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1 Introduction

After credit risk, liquidity risk is probably the next most important risk faced by the finance
industry, and yet the study of liquidity is comparatively under-developed. This may be in part
due to the fact that there is no agreed definition of what liquidity is, even in qualitative terms;
everyone would agree that the effect of illiquidity is to make it costly or difficult to trade large
volumes of the underlying asset in small times, but there are different approaches to modelling
this. There is for example the approach of Longstaff (2001) who takes a conventional Black-
Scholes model for the asset, and supposes that the portfolio process must be differentiable
with bounded derivative. Another approach (see for example Frey & Stremme (), Frey (2000),
Schönbucher & Wilmott ()) takes the market price of the asset to be a function of certain
fundamentals, and the amount of the asset held by a ‘large’ investor. Such models should be
considered as models of feedback effects, rather than models of liquidity effects, since they suffer
a number of disadvantages in modelling of liquidity1. Another contribution of a quite different
nature is the work of Çetin, Jarrow & Protter (2003).

Our viewpoint here is to start from a simple discrete-time microeconomic story, and try to
derive the dynamics of an agent’s wealth process from that. Dividing the time axis into equal
intervals of length ∆t, we suppose that the number of shares offered for sale or purchase in
each interval is of the order of ∆t. An agent who wishes to buy a large number of shares in any
one time interval will have to pay an inflated price, because he is trading in a shallow market.
On the other hand, the amount he actually trades, itself of order ∆t, is small relative to the
total number of shares in the firm, so will have negligible impact on the price of the shares
in the next period. What transpires is that the impact of liquidity modelled in this fashion
is like a transaction cost, but not one which is proportional to the amounts traded. In the
conventional proportional transaction cost model (see Magill & Constantinides (1976), Davis &
Norman (1990)) the bid-offer spread (the difference between the lowest offer price and highest
bid price) is proportional to the current asset price, but the depth of the limit order book is

1It is hard to see how such models might deal with the presence of many ‘large’ agents, each pursuing
his own hedging objectives with different time horizons (with or without knowledge of the other participants’
intentions?). These feedback models typically present the solution to a hedging problem in feedback form,
exhibiting the hedge as a function of time, and current stock price - but if the initial portfolio is not at the
exactly correct value, it is not clear how it is to be moved to that value.
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not taken into account. Our approach is to model illiquidity as a transaction cost taking into
account the depth of the book and the trade size; this is the subject of Section 2.

As might be expected, once such illiquidity costs are introduced there is little hope of exact
solutions to any of the natural questions one might ask. However, provided the illiquidity
costs are small, we may hope to derive a reasonably close approximation to the solution of any
problem. We illustrate this philosophy in Section 3, where we see how the results of the Merton
investment/consumption model are modified in the presence of small illiquidity costs. We start
with a brief summary of the classical Merton model where the utility is constant relative risk
aversion. Then we use some scaling arguments to simplify the HJB but a closed form solution
seems impossible. Instead, since the Merton model is the limiting case of our model as the
illiquidity parameter ε goes to zero we look for a series expansion for the optimal solution. We
derive the first correction term and compare the results to numerical calculations.

As another application of our approach to modelling liquidity, in Section 3 we shall investi-
gate the cost of a European put option in such a market, together with the associated hedging
strategy. Since the market is incomplete once liquidity effects are taken into account, there is
no unique replication price, so the first issue is to decide how the price is to be defined. The
approach taken here is to use the utility-indifference price proposed by Hodges & Neuberger (),
Davis (), for an investor with constant absolute risk-aversion utility. This is a rational approach
to pricing, though not without its limitations2. Exact solution is again impossible, but once
again it is possible to derive an expansion for the solution, and we find the leading-order form
of the correction, and the hedging strategy.

2 The Discrete Time Model

We shall consider a single asset, whose price at time t is denoted by St. Fixing for the moment
some ∆t > 0, we let pn denote logS(n∆t), which we suppose evolves as a random walk,

(2.1) pn = pn−1 + ξn,

where the ξn are independent and identically distributed. We imagine that in each period λa∆t
shareholders consider whether to sell their shares, and λb∆t agents consider whether to buy
shares. A hedger also comes to the market with the intention of buying ∆Hn shares during the

nth period ((n− 1)∆t, n∆t] ≡ (tn−1, tn]. The log-price p̃n at which he will trade is determined
by the equalisation of supply and demand:

(2.2) λa∆t fs(p̃n − pn) = λb∆t fd(p̃n − pn) + ∆Hn,

where the supply function fs is continuous and strictly increasing, the demand function fd is
continuous and strictly decreasing. We therefore find that the log-price at which the hedger
trades is determined by

(2.3) p̃n − pn = ψ

(

∆Hn

∆t

)

,

2For example, the price assigned to a European call option will be infinite.
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where ψ is the inverse function to x 7→ (λafs(x) − λbfd(x))∆t. It is natural to suppose that
ψ(0) = 0.

