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1 Introduction

The pricing of American options by simulation techniques is an important and dif-
ficult task, as witnessed by the contributions of Tilley (1993), Barraquand & Mar-
tineau (1995), Carriere (1996) Broadie & Glasserman (1997a), (1997b), Broadie,
Glasserman & Jain (1997), Raymar & Zwecher (1997), Carr (1998), Longstaff &
Schwartz (2001) and Fu, Laprise, Madan, Su & Wu (2001). Frequently, the payoff
of an American-style derivative depends in a highly complex path-dependent fash-
ion on many underlyings, which means that the traditional dynamic programming
approach to computing the value and the optimal exercise policy is impossible, due
to the dimension of the problem. This has prompted interest in possible simulation
methods for pricing such derivatives, and the papers mentioned above offer a variety
of approaches to the problem. In general terms, all use simulation in some way to
derive a stopping rule, by comparing the current value of stopping with some esti-
mate (based on simulated paths) of the value of waiting. It follows that the answers
obtained will be lower bounds for the value of the option, since the value has been
computed using an approximation to the optimal stopping rule.

In contrast, the approach adopted here makes no attempt to determine an approx-
imately optimal exercise policy, and always comes up with an answer which is an
upper bound for the true price. While it says little about how such an option should
be exercised, it does give guidance on how the option should be hedged. Thus this
approach should be of value to the party writing the option, and the other gen-
eral approach would be of value to the party buying the option. The perceptive
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reader may already have guessed that there are themes of convex duality at play
here, and the germ of the method is in an interesting but little-appreciated paper
of Davis & Karatzas (1994)%. In Section 2, we show how the price of the American
option may be expressed as the infimum of a family of expectations, the infimum
being taken over the class of Lagrangian martingales. This expression immediately
suggests how one might try to estimate the price of an American option, and in
Section 4 we take this further with a numerical study of some examples: the stan-
dard American put; an American min-put (see Hartley (2000)); a Bermudan max-
call (see Broadie & Glasserman (1997b)); an American-Bermudan-Asian example
of Longstaff & Schwartz (2001). The method requires a good choice of Lagrangian
martingale to give good results, but it turns out that in the examples we study it is
not too hard to find martingales which give reasonably close approximations to the
true price.

After the first draft of this paper was written, the author became aware of a working
paper of Haugh & Kogan (2001), in which essentially the same dual approach to
pricing of American options is advanced. Haugh & Kogan’s numerical approach is
to apply methods from neural nets to estimate the payoff function of continuing.

2 The price of an American option.

We fix some finite time horizon T' > 0, and suppose given on some filtered probability
space ® (0, F, (Fi)o<i<r, P) two adapted processes (r;)o<i<r and (Zt)ogth- The first
is the spot rate of interest, and the second defines the amount paid to the holder
of an American option at the moment of exercise. We shall also assume that the
probability P is the (risk-neutral) pricing probability for the problem. Adopting the
notational device that a random time denoted by 7 (with or without superscripts or
subscripts) should be understood to be a stopping time, standard arbitrage pricing
theory gives the time-0 value of the American option to be

Yy = sup EZ,, (2.1)

0<r<T

where 7Z; = exp(— fg rsds)ZNt is the discounted exercise value of the option. To avoid
trivialities, we need to assume that Yy < oo; in fact, for technical reasons we shall
assume a little more, namely that for some p > 1, supyc,cr |Z:] € LP, and also
that the paths of Z are right continuous. Under this assumption, the Snell envelope
process

Y," = ess sup,<, <7 B[ Z;|F]. (2.2)
is a supermartingale of class (D), and so has a Doob-Meyer decomposition
Ve =Yy M- A (23)

2T am grateful to Mike Curran for drawing this paper to my attention, and persuading me that
Monte Carlo pricing of American options could work.

3satisfying the usual conditions; see, for example, Rogers & Williams (2000).
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where M* is a martingale vanishing at zero, and A* is an previsible integrable
increasing process, also vanishing at zero. See, for example, Dellacherie & Meyer

(1980), p432.

The following result is the theoretical basis of the paper.

Theorem 1
Yy = inf E[ sup (Z; — My) ], (2.4)
MeH] 0<t<T
where Hy is the space of martingales M for which supg<i<r | M| € L', and such that
My = 0. The infimum is attained by taking M = M*.

Before proving Theorem 1, let us note how this leads to a method of pricing the
American option: we pick a suitable martingale M, and evaluate by simulation the
expectation F[ supge,«p(Z: — My) ]. In Section 4 we shall show how to go about
finding a ‘suitable’ martingale. Obtaining the optimal martingale is of course a task
of a similar complexity to finding the optimal exercise policy, but we can often find
simple martingales which provide remarkably good (and quick) bounds.

