

(2.17iii) lima↑∞ aP (X̄∞ > a) = 0.

Proof. The necessity of (2.17i–ii) is evident, and the necessity of (2.17iii) follows since
aP (X̄∞ > a) = E(X∞ : X̄∞ > a) ↓ 0 as a ↑ ∞.

Next suppose that conditions (2.17) are satisfied, and define

Ha ≡ inf{t : Xt = a}, Ta ≡ Ha ∧H−a

for a ∈ R. Then

(2.18) 0 = EX(Ta) = E[X∞ : Ta = ∞] + aP [Ha < H−a]− aP [H−a < Ha];
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from (2.17iii),

aP [Ha < H−a] ≤ aP [Ha < ∞] ≤ aP [X̄∞ ≥ a] → 0,

and by (2.17i–ii) the first term on the right of (2.18) goes to 0, from which we conclude
that

aP [H−a < Ha] → 0

as a ↑ ∞. But
aP [Ha < H−a] ≤ aP [Ha < ∞] → 0,

so we deduce that aP [H−a < ∞] → 0, hence that aP [Ta < ∞] → 0. We may
now invoke the result of Azéma, Gundy & Yor provided we can check the condition
supt E|Xt| < ∞. But

E|Xt∧Tn
| ≤ E|XTn

|

= nP [Tn < ∞] + E[|X∞| : Tn = ∞]

≤ E|X∞|+ 1 for large n.

Hence by Fatou’s Lemma, E|Xt| ≤ E|X∞|+ 1, completing the proof. �

We apply this to the continuous local martingale B(· ∧ T ), noting that T < ∞
a.s.. Since BT = h(ST ) = M∞, and (M̄∞, M̄∞ −M∞) ∼ µ, conditions (2.17i–ii) follow
from (2.2i). Next, we have

c(x)P (ST > c(x)) ≤ c(x)P (c−1(ST ) > x)

= c(x)P (M̄∞ > x)

=

∫

(x,∞)

(t− v(t))λ(dt) from (2.6)

↓ 0 as x ↑ ∞,

verifying condition (2.17iii), at least if c has no jumps. But if for some x one had
c(x−) = a < c(x) = b, then in the interval (a, b] the functions c−1 and h are constant,
and so it is easy to see from (2.13) that zP (ST > z) is increasing throughout the
interval (a, b], and so condition (2.17iii) certainly holds. Thus BT is a UI martingale,
from Lemma 2.3, and so therefore is M , by (2.10iii). �

The situation where M0 = 0 now follows easily.

COROLLARY 2.4. A probability µ on R
+×R

+ is the distribution of (M̄∞, M̄∞−M∞)
for some UI martingale M with M0 = 0 if and only if

(2.19i)
∫ ∫

|x− y|µ(dx, dy) < ∞;

(2.19ii) c(·) is increasing;

(2.19iii) c(s) ≥ s for all s;

(2.19iv)
∫ ∫

(x− y)µ(dx, dy) = 0,

where c(·) is defined as before by (2.3).
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Proof. The necessity of (2.19i–iv) is evident. Conversely, assuming condition (2.19i–iv),
the construction (2.9) used in the proof of Theorem 2.2 yields a UI martingale M with
(M̄∞, M̄∞ −M∞) ∼ µ. �

Let us now see how the result of Kertz & Rösler [6] follows from Theorem 2.2, or, more
exactly, from the explicit embedding constructed there.

We use the Azéma-Yor stopping time

T ≡ inf{t : Bt < b−1
ν (St)},

where bν is the barycentre function defined by (1.2). Then it can be shown quite
easily (see Azéma & Yor [2]) that the law of ST is ν∗, and this is also true without the
restriction that ν should have no atoms. Now consider some right-continuous increasing
c : R → R

+ satisfying

(2.20) x+ ≤ c(x) ≤ bν(x) for all x;

We carry out the construction (2.9) to build a UI martingale M such that

M∞ = BT = b−1
ν (ST ), M̄∞ = c−1(ST ).

Thus whatever c we choose subject to (2.20), the law of M∞ is ν; the law of M̄∞ on
the other hand may be any law satisfying the stochastic bounds

ν � λ � ν∗,

by suitable choice of c! Taking c = bν gives the lower bound, taking c(x) = x+ gives
the upper bound, for then M̄∞ = ST ∼ ν∗! Kertz & Rösler’s results for martingales
started at 0 can likewise be easily deduced.

3. The continuous case. In this section, we shall prove the following.

THEOREM 3.1. The probability measure µ on R
+×R

+ is the joint law of (M̄∞, M̄∞−
M∞) for some almost-surely convergent continuous local martingale M which vanishes
at 0 if and only if

(3.1)

(

∫ ∫

(t,∞)×R+

µ(ds, dy)

)

dt ≥

∫

(0,∞)

yµ(dt, dy).

