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Foreword. The notes which follow were originally prepared for a course given
in 1999, and in the intervening years the whole subject of credit has boomed;
accordingly, though in parts the material of these notes is timeless, elsewhere it
appears distinctly dated. Please read with indulgence; and in the Epilogue I will
make some remarks on the subject more recently, and where it might look in the
future.

1 What is the problem?

The first and most important thing to realise about modelling of credit risk is that
we may be trying to answer questions of two different types, and the links between
the two are somewhat tenuous.

To fix some notation, let’s suppose that the value of a firm’s assets at time t are
denoted by Vt, and that these evolve as

dVt = Vt−(σtdWt + (µt − ct)dt− dJt), (1)

where W is a standard Brownian motion, µ is some process, the rate of return
process, c is the dividend process, and J is some jumping process. The volatility
process σ can be quite general. The value at time t of the total equity of the
firm is denoted by St, and so the value at time t of all debt must be simply
Vt − St. Default happens at some time τ ; upon default, the control of the firm
passes from the shareholders to the bondholders, and there may be restructuring
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losses incurred. Default may happen because of some failure of the firm to fulfil its
obligations to its creditors, or it may happen because the shareholders decide to
surrender control by declaring bankruptcy. For now, we will not be specific about
the circumstances of default.

We might be interested in questions of risk-management; what is the probability
that the firm will default in the next 5 years? what is the expected loss on default
if that happens? what are our expected losses from all the defaults of our obligors
over the next 5 years? To answer these, we would presumably need to know the
dividend policy, and the statistics of the rate of return. We would also need to know
under what conditions default happens; if we make the simplifying assumption that
it happens when V falls to some level, then we are dealing with a first-passage
problem for a continuous process, which we may or may not be able to solve. Our
approach to the problem would involve us in estimating the dynamics of various
processes, as well as the dependence of µ on them. This would require historical
data, and perhaps some judgemental inputs.

Contrast this with the situation we face if we are trying to answer pricing ques-
tions. This time, we are working in the risk-neutral or pricing measure, and so
(1) is modified to make the rate of return equal to the riskless spot-rate r. To
estimate this model, we would be looking to market prices - prices of equity, and
credit-sensitive instruments. In the extreme case of J = 0, we would simply have
µ = r, and all structural dependence of the rate of return on economic fundamen-
tals washes out!

The two situations involve working in two different measures, and they are linked
only rather indirectly; if we had built a good model for one class of questions, we
would have to make some (usually quite arbitrary) assumptions on risk premia to
translate to a model for the other class of questions. We shall study in some detail
below an example which displays clearly the kinds of difficulty involved.

We posed the problem in the generality of (1) because this form embraces the two
main types of approach in the literature: the structural approach, and the hazard
rate or reduced form approach. Typically in the first, the term dJ is absent,
the value of the firm is modelled as a continous process, with default occurring
when the value reaches some (possibly time-dependent) barrier. In the second, the
emphasis is on the jump process dJ , and default will occur at the first jump time
of J .

It seems that we really need to include both components in our analysis1. The
structural approach fails to match the observed evidence that corporate spreads

1The paper [4] is a first (rather simple-minded) step in this direction
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do not decrease to zero as maturity decreases to zero; even for short maturities,
the market does not neglect the possibility that some disaster may strike. On the
other hand, the reduced-form approach can struggle to capture the dependency
between defaults of different firms; in principle, by making the hazard rate depend
on a range of other processes we can incorporate this, but this is rather artificial -
we still need to understand the other processes on which the hazard rate depends.

Data issues. Let’s firstly consider the risk-management questions. In order to
estimate the probability of default of the firm, we would like to know as much as
possible about the rate of return process. This may be affected by:

• costs of labour and raw materials;

• interest rates in countries where the firm produces and sells;

• exchange rates between countries where the firm produces and sells;

• recent and projected sales of the corporation;

• other debt issues outstanding, their priority, maturity and other characteristics;

• failure of obligors;

• perceived credit-worthiness of the corporation; as well as by

• taxation levels in various countries;

• technological progress and new products of the firm and competitors;

• possible major falls in value (e.g., litigation);

• continuity and competence of management;

• major political and market changes.

If we were well informed about all these things (as we would be if the corporation had
approached us for a $5 bn loan, or for a credit rating), most of the uncertainty about
default would be removed. On the other hand, much of this information about the firm
would be very difficult for individual investors to discover, so most would be relying on
coarser information, such as credit ratings, share prices and prices of the firm’s bonds.
We must be cautious in using all of these!