If we now let Ht denote the number of shares held by the hedger at time t, and Kt denote
the amount of cash held by the hedger at time t, then the wealth3 of the hedger at time t is

wt = HtSt +Kt. The change in wealth over the nth period is therefore

wtn − wtn−1
= Htn−1

(Stn − Stn−1
) + Stn∆Hn − ep̃n∆Hn

= Htn−1
(Stn − Stn−1

) − Stnhn(exp(ψ(hn)) − 1)∆t,

where we use the notation hn = ∆Hn/∆t. If we let ∆t ↓ 0, and suppose that H is differentiable,
with derivative ht = dHt/dt, then we derive the (continuous-time) dynamics for wealth in the
form

dHt = htdt,

dwt = HtdSt − htStf(ht)dt,(2.4)

where f(x) ≡ exp(ψ(x)) − 1 is continuous and increasing, equal to 0 at 0.
We shall therefore now concentrate on the continuous-time dynamics (2.4), and let the

discrete-time construction by which we arrived at it slip into the background. Various forms
for f can be considered; since we intend to treat the illiquidity costs as small, we shall introduce
the small parameter ε into the argument of f , leading to wealth dynamics

(2.5) dwt = HtdSt − htf(εht)Stdt.

We shall always assume that f is continuous, increasing, bounded below by -1, and f(0) = 0.

3 The Merton problem

3.1 Review of the Merton problem without liquidity effects

To establish notation, we briefly review the classical Merton problem (see Merton()). When
liquidity effects are taken into account, we will see a perturbation of the solution recalled here.

An investor may invest in two assets, a money market account with constant interest rate
r, and a share with price process (St)t≥0 satisfying

(3.1) dSt = St(σdWt + µdt)

for constants σ and µ, where (Wt)t≥0 is a standard Brownian motion.
The investor chooses to hold the value θt in shares and to consume at a rate Ct so that his

wealth evolves as

dwt = (rwt − Ct)dt+ θt(σdWt + (µ− r)dt).(3.2)

3We are talking here of the paper or nominal wealth at time t, which is not the same as the liquidation value

of the hedger’s portfolio.
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Subject to the constraint wt ≥ 0 for all t, the investor’s objective is to achieve

(3.3) v0(w) = sup E

[
∫ ∞

0

e−ρtU(Ct)dt

∣

∣

∣

∣

w0 = w

]

where ρ is some positive constant. If the utility has the form U(x) = x1−R/(1 − R) for some
R > 0 different from 1, Merton finds

v0(w) = γ−RU(w),(3.4)

θt = πwt,(3.5)

Ct = γwt,(3.6)

where

π =
µ− r

σ2R
(3.7)

γ =
ρ + (R− 1)(r + (µ− r)2/2Rσ2)

R
(3.8)

=
ρ + (R− 1)(r + 1

2
σ2Rπ2)

R
.(3.9)

In order that the problem is well posed, we shall need that γ > 0, which is only an issue if
0 < R < 1.

3.2 The Merton problem in an illiquid market

Using (2.5) we have the following equations for the evolution of the asset and the wealth of the
investor:

dSt = St(µdt+ σdWt) ,(3.10)

dwt = rwtdt+Ht(dSt − Strdt) − Ctdt− htf(εht)Stdt .(3.11)

In this situation the investor controls Ct and ht to achieve4

(3.12) V (w,H, S) ≡ V (w,H, S; ε) = sup E

[
∫ ∞

0

e−ρtU(Ct)dt

∣

∣

∣

∣

w0 = w,H0 = H,S0 = S

]

,

with the restriction wt ≥ 0 for all t. Because the share price can with positive probability rise
or fall arbitrarily high or low in arbitrarily short time, this positive wealth constraint implies
that the investor can never short shares or cash;

Ht ≥ 0, wt −HtSt ≡ Kt ≥ 0.