PROOF OF THEOREM 1. Firstly, we note that Y* is dominated by the LP-
bounded martingale z; = E(sup, |Z,||F;), and so supgcicr |M| < supgeer 2t +
|Yy| + Ar, proving that M* is indeed in HJ.

Returning to the definition (2.1) of Y7, we have for any M € H; that

Yo = sup EZ,
0<r<T
= sup E[Z, — M,]
0<r<T
< E[ sup (7, — M) J;
0<t<T

taking the infimum over all M € Hj proves that Y is bounded above by the right-
hand side of (2.4). On the other hand, since 7Z; < Y;* = Yy + M} — A7,

inf FE[ sup (Z, — My)| < E[ sup (Z— M) ]

MeH} 0<t<T 0<t<T
< B[ sup (Y — M{) ]
0<t<T
= E[ sup (Y7 — A7) ]
0<t<T
= YO*

as claimed.

REMARK. Davis & Karatzas (1994) proved that E[supoc,<7(Zi+ My —M;) | =Y,

in the present notation.

REMARK. Of course, a conditional form of Theorem 1 holds too.
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3 Hedging and exercise.

Theorem 1 tells us that in order to find a good approximation to the price Y7 of the
American option, it is necessary to find a ‘good’ martingale M € H3. We discuss
later how this can be done in practice, but for the moment we suppose that we have
a candidate martingale M, and interpret this in terms of hedging.

Holding M fixed, we have an upper bound for Y, namely, the mean of the random
variable

n = sup (4 — My). (3.1)

0<t<T
Let us set n, = FE(n|F;) for the martingale closed on the right by n, so that n =
nr. We now think of the martingale M as the discounted gains-from-trade process
of some portfolio; thus if we started with wealth 5y and used this portfolio, our
discounted wealth at time ¢ would just be g+ M;. Now (3.1) implies the inequality
for any ¢ € [0,7]

Zy <m+ My,

and taking conditional expectation given F; and rearranging gives the key inequality
Zth[UT_UO|Ft]+(Mt+7]0) (3-2)

The interpretation of this is immediate and illuminating; the (discounted) amount
Zy which has to be paid out to the holder of the option if exercised at time t is almost
hedged by the (discounted) value of our portfolio. The shortfall is at worst

Elnr —no | F " < E[(nr —no)* | 7] (3.3)

So if we propose to use the martingale M as a hedging instrument, it will be highly
desirable that the quantity E|nr — no|, which bounds the mean of the shortfall,
should be small. In the perfect solution, where M = M™*, the random variable 5
is constant, so we have a zero bound on the shortfall, but in general there is no
reason why this quantity should be small. Notice in particular that it could be that
a given martingale M gives a good bound on the price of the option (that is to say,
E(n) =Yy is small), while having a large shortfall, and therefore being less desirable
for hedging.

Remarks. (i) We can of course interpret the dual problem in a very concrete way; we
are trying to choose the hedging strategy to minimise the lookback value of 7 — M.
In any Markovian example, we would typically have that Z were some function of
time and a (possibly high-dimensional) Markov process X, and we would therefore
expect the solution to be such that at any time the optimal hedging portfolio should
be a function of ¢, X; and sup,,(Z, — M,). In principle this could be solved by
setting up the Hamilton-Jacobi-Bellman equations, but these are likely to be every
bit as difficult to deal with as the original problem. Nevertheless, this suggests a
much more refined approach to the choice of the hedging martingale than the very
simple-minded approach of Section 4.



(ii) We may also use a candidate martingale M to suggest an exercise policy, namely,
to stop when first Z exceeds the value of the hedging policy:

v = inf{t € [0,T]: My +no < Z;} AT

In the case where the hedging policy was optimal, this stopping rule would also be
optimal. However, it turns out in the examples studied in Section 4 that this rule
was very poor, worse even than simply waiting until 7" and exercising then.

(iii) The hedging martingales used in the various numerical examples in the next
Section generally do not provide a good hedge in the sense that the mean absolute
deviation is small; nevertheless, there are possible variants of the approach used here
which it is intended will be explored in a subsequent paper.

4 Numerical examples.

In this section, we report the results of numerical studies of four examples, the
standard American put, the American min-put (see Hartley (2000)), the Bermudan
max-call (see Broadie & Glasserman (1997b)), and the Asian-Bermudan-American
example studied by Longstaff & Schwartz (2001); firstly, though, we describe the
general approach used in all four examples.