To begin with, credit ratings are obtained by some gross aggregation of many diverse
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corporations in order to make some estimates of (unlikely) changes in credit class, or
default, and then all corporations with the same credit rating are treated the same for
the purpose of assessing default risk. Now this is clearly too simplified; Hersheys will
be significantly affected by the price of cocoa, Ford will not. Also, the moves between
credit classes are often modelled as a continuous-time Markov chain, which means that
the times in ratings classes will be exponentially distributed, but more importantly, the
probability of a downgrade given that a firm has just experienced one is higher than for
a firm that has been in that class for some time. This is not supported by evidence.
Credit ratings convey only very crude information about the riskiness of a firm’s debt -
it would be tempting to omit them entirely from any modelling effort, were it not for the
fact that there are various credit-sensitive products whose payoffs depend on the credit
class to which the firm is assigned!

As far as share and bond prices go, these are calculated using the pricing measure, so we
can’t expect them to tell us much of use for risk management, apart from information
about volatility.

How about the pricing questions? This time the useful data is the data relating to the
pricing measure, so the prices of shares and corporate bonds; empirical estimates of
ratings class transitions will not tell us anything we can use directly here. One point to
note is that for sovereign debt, we do not have any share prices, so the range of usable
data is much less; we would like our models to work without share price data, therefore.

Is there no useable link between the pricing measure and the real-world measure? Not
entirely; the dividend policy of the firm will presumably depend on various economic
fundamentals as well as the value of the firm, and the share price is just the net present
value of all future dividends, so there is a link here. However, we still have to understand
the law of the fundamentals in the pricing probability, so the matter is not ended.

2 Hazard rate models

There are two broad classes of models, the structural models (characterised by an attempt
to model default by modelling the dynamics of the assets of the firm) and the hazard
rate models, where the idea is that the default comes ‘by surprise’ in some sense, and
we merely try to model the infinitesimal likelihood of a default. Hazard rate models are
also called reduced form models by some authors.

In hazard rate models, the fundamental modelling tool is the Poisson process, and we
begin by recalling the definition and some properties.

Definition 2.1 A Poisson counting process (Nt)t≥0 is a non-decreasing process with right-
continuous paths and values in Z+ such that
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(2.1.i) N0 = 0;

(2.1.ii) for any 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ . . . ≤ sn ≤ tn, the random variables Xi ≡
N(ti) − N(si) are independent, and the distribution of each Xi depends only on the
length ti − si;

(2.1.iii) for all t ≥ 0, Nt −Nt− is either 0 or 1.

The definition of the Poisson process uniquely determines its distribution to within a
single positive parameter λ. When λ = 1, we speak of a standard Poisson process. Here
are other key properties, in which the positive parameter λ appears explicitly.

(2.2) the process Ñt ≡ Nt − λt is a martingale;

(2.3) the inter-event times Tn − Tn−1 are independent with common exponential(λ)
distribution:

P [Tn − Tn−1 > t] = exp(−λt)

for all t ≥ 0; (Here, Tn ≡ inf{t ≥ 0 | Nt = n}.)

(2.4) For any s ≤ t, Nt −Ns ∼ P(λ(t− s)), the Poisson distribution with mean λ:

P [Nt −Ns = k] = e−λ(t−s)λk(t− s)k/k!

for k ∈ Z+;

This much is known from any introductory text on stochastic processes, where the Pois-
son process will be motivated by descriptions of the arrivals of radioactive particles at
a Geiger counter, or customers at a post office counter. But suppose we were counting
the radioactive particles arriving from some source at the Geiger counter, and after one
minute we halved the distance from source to counter. Physics tells us that the intensity
of counts would be multiplied by 4, but how would we model it? We could suppose
that we have two independent Poisson processes N ′ and N ′′ with intensities λ and 4λ
respectively, and set up the counting process

Ñt = N ′(t ∧ 1) + N ′′(t ∨ 1)−N ′′(1),

but a neater way to do it is to suppose we have a standard Poisson process N and define
the counting process

N∗
t ≡ N(Ht),

where

Ht = λ(t + 3(t− 1)+)