Because of this requirement, we shall make the

Assumption: 0 < π ≡ (µ− r)/σ2R < 1

4We will usually omit the explicit dependence of V on ε from the notation.
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so that the optimal solution with liquidity effects can be treated as a perturbation of the optimal
solution of the original Merton problem.

Given initial values for H, w and S, we say that (C, h) is admissible if wt ≥ 0 for all t. We
can exploit the scaling in (3.11), (3.10) and (3.12) to give

V (w,H, S) = v(z,H)S1−R,

C∗(w,H, S) = c∗(z,H)S

where v(z,H) = V (z,H, 1), c∗(z,H) = C∗(z,H, 1), z = w/S, and C∗(w,H, S) is the optimal
consumption rate as a function of current wealth, current holding of the share, and current
share price. To see this note that a policy (C, h) is admissible for starting values H0, w0 and
S0 if and only if (λC, h) is admissible for starting values H0, λw0 and λS0 where λ > 0.

It appears therefore that the variable zt ≡ wt/St is important for the analysis. It is of course
the wealth of the agent expressed in units of the share, and by routine calculations using Itô’s
formula we are able to derive

(3.13) dzt = σ(Ht − zt)dWt −
{

(σ2 + r − µ)(Ht − zt) + htf(εht) + ct
}

dt,

where ct ≡ Ct/St. Even more simply, if we introduce the non-negative process Yt ≡ zt −Ht =
Kt/St, we have

(3.14) dYt = Yt

(

−σdWt + (σ2 + r − µ)dt
)

−
{

ht + htf(εht) + ct
}

dt,

a simple linear SDE for Y . This suggests that we re-express the value function as a function of
Y and H:

(3.15) V (w,H, S) = v(z,H)S1−R = F (Y,H)S1−R,

where we define F (Y,H) = v(H+Y,H). The next stage of the analysis is of course to derive the
Hamilton-Jacobi-Bellman (HJB) equation; once again, routine but lengthy calculations using
Itô’s formula lead us to the conclusions

(3.16) sup
c,h

{

U(c) − ρ̃F +
1

2
σ2Y 2FY Y − (h+ hf(εh) + c+ αY )FY + hFH

}

= 0,

or equivalently

(3.17) sup
c,h

{

U(c) − ρ̃v +
1

2
σ2(H − z)2vzz − (hf(εh) + c+ α(z −H))vz + hvH

}

= 0,

where α = µ−r−σ2R = σ2R(π−1) and ρ̃ = ρ+(R−1)(µ− 1
2
σ2R) = Rγ− 1

2
σ2R(R−1)(π−1)2.

The maximisation over c and h is easily done, leading to

c∗ = F
−1/R
Y = v−1/R

z ,(3.18)

vH = FH − FY = vzf̄
′(εh∗) = FY f̄

′(εh∗)(3.19)
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where f̄(t) ≡ tf(t). The optimal c∗ and h∗ can be substituted back into (3.17) and (3.16) to
give the non-linear PDEs

0 = Ũ(FY ) − ρ̃F +
1

2
σ2Y 2FY Y − αY FY +

FY

ε
Φ

(

FH − FY

FY

)

(3.20)

0 = Ũ(vz) − ρ̃v +
1

2
σ2(H − z)2vzz − α(z −H)vz +

vz

ε
Φ

(

vH

vz

)

(3.21)

where Ũ(y) ≡ supx{U(x) − xy} is the convex dual of U , and where the convex function Φ is
defined by

(3.22) Φ(a) ≡ sup
t
{at− tf(t)}.

Notice that Φ(a) ≥ Φ(0) = 0, and Φ(a) = +∞ if a < −1.
Exact solution of (3.21) or (3.20) appears impossible, but in the next two sections we show

that progress may nevertheless be made, firstly by looking for a power-series solution (where
the form (3.17) works best), and secondly by numerical solution (where the form (3.16) works
best).

In this Section, we seek an expansion of the solution in powers of ε; first we present a simple
heuristic which tells us what powers of ε to be looking at.

We expect that for ε small, the optimal behaviour will be to try to keep H/z = HS/w close
to π∗, that is, Ht + π∗zt. If the proportion of wealth in the risky asset in the original Merton
problem were p 6= π∗, we would expect to be making a loss O((p− π∗)

2); we would also expect
that the main issue in making Ht track π∗zt is to track the martingale part of π∗zt. So if we
consider the allied problem of finding a differentiable adapted process X to achieve

inf E

[
∫ T

0

{

(Wt −Xt)
2 + εẊ2

t

}

dt

]

we can solve this problem explicitly by setting ξt ≡ Wt − Xt, and solving the HJB equations
for this problem; the solution for the value function is

V (τ, ξ) =
√
ε tanh(τ/

√
ε)ξ2 + ε log cosh(τ/

√
ε)

expressed in terms of time-to-go τ = T − t. The optimal control is Ẋt = tanh(τ/
√
ε)ξt/

√
ε,

which is clearly O(1/
√
ε), and the value function itself is also seen to be O(

√
ε).