The first step is to simulate a relatively small number of sample paths (a few hundred,
never more than 1000 in the current study) at a relatively coarse spacing of the time
points (of the order of 40 time-steps). Using these, we generate the corresponding
sample paths of a small number of martingales, and the choice of these seems to be
important. If, for example, the reward process Z is a semimartingale of the form
f(t,S;) for some function of a (vector) log-Brownian price process S, then a natural
choice to take is the martingale part of Z. This works well in our first three examples,
but not for the last where 7 is a finite-variation process, and so has no martingale
part. Nonetheless, it is a fair guess that the martingale part of the corresponding
European option should be close in some sense to the desired martingale. There are
few general rules so far; the selection of the martingales appears to be more art than
science.

Now take this vector M of martingales, and consider all linear combinations of
them. By numerically minimising over A the value of E[ supgc,«p(Z: — X - M;) |, we
make a presumably better martingale than any of those we began with. Using this
minimising value \*, we now proceed to simulate a large number of sample paths (of
the order of 10* here, but ideally more) and the corresponding martingales A* - M,
and then compute the average value of F[ supgc;er(Z: —A*- M;) | over all the sample
paths.

It is perhaps not surprising that the time-consuming part of this process is the nu-
merical minimisation. Fortunately, high precision in the value of A* is not crucial,
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since we are finding a value where a convex function is minimised, and assuming the
function is differentiable at the minimum, small departures from the exact minimis-
ing value will result in even smaller changes in value of the function. No attempt
has been made to explore ways of speeding this part of the process up, though it
would be worth finding out whether fewer sample paths would do an acceptable
job, or whether there are rules for choosing the starting point for the minimisation
which improve the speed. The simulations themselves required relatively little time.
Since the class of hedging martingales is in every case chosen with little attempt
at refinement, it seems pointless to try to tighten up the minimisation step at this
stage.

As one last improvement, having generated the sample paths with 2n time-steps,
we reduced the sample paths to observations at even-numbered times, recomputed
the answer for these coarser paths with n time-steps, and then used Richardson
extrapolation.

While we could have tried various antithetic variable and control variate techniques
to reduce the variance of the estimate of the price, we avoided this, since the esti-
mated value of the mean absolute deviation from the mean (MAD) has an important
interpretation, and using such variance reduction techniques would have distorted

the values of the MAD.

Example 1: an American put on a single asset.

Our first study is of the example of an American put on a single log-Brownian asset,
whose price process is given by

. = Soexp(aW; + (r — o /2)t), (4.1)

with r denoting as usual the riskless rate of interest, assumed constant, and o
denoting the constant volatility. No closed-form solution for the price is known, but
there are various numerical methods which give good approximations to the price
very rapidly. See the papers of Broadie & Detemple (1997), and Ait-Sahalia & Carr
(1997) for surveys and comparisons of some of the methods proposed.

In applying the present method, the choice of martingales was almost the crudest
possible; there was just one martingale in the hedging set, namely, the discounted
value of the corresponding European put, started when the option goes in the money,
at the first time that 5; falls below the strike K. The results of the simulation are
presented in Table I; parameter values are K = 100, ¢ = 0.4, r = 0.06, and 7' = 0.5,
with Sy varying as shown in the table.

The first column gives the Black-Scholes values for the corresponding Furopean
option. The column of true American prices is quoted from the paper of Ait-Sahalia
& Carr (1997), using their averaged binomial figures with 1000 time points. We next
give the Monte Carlo values from the present method for comparison; there were
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300 paths used in the optimisation step,and a further 5000 paths thereafter, with 50
time steps in each simulation, and Richardson extrapolation to give the figures in
the Table. In every case, there is agreement to within 0.63%, with an average error
of 0.34%. In contrast, the early exercise premium ranges from 2.1% up to 4.2%, and
is in all but two cases over ten times the size of the error in our Monte Carlo value.
The standard error of the estimates of the price is reported, and the mean absolute
deviation from the mean, E|nr — |, one half of which bounds the expected hedging
loss, is reported in the next column. The final column presents the time taken by the
entire calculation (on a 600MHz PC). The optimal value of A (not reported) is very
close to 1 in all cases, so one could obtain a very quick estimate of the price by just
using A = 1, thereby cutting out the slow numerical minimisation. Even including
the numerical minimisation and performing 5000 simulations, the times taken were
of the order of 10s. The calculations were performed throughout in Scilab* and can
be expected to speed up considerably if coded throughout in a compiled language
(typically one expects a speed-up of 5-10 times when going to compiled code, more
if there is a lot of looping in the Scilab code).

Other runs were tried with a variety of martingales in the hedging set, but none of

them showed any marked improvement over this simplest situation.

Table I: Simulation prices of standard American puts. Parameter values were K =

100, r = 0.06, T'= 0.5, and ¢ = 0.4.