=
∫ t

0
hsds, (2)
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where hs = λ(I{s<1} + 4I{s≥1}). The function h is the intensity or hazard rate function
of the counting process N∗; the bigger it is, the faster the events (the jumps of N∗) are
coming. This way of looking at the problem is powerful, because it permits immediate
generalization to intensity functions which are allowed to be stochastic, and this is really
all that is going on in the hazard rate approach to credit risk modelling. In more detail,
we model the time τ of default as the first time that N∗ jumps, so we shall have

H(τ) = T1. (3)

This is true for stochastic hazard rate processes as well, of course. In our modelling, we
shall suppose that we have defined the hazard rate process in some way, and then take
an independent standard Poisson process N and define τ by way of (2) and (3). From
this, we have immediately the key relation

P [τ > t] = P [T1 > H(t)]

= E[ exp(−
∫ t

0
hsds) ], (4)

utilising property (3) and the independence assumption2. Differentiating (4) gives us an
expression for the density of τ :

P [ τ ∈ dt ] = E[ ht exp(−
∫ t

0
hsds) ] dt.

Once this is understood, deriving expressions for prices of various credit-sensitive in-
struments becomes a straighforward application of the arbitrage-pricing principle. For
example, if we wish to find the time-t price PC(t, T ) of a zero-coupon corporate bond
with expiry T which delivers 1 at time T if there were no default before T and delivers
δτ at time T if default occurred at time τ ≤ T , then we have simply

PC(t, T ) = Et

[
e−RtT (I{τ>T} + δτI{τ≤T})

]
= P (t, T )− Et

[
e−RtT (1− δτ )I{τ≤T})

]
, (5)

= P (t, T )− Et

[
e−RtT

∫ T

t
(1− δs)hse

−Htsds
]
, (6)

where P (t, T ) is the time-t price of a riskless zero-coupon bond with expiry T , and
Rst ≡

∫ t
s rudu, Hst ≡

∫ t
s hudu.

Expression (6) for the price of a risky zero-coupon bond appears in various places at
various levels of generality; it appears in modified guises according to the assumptions

2It is worth emphasising that we do need independence here; to derive (4) we use the argument
P [T1 > H(t)] = E[P [T1 > H(t)|G]] = E[exp(−H(t))], where G is a σ-field with respect to which
h is measurable but which is independent of N . The independence assumption is key to a number
of the expressions which are derived in the literature of the subject.
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made about what happens on default (Is payment made immediately? Is the loss pro-
portional to the value of the asset immediately prior to default?), and we shall shortly
discuss some of the papers where it features. For the moment, though, notice that the
key components of the pricing problem are to model the riskless interest rate, the timing
of default, and the recovery process; and notice also that without some very strong as-
sumptions about the dynamics of these processes, simple closed-form prices for corporate
bonds are unlikely to arise.

Example 1. If the recovery process is identically zero, the price of the corporate bond
becomes

PC(t, T ) = Et

[
e−RtT I{τ>T}

]
= Et

[
e−RtT−HtT

]
,

so what we see is like a riskless zero-coupon bond with spot rate r + h. We can now
view the problem as similar to the problem of pricing index-linked bonds, or bonds
denominated in a foreign currency, thus making an existing literature available. It seems
however that we may get further by exploiting the additional structure of the credit
interpretation.

Example 2. If we assume that the recovery process δ is constant, and that the hazard
rate takes the constant value µ, then the price given by (6) for the corporate bond
simplifies to

PC(t, T ) = P (t, T )(δ + (1− δ)e−µ(T−t)I{τ>t}). (7)

In this case, the credit spread (if τ > t) is given simply by

(T − t)−1 log(P (t, T )/PC(t, T )) = µ− 1
T − t

log(1 + δ(eµ(T−t) − 1)), (8)

which is a decreasing function of T − t; if δ = 0 then the spread is constant. The paper
[11] presents a fairly general framework for credit modelling, and then specialises to this
example with a Gaussian HJM interest rate model. The choice of the Gaussian HJM
description obscures the simplicity and generality of their work, in my view.

Example 3. In a more recent work, [12] extend their earlier paper by considering a
situation where the Vasicek interest rate process is used, and where the hazard function
ht is some linear function of rt and Zt, where Z is some Brownian motion which may be
correlated with the interest-rate process. More specifically,

drt = σdWt + β(r∞ − rt)dt,

dWtdZt = ρdt,

ht = a0(t) + a1(t)rt + a2(t)Zt.