If M is also uniformly integrable, then the inequality (3.1) holds with equality:

(3.2)

(

∫ ∫

(t,∞)×R+

µ(ds, dy)

)

dt =

∫

(0,∞)

yµ(dt, dy).

Proof. Firstly, we prove the necessity of the condition (3.1). Without loss of generality,
we take the continuous local martingale to be BT , where B is a Brownian motion,
and T is some finite stopping time (see, for example, Theorem IV.34.11 of Rogers &
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Williams[9]). Defining as before Ha ≡ inf{t : Bt = a}, we shall suppose initially that
T ≤ TK ≡ HK ∧H−K , where K > 0 is large. In this case, the key observation is that

(3.3) B̃t ≡ B(Ht ∧ T ) is an (F̃t)- martingale,

where F̃t ≡ F(Ht). Thus if we abbreviate S ≡ sup{Bt : 0 ≤ t ≤ T} and define

Jt ≡ (S −BT )I[S,∞)(t),

then
B̃t = (t ∧ S)− Jt.

The process J has a single upward jump of magnitude Y ≡ S−BT ≥ 0 at the stopping
time S. If ν is the random measure on R

+ × R
+ associated with J , that is,

∫

φ(s, y)ν(ds, dy) ≡ φ(S, Y )

and if µ ≡ Eν is the law of (S, Y ), then for any non-negative f ∈ C∞
K (R+) with integral

F ,

(3.4) 0 = E

∫ ∞

0

f(s)dB̃s = E

[
∫ S

0

f(s)ds−

∫ ∫

f(s)yν(ds, dy)

]

implying that

(3.5) EF (S) = E[Y f(S)].

The general stopping time T not constrained by T ≤ TK can now be approximated by
T ∧ TK ; the limiting form of (3.5) is thus

EF (S) ≥ E[Y f(S)],

by Fatou’s lemma, with equality if BT is uniformly integrable. The statements (3.1)
and (3.2) follow immediately since f is arbitrary.

Now we turn to the more interesting (constructive) part of the proof, showing the
sufficiency of the condition (3.1). So suppose we are given some probability µ on
R

+ × R
+ satisfying (3.1), and set

µ ≡ µ0 + µ+,

where
µ0 ≡ µ|[0,∞)×{0}, µ+ ≡ µ|[0,∞)×(0,∞).

By slightly abusing notation, we shall also consider µ0 as a measure on R
+. Define

ρ(t) ≡

∫ ∫

(t,∞)×R+

µ(ds, dy) = P (S > t),
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and let µ+(dy|s) be a kernel from R
+ to R

+ such that

∫ ∫

φ(s, y)µ(ds, dy) =

∫

ds

∫

φ(s, y)µ+(dy|s)

for any φ ∈ C∞
K ((0,∞)×(0,∞)). Such a kernel can be found because of the assumption

(3.1). Now we define a Markov kernel K(·|·) : B((0,∞])× R
+ → [0, 1] by setting

(3.6) K(A|s) ≡

∫

A
yµ+(dy|s)

P (S > s)
≡

∫

A
yµ+(dy|s)

ρ(s)

for any Borel subset A ⊆ (0,∞), and to give a Markov kernel,

(3.7) K({∞}|s) = 1−K((0,∞)|s).

Of course, this definition is meaningless if ρ(s) ≡ P (S > s) = 0; in this case we make
the arbitrary definition K(A|s) ≡ IA(1). Notice how the condition (3.1) enters to allow
us to define K; it also assures us that the integral in (3.6) is convergent for a.e. s, and
so we may suppose that it is convergent for every s.

Now define the increasing function

(3.8) Rt ≡ − logP (S > 0) +

∫

(0,t]

µ0(ds)

ρs−
−
∑

0<u≤t

{log ρu − log ρu− −
∆ρu
ρu−

},

the terms in the sum being easily seen to be nonpositive. This definition only makes
sense if P (S > t) ≡ ρ(t) > 0; we define Rt ≡ +∞ for t such that P (S > t) = 0.

We are now ready to describe the construction which will realise the law µ satis-
fying (3.1) which we were given. Take on some suitable sample space three independent
random elements:

(3.9i) a Brownian motion (Bt)t≥0, B0 = 0;

(3.9ii) a [0,∞]-valued random variable V with the law

P (V > t) = exp(−Rt);

(3.9iii) a process {Zt : t ≥ 0} with values in (0,∞], where the Zt are independent of
each other, and the law of Zt is K(·|t).