S(0) | European | American | American | Standard | MAD time
(true) (true) (MC) error (seconds)
80 20.6893 21.6059 21.6953 0.0037 | 0.2148 10.39
85 17.3530 18.0374 18.1008 0.0040 | 0.2367 10.45
90 14.4085 14.9187 14.9692 0.0038 | 0.2180 10.16
95 11.8516 12.2314 12.2685 0.0027 0.1413 10.30
100 9.6642 9.9458 9.9703 0.0027 | 0.1137 9.83
105 7.8183 8.0281 8.0439 0.0024 | 0.0977 9.73
110 6.2797 6.4352 6.4757 0.0054 | 0.2955 10.24
115 5.0113 5.1265 5.1363 0.0016 | 0.0548 10.42
120 3.9759 4.0611 4.0761 0.0036 | 0.1649 9.81

Theorem 1 tells us that if we use the martingale of the Doob-Meyer decomposition of
the Snell envelope then the hedge should be exact. To check this out, we carried out
the same estimation of the price as is reported in Table I, but using the martingale
part of the (discounted) value of the American put in place of the discounted value of
the European put; the results are in Table I1. Of course, the value function has to be
computed numerically, using once again 50 time steps and a Crank-Nicolson/SOR

*Scilab is a powerful computation package, similar in performance and ease of use to Matlab.
It is available for most commonly used platforms by free download from the Scilab home page
http://www-rocq.inria.fr/scilab/scilab.html



method. The results were even closer to the true values than the results in Table
I; the maximum error was 0.27%, with an average error of 0.12%. Notice that
sometimes the Monte Carlo value is several standard errors below the quoted true
figure; this suggests that there may be small errors in the figures of Ait-Sahalia
& Carr, and comparison with the values computed by the Crank-Nicolson/SOR
method indicate that the fourth or fifth significant figure may be doubtful.

Table IT: Simulation prices of standard American puts. Parameter values were K =

100, r = 0.06, T'= 0.5, and ¢ = 0.4.

S(0) | American | American | Standard | MAD
(true) (MC) error
80 21.6059 21.6270 0.0180 0.0879
85 18.0374 18.0534 0.0176 0.0535
90 14.9187 14.9366 0.0181 0.0964
95 12.2314 12.2234 0.0006 0.0369
100 9.9458 9.9398 0.0010 0.0626
105 8.0281 8.0202 0.0007 0.0444
110 6.4352 6.4268 0.0004 0.0194
115 5.1265 5.1403 0.0034 0.1947
120 4.0611 4.0546 0.0002 0.0125

Example 2: American min puts on n assets.

This study takes n log-Brownian assets (which are assumed independent so that we
can compare with the results of Hartley (2000)), given by

Si(t) = Si(0) exp(o;W;(t) + (r — 02-2/2)75), i=1,....,n.

The reward process 7 is simply

The set of hedging martingales for this example is again almost as rudimentary as one
could imagine: we use the martingale parts of each of the corresponding European
puts, started once the process Z first goes positive, but only while that share is the
cheapest to deliver. Tables III and V both report a range of numerical values for
different parameter choices. Throughout, we used K = 100, 7' = 0.5, r = 0.06, and
in the Table IIT we took the volatilities of both assets to be 0.6, whereas in Table V
the volatilities were o1 = 0.4 and o3 = 0.8. In the example of Table I1I, we exploit
the symmetry of the problem: since the assets are independent and have the same
dynamics, we suppose that the weights on the two basic martingales are the same,
so that in fact the calculation reported in Table III is a calculation based on the use
of a single hedging martingale.



The tables give a European price (computed by numerical integration), a price
computed by finite-difference methods, quoted from Hartley (2000), alongside the
simulation values. The differences are somewhat larger than in the first example,
but are everywhere less than 1%. Times for the Monte Carlo pricing method are of
the order of 180s; this is too high for a real-time trading environment, but perfectly
acceptable for pricing an OTC product. Reassuringly, the price estimates coming out
of the present method are all higher than the prices from Hartley’s finite-difference
calculation.

Table III: Stmulation prices of min-puts on two assets. Parameter values were K =
100, T'= 0.5, r = 0.06, 0y = 09 = 0.6. The unique hedging martingale is whichever
European put is in the lead. 1000 paths are used for the optimisation, followed by
a further 10000 paths.

S1(0) | S2(0) | European | FD price | MC price | SE | MAD | time
80 80 36.859 37.30 37.63 0.088 | 7.2894 | 177.96
80 100 31.639 32.08 32.30 0.078 | 6.3310 | 177.67
80 120 28.652 29.14 29.38 0.062 | 4.7030 | 177.70
100 100 24.728 25.06 25.17 0.079 | 6.3895 | 177.65
100 120 20.610 20.91 21.10 0.068 | 5.3851 | 198.74
120 120 15.704 15.92 16.02 0.062 | 4.8372 | 177.75

Although these results are already quite good, in view of experience with the n-max-
call problem later, it seemed worth finding out whether including an exchange-type
martingale in the hedging set made a significant improvement.