As with the Vasicek model itself, the use of a process which may take negative values
for the intrinsically non-negative process h is questionable, but if we close our eyes to
this problem, then simple formulae result for the price of the corporate bond:

PC(0, T ) = δP (0, T ) + (1− δ) exp(−µT + 1
2
vT ),
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where µT and vT are the mean and variance of R0T + HT respectively:

µT =
∫ T

0
{(1 + a1(s))(r∞ + e−βs(r0 − r∞) + a0(s)} ds

vT = 2E

∫ T

0
ds

∫ T

s
dv

[
(1 + a1(s))(1 + a1(v))eβ(s−v)f(2β, s) + ρa2(v)(1 + a1(s))f(β, s)

+ρa2(s)(1 + a1(v)))eβ(s−v)f(β, s) + sa2(s)a2(v)
]
,

where f(λ, t) = (1 − e−λt)/l. The freedom to choose the three functions ai gives a
great deal of flexibility in fitting the model, and the involvement of the spot rate and
another Brownian motion (for which Jarrow and Turnbull offer the interpretation of the
log of some index price) certainly incorporates a desirable dependence of credit risk on
economic fundamentals.

Example 4. This example (see [10]) is again in the same spirit as the earlier Jarrow &
Turnbull paper, with various structural assumptions on the hazard-rate process. The
idea is to model moves between credit classes as a time-homogeneous Markov chain X
in the real-world measure (which facilitates estimation from historical data). One then
assumes that in the pricing measure the riskless rate and the transitions are independent,
and additionally that the recovery rate is constant. This leads to a neat formula for the
price of risky bonds:

PC(t, T ) = E
[
e−RtT (δ + (1− δ)P̃ (τ > T | Xt, τ > t))

]
= P (t, T )− E

[
e−RtT (1− δ)

]
P̃ (τ > T | Xt, τ > t) (9)

= P (t, T )− (1− δ)P (t, T )P̃ (τ > T | Xt, τ > t). (10)

The probability P̃ is the law governing the Markov chain of credit class transitions under
the pricing measure. The link between the law of X under the two measures is achieved
by assuming that the intensity matrix Q̃(t) in the pricing measure may be expressed as
Q̃(t) = U(t)Q, where U(t) is diagonal, and Q is the Q-matrix in the real-world measure.

It is worth following through in some detail the steps of the analysis, because among all
reduced-form models, this one is making perhaps the most sophisticated use of the most
readily-available information about the riskiness of a firm’s debt, namely credit ratings.
The difficulties we encounter along the way will arise in any similar model.

Our goal is to estimate the model for the default process under the pricing measure, and
the expression () for the price of a risky zero-coupon bond is the starting point. We
assume that we know the riskless bond prices P (t, T ); finding these from market data
is a non-trivial but well-studied problem. Next we need to know the risky zero-coupon
bond prices PC(t, T ). These are harder to tease out of market data, because most bonds
are coupon-bearing, and many have convertible features. The procedure advocated by
Jarrow, Lando & Turnbull goes as follows:
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• separate bonds into buckets by maturity and credit class;

• within each bucket, compute the market-value-weighted average (MVWA) coupon,
and the MVWA yield-to-worst3;

• treat each bucket as if it were a single bond with the MVWA coupon and MVWA
yield-to-worst, and recursively compute PC(t, Ti), i = 1, . . . , n, from these synthesised
bond prices. The treatment of convertible bonds is rather crude, and Jarrow, Lando &
Turnbull find that the procedure sometimes results in a lower-rated bond being worth
more than a higher-rated one! They comment that this problem is accentuated when
there are comparatively few bonds in a bucket (apart from A and BAA1 grades, few of
the buckets contain more than 30 bonds, and in many cases the number is less than 10).

Having got this far, there remains only the estimation of δ between us and estimates
of the default probabilities in the pricing measure. The method used in the paper is to
take for δ the MVWA of recovery rates over all classes of debt in 1991. This takes the
value 0.3265; the values for the five classes of debt are 0.6081, 0.4550, 0.3368, 0.1658,
and 0.0363, which we see varies very considerably, so this is a significant simplification.
We now are able to use (2) to give us estimates of P̃ (τ > Tj |Xt = i, τ > t) for a range
of maturities Tj , and for each credit class i.