Treating ε as a variable, we therefore seek a solution of the form

v(z,H; ε) =

∞
∑

k=0

δkGk(z,H)(3.23)

where δ = ε1/2, and we make the dependence of F on ε explicit.
Now there is a further scaling of the wealth equation we can exploit, namely, that

v(λz, λH; ε/λ) = λ1−Rv(z,H; ε)(3.24)
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To see this, refer back to (3.14) and note that an admissible strategy (C, h) with intial values
z0, H0 and ε is admissible if and only if the strategy (λC, λh) with initial values λz0, λH0 and
ε/λ is admissible where λ > 0.

This scaling should be present in our power series solution so

∞
∑

k=0

δk

λk/2
Gk(λz, λH) = λ1−R

∞
∑

k=0

δkGk(z,H)(3.25)

Now equating term by term we get

Gk(λz, λH) = λ1−R+k/2Gk(z,H)(3.26)

Put gk(x) = Gk(1, x) so that

Gk(z,H) = z1−R+k/2Gk(1, H/z) = z1−R+k/2gk(H/z)(3.27)

We have succeeded in reducing the dimension of the problem to 1. To proceed further, we
perform an asymptotic analysis of the HJB equation, and obtain equations for the various
functions gk in succession. We find that

g0(x) = γ−RU(x),(3.28)

g1(x) = −γ−R

√

σ2R

2
(κ1 + (x− π)2),(3.29)

where

κ1 =
8σ2π2(1 − π)2

3(4γ − σ2(1 − π)2)
(3.30)

(3.31)
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———————————————————————
An alternative approach is to attempt to express

(3.32) v(z,H) ' v0(z) + δg(z,H),

and then to obtain some bounds. Specifically, we intend to propose some explicit approximation
v̄ = v0 + δg to the true value function, and then to examine

(3.33) Lv̄ ≡ Ũ(v̄z) − ρ̃v̄ + α(H − z)v̄z +
1

2
σ2(H − z)2v̄zz +

v̄z

ε
Φ

(

v̄H

v̄z

)

.

Provided we can prove that there is a constant κ such that |Lv̄(z,H)| ≤ κδ2 for all z,H, then
we will be able to deduce that v̄ is near to the true value function.

It is easy to verify that the Merton value function v0 satisfies

0 = Ũ(v0z) − ρ̃v0 + αz(π − 1)v0z +
1

2
σ2z2(π − 1)2v0zz

= γRv0 − ρ̃v0 + αz(π − 1)v0z +
1

2
σ2z2(π − 1)2v0zz,

so returning to (3.33), we have

Lv̄ = Ũ(v̄z) − ρ̃v̄ + α(H − z)v̄z +
1

2
σ2(H − z)2v̄zz +

v̄z

ε
Φ

(

v̄H

v̄z

)

= Ũ(v0z + δgz) − Ũ(v0z) − δρ̃g + δαz(p− 1)gz +
1

2
δσ2z2(p− 1)2gzz

+
v0z + δgz

ε
Φ

(

δgH

v0z + δgz

)

+ α(H − πz)v0z +
1

2
σ2{(H − z)2 − z2(π − 1)2}v0zz

= Ũ(v0z + δgz) − Ũ(v0z) − δρ̃g + δαz(p− 1)gz +
1

2
δσ2z2(p− 1)2gzz

+
v0z + δgz

ε
Φ

(

δgH

v0z + δgz

)

− γ−Rz1−R(p− π)2σ
2R

2
,

where we write p = H/z for short. Now

|Ũ(v0z + δgz) − Ũ(v0z) − δgzŨ
′(v0z)| = Ũ(v0z)

∣

∣

∣

∣

(

1 +
δgz

v0z

)(R−1)/R

− 1 − R− 1

R

δgz

v0z

∣

∣

∣

∣

≤ Ũ(v0z)Cδ
2

for some constant C provided we have |gz/v0z| bounded. Recalling that we want a bound of
the form |Lv̄| ≤ κδ2, it is therefore enough to establish such a bound for the expression

Lv ≡ δgzŨ
′(v0z) − δρ̃g + δαz(p− 1)gz +

1

2
δσ2z2(p− 1)2gzz

+
v0z + δgz

ε
Φ

(

δgH

v0z + δgz

)

− γ−Rz1−R(p− π)2σ
2R

2
.