Table IV: Simulation prices of min-puts on two assets. Parameter values were K =
100, T"'= 0.5, r = 0.06, o1 = 03 = 0.6. The hedging martingales are the Furopean
put in the lead, and the exchange martingale specified in the text. 450 paths are
used for the optimisation, followed by a further 10000 paths.

S1(0) | S2(0) | European | FD price | MC price | SE | MAD
80 80 36.859 37.30 37.50 0.075 | 5.95
80 100 31.639 32.08 32.19 0.038 | 2.61
80 120 28.652 29.14 29.25 0.037 | 2.46
100 100 24.728 25.06 25.08 0.079 | 6.24
100 120 20.610 20.91 20.99 0.050 | 3.80
120 120 15.704 15.92 16.09 0.053 | 4.35

In general, when there are n assets, we can for any 7,7 € {1,...,n} explicitly express

the value of a European option to exchange asset ¢ for asset j at time 7. The
hedging martingale to be added to the set is the martingale which at any time when
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the option is in the money follows the (discounted) value of the option to exchange
the second cheapest asset for the cheapest. The results of this more refined analysis
are reported in Table IV; we find that the worst error is 1%, with an average error
of less than 0.5%. The times taken (not reported) roughly double. The MAD values
are quite a lot smaller.

Table V presents the results for an asymmetric example, where the volatilities of the
two assets are different. The hedging martingales used here are just the (discounted)
values of the two European puts, when the corresponding share is cheapest. The
percentage errors (relative to Hartley’s finite-difference prices) is never more than

1.6%, and averages 0.8%.

Table V: Simulation prices of min-puts on two assets. Parameter values were K =

100, 7= 0.5, r = 0.06, 01 = 0.4, o5 = 0.8.

S1(0) | S2(0) | European | FD price | MC price | SE | MAD | time
80 80 37.5540 38.01 38.35 0.096 | 7.5528 | 275.45
80 100 31.8075 32.23 32.60 0.099 | 8.1361 | 298.29
80 120 28.0900 28.54 29.01 0.089 | 7.5012 | 309.36
100 80 32.8564 33.34 33.59 0.071 | 5.3996 | 271.04
100 100 25.4666 25.81 26.02 0.090 | 6.9387 | 259.08
100 120 20.4767 20.75 21.05 0.092 | 7.4975 | 271.19
120 80 30.6872 31.21 31.31 0.047 | 2.9212 | 328.28
120 100 22.4413 22.77 22.83 0.059 | 4.2130 | 289.55
120 120 16.7641 16.98 16.98 0.074 | 5.6365 | 298.78

The approach used by Hartley is an ingenious attempt to base a stopping rule on the
minimum value of all the shares; of course, the stopping rule should ideally depend
on the values of each of the shares, but Hartley shows in the case of two assets that
his approximate method delivers numerical results within 1% of the finite-difference
values. He also uses the method on some examples with more shares, and we quote
his results in Table VI. For these calculations, the shares all have volatility o; = 0.6
and initial value S;(0) = 100, with the other parameters as before. The prices
quoted are computed by his algorithm (50S) with 50 time steps calculating the drift
and volatility separately at each node point. Of course, in Hartley’s paper it is only
possible to say that the prices obtained are lower bounds on the price, and there
is no way of knowing whether the true value is 1% larger, or 40% larger. Hartley
presents upper bounds based on the mean of the maximum of Z along the path
(corresponding to what we would get using M = 0), but these bounds are not
at all close. However, when we look at the upper bounds derived by the present
simulation method, we see that in fact Hartley’s values are close to the truth; the
gap between his lower bounds and our upper bounds is of the order of 1-2%. The
hedging martingales used were as for the example of Table IV.

10



Comparing the results for the one case common to Tables III, IV and VI shows small
variations; in Table III, there was only one hedging martingale (compared with two
in the other two cases), and Table IV used only 450 paths for the optimisation step,
with a corresponding gain in speed and loss in the SE and MAD of the answer,
compared with Table VI. The MC times taken are again satisfactory for some OTC
product, but would ideally be shorter; Hartley’s method is producing computation
times which are much better. It is worth remarking that in some cases, the 505
result of Hartley is several standard errors below the Monte Carlo European price
given in the table; this is consistent with the performance of the 505 algorithm in the
case of two assets, where the values achieved were always below the finite-difference
value, by at most 1%.