If we knew the jump intensities Q ≡ (qij) between credit classes, we could compute
the matrix of transition probabilities over time ∆t as exp(Q∆t); assuming that ∆t is
small enough that we can ignore the possibility of more than one jump, we then have
an approximation for the ∆t-transition probabilities given by

pij(∆t) = qij(1− e−qi∆t)/qi, (i 6= j) (11)

where qi =
∑

j 6=i qij . The Standard and Poor’s Credit Review provides an estimate of
the one-year transition probabilities, and using these for the left-hand side of (11) it is
easy to deduce the values of qij corresponding. This then deals with the estimation of
the transitions between credit classes in the real-world probability, and now it remains
to estimate the transformation from real-world to pricing probability.

This last step must of course use information from prices, and we use the risky zero-
coupon bond prices PC(t, T ) for each of the credit classes, and each of the maturities
Tj . Using (2), we transform this into P̃ (τ > Tj |Xt = i, τ > t) for each j, and each credit
class i = 1, . . . ,K, where credit class K is the default state. Now recall that we are
going to write the jump-rate matrix Q̃(s) in continuous time as U(s)Q for some diagonal
matrix U(s), and so the transitions in the pricing probability will be approximately

P̃ (Xs+∆t = j | Xs = i) + δij + ∆tUii(s)qij .

3For a non-convertible bond, this is the yield; for a convertible bond, it is the yield calculated
under the assumption that the bond will be called at the earliest allowable date.

9



Supposing that we knew the diagonal matrices U(Tj) for j = 1, . . . ,m − 1, we would
then know P̃ (XTm = j | Xt = i), and so we could use the identity

P̃ (τ ≤ Tm+1|Xt = i, τ > t) =
∑

k

P̃ (XTm = k | Xt = i)
{
δkK +(Tm+1−Tm)Ukk(Tm)qkK

}
to find the unknown Ukk(Tm) - we have K−1 linear equations in K−1 unknowns. This
way, we build up recursively the estimates of the transition rates between states in the
pricing probability, and can in principle answer any credit-sensitive pricing question in
this framework.

There are several features of this modelling approach which pose problems (most of them
signalled by Jarrow, Lando & Turnbull in their paper):

• By inspection of (2), we see that the ratio PC(t, T )/P (t, T ) of the price of risky to
riskless zero-coupon bonds depends only on t, T , and the current credit class. This seems
an improbable feature, and disappears in the extension of [5], who allow the recovery
rate to be random and correlated with the assumed Vasicek term structure.

• It appears hard to deal realistically with convertible bonds. There are also problems
related to estimation issues:

• The estimation of risk premia described above actually leads to some extremely
negative values of Ukk(t), so Jarrow, Lando & Turnbull find that it is better to make
a best-fit estimate subject to the constraint that all the Ukk(t) are non-negative. This
certainly cures the negative values problem, but we end up (of course!) with zero values
for some of the Ukk(t) - in fact, for quite a lot of them - which would have the unacceptable
consequence that transitions out of some classes in some years would be impossible. In
particular, a AA-rated firm would stay AA rated after the third year of their study going
out 14 years, which seems difficult to accept.

• Can we accurately estimate the transition intensities of the Markov chain? If we have
a Poisson random variable, and we want to be 95% certain that we know the mean of
that random variable to within 5%, we would need the mean to be of the order of 1500.
In terms of transitions between credit classes, this is quite a large number, and in terms
of defaults of investment-grade bonds it is a very large number! If we had observed 100
changes of credit class of a certain type, we would be 95% certain only that we knew the
transition rate to within about 20%.

In addition to these features of the chosen modelling framework, that framework itself
is open to question:

• Are transitions between credit classes really governed by a Markov chain? If so, then
we would see that the times spent in different credit classes would have exponential

10



distributions independent of the jumps, and there would be no tendency for a company
to continue to fall through credit classes, contrary to some empirical evidence.

• Can we justify the assumed independence of the ratings transitions and everything
else in the pricing probabilities?

Despite these difficulties, the approach is a sensible attempt to make use of widely-
available credit ratings to model the default of corporate bonds.