= δgzŨ
′(v0z) − δρ̃g + δαz(p− 1)gz +

1

2
δσ2z2(p− 1)2gzz

+
v0z + δgz

ε
Φ

(

δgH

v0z + δgz

)

− 1

2
σ2R(1 − R)(p− π)2v0(z).(3.34)
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We now plan to represent g as

(3.35) g(z,H) =
F0(z, p) + f(z)

1 + δG1(z, p)

and find out what forms of the functions F0, G1 and f work well.
If we take Φ(x) = x2/4, which corresponds to taking f(x) = x, then the choice

(3.36) F0(z, p) = −σγ−R
√

R/2z3/2−R(p− π)2

removes all terms that are O(1) in (3.34). Turning next to terms that are O(δ), we obtain an
expression in z, p and the unknown functions f and G1 and various derivatives. Setting p = π,
we find that this expression vanishes if and only if f solves a second-order linear differential
equation, whose general solution is

(3.37) f(z) = −4π2σγ−R
√

2Rz3/2−R

3q
+ Aγ−Rz−R +Bγ−Rz3/2−R+q/2,

where

q ≡ 4γ

σ2(π − 1)2
− 1,

and A and B are constants to be determined. Assuming that f has this form, the terms of
order δ reduce to

(3.38) ϕ2(z, p)G1,p(z, p) + ϕ1(z, p)G1(z, p) + ϕ0(z, p),

where

ϕ2(z, p) = (A +Bz(3+q)/2)(p− π)

√

σ2R

2z
− σ2Rz(p− π)(3q(p− π)2 + 8π2)

6q

= at− 1

2
σ2Rzt3,

ϕ1(z, p) = −σ2Rz(p− π)2

= −σ2Rzt2,

where we have written t = p − π. For ϕ0 we obtain a long expression which is a polynomial
of degree 4 in t, with t = 0 as a root. This first-order linear ODE is solved by finding the
integrating factor, which by inspection is (p− π)−1, leading to the differential equation

∂

∂p

(

(a− 1

2
σ2Rz(p− π)2)G1(z, p)

)

+
ϕ0(z, p)

p− π
= 0.

———————————————————————

3.3 Numerical Results

We use a Markov chain approximation to find an approximate numerical solution to the prob-
lem, based on the technique described in Kushner and Dupuis (1992). Then policy improvement
is used to compute the optimal policy for this Markov chain approximation.
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In the classical Merton solution the optimal holding is from (3.7) H∗ = θ∗Z or in our trans-
formed co-ordinates H∗ = θ∗

1−θ∗
Y . In our Markov chain the grid is scaled so that ∆h = θ∗

1−θ∗
∆y.

Also for each yi, i ∈ {1, 2, ..., n} the point (yi,
θ∗

1−θ∗
yi) is a grid point. In the plots below we

take the parameter values as ε = 0.1 , µ = 0.05 , r = 0.03, σ = 0.4 , R = 1/3 , p = 0.04 , ymin =
1/3 , ymax = 2 , hmin = 0 and hmax = θ∗

1−θ∗
ymax + ∆h. We plot the percentage decrease in

the value function as compared to the classical Merton solution after 10 iterations and for 4
successive grid refinements, starting with initial guesses for the optimal policy to be identically
zero for h and C.
Intuitively, it is clear that the optimal h will be positive if hi <

θ∗

1−θ∗
yj and negative if hi >

θ∗

1−θ∗
yj

so that we don’t have to worry about the boundary conditions for extreme values of hj since
the probability of a transition outside these values is zero. For the upper and lower values of
cash, ymin and ymax, respectively we take the power series with the first order correction as
an approximate value. As we go through the policy iteration we expect the value function to
converge to some value on the grid points. If the boundary conditions were exactly correct we
would expect the value function to converge to the true value for the continuous time problem
as we refine our grid further and further. Since our boundary conditions are only approximate
it is difficult to give a quantitative estimate of how accurate the numerical calculation is. How-
ever, it can be seen from figure 5 that the numerical calculation and grid values from the power
series solution with the first correction term are very close. In fact, the maximum difference is
less than 0.1 %.
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