Table VI: Simulation prices of min-puts on n assets. All shares have 5;(0) = 100
and o; = 0.6, with 7" = 0.5, K =100 and r = 0.06.

50S | MC European MC 50S
n | price | price | SE | MAD price SE time time
2 | 24.87 | 25.16 | 0.057 | 4.57 24.80 0.027 | 794.05 | 5.64
3 | 31.21 | 31.76 | 0.095 | 7.88 31.22 0.026 | 742.31 | 8.39
4 135.72 | 36.28 | 0.081 | 6.69 35.80 0.024 | 713.93 | 11.31
5 139.01 | 39.47 | 0.095 | 7.93 39.18 0.022 | 725.30 | 14.05
10 | 47.99 | 48.33 | 0.100 | 8.44 48.02 0.017 | 873.49 | 25.64
15 | 52.23 | 52.14 | 0.108 | 9.09 52.11 0.014 | 1175.86 | 41.58

Example 3: Bermudan max calls on n assets.

A benchmark example in this subject appears to be the Bermudan n-max-call,
studied in Broadie & Glasserman (1997b), and used as a test example by Haugh
& Kogan (2001), Fu, Laprise, Madan, Su & Wu (2001), and Andersen & Broadie
(2001). Here we apply the methods developed in this paper to the pricing of the
example where at any time t = ¢T'/d, 1 = 0,....d, the holder of the option may
exercise and receive the payoff

(max(S},...,S") — K)*.

As usual, the assets S' are log-Brownian motions, which are assumed to be inde-
pendent and identically-distributed for the purposes of this example (though this
is not of course necessary for the operation of the method.) There is a continuous
dividend payout at rate 6.

In applying the methods developed in this paper, the obvious first guess at the
martingales in the hedging set was to use the (discounted) value of the European
call on whichever asset was in the lead at the time. This turned out to give bounds
which were quite high, of the order of 3% - 5% too high, so something else was
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needed. This was the exchange martingale described above; at any time ¢, the
increments of the martingale were the increments of the (discounted) value of the
European option to exchange asset : for asset j at time T', where asset j was the most
expensive and asset ¢ was the second most expensive at time . The increments were
turned off when the option was out of the money (that is, all the assets were worth
less than the strike K). Finally, one other martingale was added to the hedging set;
this was the European call in the lead, but only switched on once the asset went
into the money. This could only make a difference to the pricing when S(0) was less
than or equal to the strike.

The values reported in Table VII are based on simulations of 1000 paths for the
optimisation, then another 8000 paths thereafter to refine the estimate. The agree-
ment between the values of Broadie & Glasserman (1997b) and the upper bounds
produced by the dual simulation method are quite good, within 2% on average, and
at most 2.6%.

Table VII: Simulation prices of max-calls on 5 assets. The strike is K’ = 100 through-
out, and all shares have the same start value, S(0) = 90,100,110, and o; = 0.2, with
6 = 0.1. The expiry is T' = 3, interest rate is r = 0.05. Exercise can occur at any of
the times ¢t =¢T'/d, 1 =0,...,d, where d = 3,6,9 are the values used in the table

d| So | BG price | MC price | SE | MAD | MC time
90 16.006 16.24 0.060 | 4.48 337.73
31100 | 25.284 25.70 0.072 | 5.39 227.47
110 | 35.695 36.19 0.060 | 4.98 208.07
90 16.474 16.91 0.057 | 4.28 299.63
6 | 100 25.92 26.40 0.060 | 4.38 329.52
110 | 36.497 37.18 0.065 | 4.74 345.98
90 16.659 16.98 0.061 | 4.54 710.71
91100 | 26.158 26.75 0.061 | 4.40 419.56
110 | 36.782 37.61 0.066 | 4.84 431.86

Example 4: American-Bermudan-Asian option.

This is one of the examples studied by Longstaff & Schwartz (2001), of an American-
Bermudan-Asian option, specified as follows. There is a single risky log-Brownian
asset, with dynamics (4.1), in terms of which is defined the cumulative average

B f_t(S Sy, du

A, = t>0).
1 t_|_67 (—O)

The positive value 6 is incorporated to prevent wild fluctations near ¢ = 0. There
is an initial lockout period ¢t* during which the option may not be exercised, but at
any time between t* and T' the holder may exercise the option and receive the option
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payoff (A;— K)*. In fact, in their Monte Carlo approach, Longstaff & Schwartz ‘use
100 discretization points per year to approximate the continuous exercise feature
of the option,” and are therefore technically pricing a Bermudan option. Thus a
better description of what they have computed would be Bermudan-Asian; we shall
compute values for the American-Asian option, where there is unrestricted exercise
between t* and 7. The values (reported below in Table 4) are in any case very
close; the Longstafl-Schwartz figures quoted there for the finite-difference value of
the option are based on a discretization using 10,000 time steps per year, and 200
space steps in each of two dimensions.