Example 5. [8] assume in contrast to the situation in [11] that at the moment τ that
default occurs, the corporate bond loses a fraction Lτ of its value. Denoting the hazard
rate for default by ht, and the payment at the maturity T of the bond by X, they find
that the value at time t < τ of the bond is given by

St = Et

[
exp(−

∫ T

t
(rs + hsLs)ds) X

]
. (12)

Duffie & Singleton present a proof of this result using Itô’s formula for jumping processes,
but this is unnecessarily complicated. Firstly, observe that if the fraction lost on default
were 1, the expression for the bond price if t < τ is

Et

[
exp(−

∫ T

t
rsds)XI{τ>T}

]
= Et

[
exp(−

∫ T

t
(rs + hs)ds) X

]
. (13)

This establishes the result (12) in the special case L ≡ 1. Now suppose that the default
time happens exactly as before, at intensity ht, but that now when default happens at
time t, with probability Lt the bond becomes worthless, while with probability 1−Lt the
value of the bond is unchanged. It is clear that the pre-default value of the bond is not
changed by this way of thinking; just prior to default, the expected value of the bond is
Sτ−(1−Lτ ) in either case. However, we now can think of two types of default, harmless
(with intensity ht(1− Lt)), and lethal (with intensity htLt). As far as valuing the bond
prior to default is concerned, we may simply ignore the harmless defaults, and price
using the intensity hL of the lethal defaults. This reduces the problem to the simple
situation where the bond loses all value on default, which we solved at (13). As Duffie
& Singleton observe, the model does not allow for the effects of h andL separately, only
for the product hL; estimation of the two terms would require other data.

Duffie & Singleton offer various forms for the ‘adjusted’ default-rate process r + hL
(which they also allow may include a spread for convenience yield.) In a subsequent
paper (1997), they examine the situation for an affine diffusion model in some depth,
using interest-rate swap data for credit-risky counterparties.

Note that it is essential that we have independence of the Poisson process governing
default, and the intensity h and loss-on-default L; if this were not the case, any processes
h and L which agreed up to the default time could be used, and the value of (12) could
be varied at will!

11



In this approach, the bond loses Lτ of its value on default, which contrasts with the
assumption of Jarrow & Turnbull mentioned earlier, namely that on default the bond is
replaced with 1− Lτ riskless bonds with the promised payout; under which assumption
will the price of the bond be larger?

Summary of the reduced-form approach.

• The existence of convertible bonds really forces one to consider firm value - so maybe
we should go for a structural approach anyway?

• Bucketing complicates the estimation procedure. If we allow default rates to depend
on economic fundamentals and certain gross features of the firm, then we may well end up
estimating fewer paramters - and in particular, making some structural assumptions valid
for all firms, the estimates are based on the whole sample, which would be advantageous
for AAA, where the credit event data is so scarce.

• Modelling the moves between credit classes as a fundamental process leads to issues
of estimation and interpretation. Perhaps it would be better to regard the credit class as
a noisy observation of some more informative underlying process describing the credit-
worthiness of the firm, and then to use a filtering approach.

3 Structural models.

The hallmark of a structural model is some attempt to model the value of the assets of
the firm, and deduce the value of corporate debt from this. The paper of [16] is the first
and simplest approach of this kind which we shall discuss.

Example 1. The model of Merton assumes a fixed rate of interest r > 0, and that the
value Vt of the firm’s assets at time t may be described by

dVt = Vt(σdWt + rdt). (14)

It is assumed that the firm is financed in part by the issue of bonds, and the face value
B of the bonds must be repaid in full at time T . The shareholders are not allow to
pay dividends nor issue debt of equal or higher rank in the meantime. At time T , the
bondholders will receive min{VT , B}, so the value of the bonds at time t < T will be
simply

Et

[
e−r(T−t) min{VT , B}

]
= Be−r(T−t) − P (t, Vt, B)

where P (t, Vt, B) is the value at time t of a put option with strike B if the current value
of the firm’s assets is Vt. But this is just the familiar Black-Scholes formula:

Be−r(T−t)Φ(−d2)− VtΦ(−d1),
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where Φ is the cumulative distribution function of the standard normal distribution, and

d1 =
log(Vt/B) + (r + σ2/2)(T − t)

σ
√

T − t
,

d2 =
log(Vt/B) + (r − σ2/2)(T − t)

σ
√

T − t
= d1 − σ

√
T − t.

The spread on corporate debt is

− 1
T − t

log
[
Φ(−d2)−

1
d
Φ(−d1)

]
,

where we have written d ≡ Be−r(T−t)/V for the debt-equity ratio, expressed in terms of
the current value of the debt. It is easy to see that in fact the spread depends only on
d, the time and the volatility. Merton studies the comparative statics of this model, and
shows among other things that the spread is a decreasing function of maturity if d ≥ 1,
but for d < 1 it is humped.