We define
T+ ≡ inf{u : Su −Bu > Z(Su)},

T0 ≡ inf{u : Su > V },

T ≡ T0 ∧ T+,

where Su ≡ supt≤u Bt, as you expected.
We shall now prove that the law of (ST , ST −BT ) is the given law µ. To see this,

we have to analyse the excursion process of Yt ≡ St−Bt away from 0. According to Itô
[5], the excursion process is a Poisson point process in R

+×U , where U ≡ {continuousf :
R

+ → R
+such that for some ζ > 0, f−1((0,∞)) = (0, ζ)}. The expectation measure is

Leb× n, where the characteristic measure n can be specified in a variety of ways. The
effect of introducing the process Z is to convert the excursion process in R

+ × U into

12



an enlarged Poisson process in R
+ × Ũ , where Ũ ≡ U × (0,∞]. Think of (f, h) ∈ Ũ

as an excursion together with a height. The excursion will be distributed according to
the characteristic measure n, and the height will be independent of the excursion, with
law K(·|l), where l is the local time at which the excursion happens. More formally,
if A is a Borel subset of U , a > 0, then the number of points of the enlarged Poisson
process in [0, t]× A× (a,∞] is a Poisson variable with mean

∫

(0,t]

ds n(A)K((a,∞]|s).

Thus the number of points of the enlarged Poisson process in Ct ≡ {(s, (f, h)) :
supv f(v) > h, s ≤ t} is a Poisson variable with mean

∫

(0,t]

ds

∫

(0,∞)

K(dy|s)n({sup
v

f(v) > y})

=

∫

(0,t]

ds

∫

(0,∞)

K(dy|s) y−1

=

∫

(0,t]

ds

ρ(s)

∫

(0,∞)

µ+(dy|s).

Thus
P (T+ > Ht) = P (Ct = ∅)

= exp{−

∫

(0,t]

ds

ρ(s)

∫

(0,∞)

µ+(dy|s)}.

More simply,
P (T0 > Ht) = P (V > t) = exp(−Rt)

from which by independence
(3.10)

P (T > Ht) ≡ P (ST > t)

= exp
[

−Rt −

∫

(0,t]

ds

ρs−

∫

(0,∞)

µ+(dy|s)
]

= exp
[

logP (S > 0) +

∫

(0,t]

dρs
ρs−

+
∑

0<u≤t

(log ρu − log ρu− −
∆ρu
ρu−

)
]

= ρ(t),

using (3.7), the fact that −dρs = µ0(ds) + ds
∫

(0,∞)
µ+(dy|s), and Itô’s formula. Thus

the stopping time T constructed has the property that the law of ST is −dρ. Next we
identify the law of (ST , YT ) on the set where YT > 0. The only way that we can have
YT > 0 is if T+ < T0, and from the excursion description

P (T+ < T0, ST+
∈ ds, YT+

∈ dy) = e−R(s) exp
[

−

∫ s

0

dv

ρv

∫

(0,∞)

µ+(dy|v)
] 1

y
K(dy|s)ds

= ρ(s)
1

y

yµ+(dy|s)

ρ(s)
ds, using (3.6) and (3.10);

= µ+(ds, dy).

13



Lastly, we must check the law of (ST , YT ) on the set where YT = 0. But the
only way YT = 0 can happen is if T0 < T+, and

P (S(T0) ∈ dt, T0 < T+) = −d(exp(−Rt)) exp{−

∫ t

0

ds

ρs

∫

(0,∞)

µ+(dy|s)}.

If t is a continuity point of R (equivalently, of ρ or µ0), then this is easily seen to be
µ0(dt), as at (3.10). If t is a jump time of R, it is easy to calculate the jump of the
right-hand side (again using (3.10)); it is simply ∆µ0(t). Hence

P [ST ∈ dt, YT = 0] = µ0(dt).

Remarks. (i) The assumption M0 = 0 is not essential to Theorem 3.1; the result still
holds without it, but the notation is more untidy, so we have only dealt with the case
M0 = 0.

(ii) The condition (3.1) is necessary but not sufficient forM to be UI, as is demonstrated
by the example of Brownian motion stopped when it reaches -1.

4. The continuous uniformly-integrable case. Having characterised the possible
joint laws of (M̄∞, M̄∞−M∞) for a continuous local martingale M (M0 = 0, 〈M〉∞ <
∞ a.s.), we now aim to study the laws of (M̄∞, M̄∞ −M∞) for a uniformly-integrable
continuous martingale M , M0 = 0. Of course, Lemma 2.3 is the complete answer to
the question at one level, but there remains the interesting question ‘What are the
possible laws of M̄∞ in this case?’ Vallois [10] has answered this question completely
by a direct approach using stochastic calculus, and the aim of this section is to prove
and interpret his result in the light of the characterisation of the joint laws which we
have given already.