The simulation used linear combinations of three Lagrangian martingales, which
needed to be chosen with some care, in the light of the derivative being hedged. In
the notation of Section 2, the discounted exercise value of the option is

Zt = G_Tt(At — [()+]{t*§t}7

and unlike the previous two examples, this has no martingale part; the paths are
absolutely continuous, except possibly at ¢*. This means that we cannot simply
follow the recipe of taking the martingale part of Z as one of the candidate hedging
martingales, but we can still make certain obervations. Firstly, there would never
be exercise at a time when A; < K'; and secondly, there would never be exercise at
a time when 5 4
Ge= e Tt = (A= K) }

were positive: the interpretation of GG is that it is the derivative of Z with respect
to t, and it is clear that if the exercise value were increasing, then optimal exercise
requires the holder to wait to exercise, since the value will assuredly rise in the next
small instant of time.

The payoff of the European-style analogue would be the positive part of ™" (A —
K), and it is easy to work out that

[l Sudut ST~
T—|—5 — N .

My(t) = Ele™™(Ar — K)|F] =7 {

It follows from this that )
dMo(t) - Hl(t)dSt,

where S, = "5, is the discounted share price process, and

1 — e—r(T—t)

Hi(t) = W
Guided by this, we choose the first martingale in the hedging set to be
dM; (1) = Lia,<o1>t Mo (t)>0ydMo(1). (4.2)
For the second, we take the closely-related martingale
AM:(t) = Lipz e w50y Mo (1) (4.3)
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As for the third martingale, we consider the European-style problem, whose value
at time ¢ will be

M) = Bl T(Ar — K)HF) = 2 U Sl (B0 L S NRL
(4.4)

Now there is no closed-form expression for this, but it is known (see Levy (1990))

that by approximating the conditional distribution of ftT S du by a log-normal dis-
tribution with matching first two moments, we get quite similar numerical values.
With this simplifying assumption, the conditional expectation in (4.4) can be ex-
pressed as a Black-Scholes-like formula; even though this new expression will not be
a martingale, we take for M3 its martingale part, when Gy < 0 and ¢ > ¢*.

The results are presented in Table 4. The agreement between the Monte Carlo prices
and the finite-difference prices is impressive, getting closer as Ag gets smaller. In
just one place the Monte Carlo price is less than the finite-difference price (Ag = 110,
So = 80), but the difference is about one standard error.

Table VIII: American-Bermudan-Asian option prices. The parameters were o =
0.2, K =100, t* = 0.25 = 6, and T' = 2. The optimisation was based on 1000
simulated paths with 40 time-steps, and the subsequent simulation used a further
30000 simulated paths. The martingales used are specified in the text.

Ag | So | FD price | MC price | SE MAD M Ay A3 time
90 | 80 0.949 0.952 0.018 | 1.5681 | 1.0000 | 0.0000 | 0.0000 | 151.64
90 | 90 3.267 3.297 0.031 | 3.8778 | -1.2691 | 2.9607 | 0.0000 | 136.09
90 | 100 7.889 7.892 0.040 | 5.8087 | 2.9753 | 2.977 | 0.0000 | 144.10
90 | 110 | 14.538 14.575 0.052 | 7.3824 | 4.2962 | 2.5357 | -0.4190 | 163.14
90 | 120 | 22.423 22.513 0.055 | 7.7752 | -3.7813 | 2.7438 | 7.4299 | 164.38
100 | 80 1.108 1.094 0.019 | 1.7583 | 1.0000 | 0.0000 | 0.0000 | 113.52
100 | 90 3.710 3.697 0.035 | 4.3349 | -0.8784 | 2.049 | 0.0000 | 158.80
100 | 100 8.658 8.752 0.040 | 5.6947 | 2.2548 | 3.464 | 0.0000 | 161.07
100 | 110 | 15.717 15.913 0.054 | 7.7434 | 8.0858 | 2.3646 | -4.5773 | 163.37
100 | 120 | 23.811 23.924 | 0.056 | 7.9883 | 0.5154 | 2.5132 | 3.3145 | 164.15
110 | 80 1.288 1.265 0.021 | 1.9862 | -0.4028 | 1.2406 | 0.0000 | 158.22
110 | 90 4.136 4.409 0.029 | 3.9949 | -2.3167 | 3.6033 | 2.6306 | 160.86
110 | 100 9.821 10.359 0.038 | 5.2434 | 3.0337 | 3.5928 | -1.6677 | 163.05
110 | 110 | 17.399 17.684 | 0.047 | 6.6736 | 5.4616 | 3.0411 | -3.345 | 163.08
110 | 120 | 25.453 25.661 0.055 | 7.9072 | 13.6087 | 2.8399 | -11.266 | 128.31

14




5 Conclusions.

This paper presents a simple method for evaluating the prices of American-style
options by a direct simulation approach, based on a dual characterisation of the
optimal exercise problem. The method involves the choice of a suitable Lagrangian
hedging martingale, which can be thought of as a hedging strategy designed to
minimise the lookback value of the excess of the option exercise value over the
chosen hedging strategy. A choice of the hedging strategy gives bounds on expected
shortfall (evaluated through simulation).

Even using very primitive choices for the hedging martingales, the agreement with
other numerical methods in the four examples considered is remarkably good, usually
in the range 1%-2%, or better in the first two examples. Errors of this order are
already present in the problem, in the estimates one would need of volatilities, or in
the assumption of constant interest rates.

As befits a new development, there remain many interesting and important ques-
tions. It appears very easy in the few examples studied here to pick a small family
of hedging martingales which will get the upper bound within 2% of the ‘true’ value;
more ingenuity is required to pull the error down to 1%, and it seems that getting
a smaller error in any multi-dimensional example gets increasingly difficult with the
crude methods proposed here. Another issue is the large MAD figures resulting
from these hedging policies - so large that calling them ‘hedging’ policies is a bit
of a misnomer. Better methods are required both for hedging and for pricing. The
approach used here can indeed be developed further and it is intended to present
the results of such developments in a later paper; the current paper should be seen
more as a beginning than as an end.
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Appendix: Duality.

There is a short but sweet convex duality story to be told about the main result,
Theorem 1, which appears as an example of the minimax principle when suitably
interpreted. Many of the ideas are already present in Davis & Karatzas (1994).
Recall that we assume that

for some p > 1, sup |Z] € L7,
0<t<T

and that the paths of Z are right continuous with left limits.

The convex duality story requires two convex sets: for the first we use H} = {M €
H': My = 0}, and for the other we take the collection

A = {right-continuous increasing processes C,Co = 0,Cr = 1}.

Notice that the processes in A are assumed jointly measurable, but not adapted.
There is a pairing on Hy x A defined by

(M,C) — / M,dC.
In view of our assumptions, this pairing is finite-valued. Now we define a function
on A by
T
C s ®(C) = E[/ 2,dC, ] :
0

evidently, ® is convex (in fact, linear) and in view of our assumptions, finite-valued.
Now for any M € H},

sup{®(C) — (M,C)} = E[ sup (Z: — My) |. (A1)

CeA 0<t<T

The easy minimax inequality gives us

ot sup{@(C) = (M, C)} = 223];2};{‘1’( )— (M, C)} (A.2)

To understand the infimum on the right-hand side of (A.2), suppose that C is held
fixed, and that C' denotes the dual optional projection of C' (see, for example, Rogers
& Williams (2000), Chapter VI for definition and properties of the dual optional
projection.) We have

T
(M,C) = E/ M,dC,

= / MtdCt

= MTCT)
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and if we now seek to take the supremum of this expression over all M € H}, we
obtain an infinite value unless C'r is almost surely constant; and that constant must
be 1, since Oy = 1. If we do have that C7 = 1, then (M, C) = 0; thus the right-hand
side of (A.2) is

sup (C),

CeA

where
A= {right-continuous adapted increasing processes C,Co=0,Cr = 1}.
Now for any C' € A and any ¢ € [0,1) we may define the stopping time
o =inf{s: C, > 1},
and we may rewrite

1
0

o(C) = E| [ZSdC*S]:/ EZ(m) dl = BEZ(1"),

say, where 7* is the randomised stopping time 717, where U is chosen uniformly from
[0, 1] independently of everything else. Thus if 7* denotes the class of randomised
stopping times, the right-hand side of (A.2) becomes

sup inf {®(C)— (M,C)} = sup CI)(CN') = sup FZ(r") =sup EZ,, (A.3)
CeAMeH; Gea T -

the last equality being evident.

Turning to the left-hand side of (A.2), we have that
T
sup{8(C) — (M, )} = sup B [ (7, — M,)dC,] = B sup (% — My)],

CeA CeA 0 0<t<T

so taking the infimum over M € H; transforms the inequality (A.2) into

inf E[ sup (Z; — M;)] = inf sup{®(C)—(M,C)}
MeH}  0<t<T MeH; ceA
> sup inf {®(C)— (M,C)} =sup EZ,.
CeAMeH} T

The reverse inequality is part of Theorem 1, and the statement of that Theorem can
be reinterpreted as a minimax equality.
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