The result we shall prove is the following.

THEOREM 4.1. (Vallois) Suppose that F is a probability measure on R
+, written as

F (dt) = ρ(t)dt+ α(dt), where α is singular with respect to Lebesgue measure. Then F
is the law of the supremum of some continuous UI martingale M , M0 = 0, if and only
if the following conditions hold:

(4.1i) ρ(t) > 0 for all t < a ≡ sup{u : F (u) < 1};

(4.1ii) limt→∞ tF̄ (t) = 0, where F̄ (t) ≡ 1− F (t);

(4.1iii)
∫∞

0
tα(dt) +

∫∞

0
dt|tρ(t)− F̄ (t)| < ∞.

Proof. Suppose that F is the law of M̄∞ for some continuous UI martingaleM vanishing
at 0. Then (4.1i) follows from (3.2), (4.1ii) follows from the result of Azéma, Gundy &
Yor [1], and (4.1iii) follows because

E|M∞| =

∫ ∫

|s− y|µ(ds, dy)

=

∫ ∞

0

sµ0(ds) +

∫ ∫

|s− y|µ+(ds, dy)

≥

∫ ∞

0

sµ0(ds) +

∫ ∞

s=0

|

∫ ∞

y=0

(s− y)µ+(ds, dy)|

=

∫ ∞

0

sµ0(ds) +

∫ ∞

0

|sγ(s)− F̄ (s)|ds,
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where γ(t)dt ≡
∫∞

y=0
µ+(dt, dy). If now we write µ0(dt) = α(dt) + φ(t)dt, so that

γ(t) = ρ(t)− φ(t), we have

∞ > E|M∞|

≥

∫ ∞

0

sα(ds) +

∫ ∞

0

sφ(s)ds+

∫ ∞

0

|sρ(s)− sφ(s)− F̄ (s)|ds

which implies (4.1iii).
For the converse, we suppose given F satisfying (4.1i–iii), and shall exhibit a

probability µ on R
+ × R

+ satisfying (3.2), the integrability condition

(4.2)

∫ ∫

|s− y|µ(ds, dy) < ∞,

and

(4.3) F̄ (t) =

∫ ∫

(t,∞)×R+

µ(ds, dy).

From these, it follows that

(4.4)

∫ ∫

(s− y)µ(ds, dy) = 0;

indeed, using (4.2), (3.2), and (4.1iii), we have

∫ ∫

(s− y)µ(ds, dy) = lim
N→∞

∫ ∫

[0,N ]×R+

(s− y)µ(ds, dy)

= lim
N→∞

∫ N

0

sF (ds)−

∫ N

0

F̄ (s)ds

= lim
N→∞

−NF̄ (N)

= 0.

Thus if µ satisfies (3.2), it is the law of (M̄∞, M̄∞ − M∞) for some continuous local
martingale M vanishing at 0, by Theorem 3.1; and if it also satisfies (4.2) and (4.3), it
satisfies (4.4) and therefore (Lemma 2.3) is the law of (M̄∞, M̄∞ −M∞) for some UI
martingale M ((2.17iii) being the same as (4.1ii)).

We construct µ = µ0+µ+ by defining µ0 = α, and µ+(dx, dy) ≡ ρ(x)P (dy|x)dx,
where P (dy|x) is a Markov kernel with the properties

(4.5) F̄ (x) = ρ(x)

∫

yP (dy|x) (x < a),

and

(4.6)

∫ ∫

|x− y|µ(dx, dy) =

∫ ∞

0

xα(dx) +

∫ ∞

0

ρ(x)dx

∫ ∞

0

|x− y|P (dy|x) < ∞,
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Condition (3.2) then follows immediately from (4.5) and condition (4.3) follows from the
definition of µ, so µ has the properties demanded. We shall achieve (4.6) by ensuring
that for each x, P (·|x) is concentrated either on (0, x] or on [x,∞), which makes

∫ ∞

0

|x− y|P (dy|x) = |

∫ ∞

0

(x− y)P (dy|x)|

= |x− F̄ (x)/ρ(x)|

using (4.5). Thus

∫ ∞

0

ρ(x)dx

∫ ∞

0

|x− y|P (dy|x) =

∫ ∞

0

|xρ(x)− F̄ (x)|dx < ∞,

by assumption (4.1iii). The choice of P (·|x) to ensure (4.5) and (4.6) is easy to make;
if F̄ (x)/ρ(x) ≤ x, then we take P (·|x) to be concentrated on [0, x] in such a way that

∫

yP (dy|x) =
F̄ (x)

ρ(x)
,

and similarly if F̄ (x)/ρ(x) > x.
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