Example 2. In one of the most intellectually satisfying papers in the literature, [13]
consider the impact of the maturity of debt on the optimal exercise of the default option
by the shareholders. The assumptions of the model are:

• constant interest rate r;

• the value Vt of the firm’s assets at time t evolves as

dVt = Vt(σdWt + (r − δ)dt),

where δ is the constant rate of dividends paid to the shareholders, and σ is a positive
constant;

• upon default, a fraction α of the value of the firm is lost through restructuring;

• there is a constant rolling debt structure, with total outstanding principal of P and
maturity T , with new debt being issued (and old debt retired) at rate P/T , and coupons
being paid continuously at rate C annually;

• tax benefits accrue at rate γC on the coupon payments;

• the shareholders declare bankruptcy when the value of the firm’s assets falls to VB.

The value of the firm is given by the expression

v(V, VB) = V +
γC

r

[
1−

(
V

VB

)−x]
− αVB

(
V

VB

)−x

, (15)

13



where x is the larger root of σ2θ2/2+(r−δ−σ2/2)θ−r = 0. Noticing that E exp(−rτ) =
(V/VB)−x, we may interpret the three terms in (15) as the value of the firm’s assets,
the net present value of all future tax refunds, and the net present value of the loss on
default. A bondholder who will receive a coupon at fixed rate c, and will be repaid p at
time t provided this was before default, but who receives ρVB at the default time (if this
was earlier than t) has an asset worth

d(V, VB, t) =
∫ t

0
ce−rs

[
1− F (s)

]
ds + e−rtp

[
1− F (t)

]
+

∫ t

0
e−rsρVBF (ds), (16)

where F is the distribution function of the default time, which depends of course on the
values of V and VB (in fact, only through their ratio). The total value D(V, VB, T ) of
the firm’s debt is obtained by integrating (16) from 0 to T , using c = C/T , p = P/T ,
and ρ = (1− α)/T . The value of the firm’s equity is therefore the difference

eq(V, VB, T ) = v(V, VB)−D(V, VB, T )

= v(V, VB)−
∫ T

0
d(V, VB, t)dt.

A closed-form expression is available for D in terms of the normal distribution function.

The level VB is determined endogenously as the level which maximises the value of equity
subject to eq ≥ 0, and Leland & Toft obtain a closed-form expression for VB. Assuming
that the coupon on debt is chosen so that new debt is issued at par, they go on to
examine various comparative statics of the optimal solution, and they find (among other
things) that:

• the longer the maturity of the debt, the higher the value of the firm, and the greater
the optimal leverage;

• bond values are humped for low to moderate leverage, but for high leverage the bond
sells below par for long time to maturity and above for short time to maturity, the effect
becoming more pronounced as T increases;

• the credit spreads are increasing with T for low leverage, but become humped for
moderate to large leverages;

• credit spreads for values of T up to 2 years are negligible.

Example 3. [13] assume that the interest rate is constant, which is a reasonable assump-
tion in order to get insight into the influence of various effects, but the assumption of
constant interest rates is too restrictive for a working model. [15] embrace the possibility
of stochastic interest rates, modelling the spot rate as a Vasicek process correlated with
the log-Brownian share price process. They assume that there is some threshold value K
such that if the value of the firm ever falls to that level, then restructuring takes place,
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and the bond is replaced by (1 − w) riskless bonds of the same maturity. Longstaff
& Schwartz derive an expression for the price of the risky bond, but their derivation
contains a flaw; they apply results of [3] concerning the first-passage distributions of
one-dimensional diffusions to the log of the discounted firm value, but this process is not
a diffusion. It appears, therefore, that the pricing of a corporate bond in this modelling
framework remains an open question.

Example 4. [2] consider a variant of the problem dealt with by Merton; control of the
firm passes to the bondholders not only if the value of the firm is below some value B at
the maturity T of the debt but also if in the meantime the value of the firm falls below
some value (which depends on time as Ce−γ(T−t)). They derive a closed-form expression
for the value of the corporate bond, under the assumption of zero restructuring costs on
default. They also derive the values of two bond issues, the senior and junior bonds, by
identifying the prices in terms of the solution to the first problem.

Example 5. The KMV method for pricing risky debt relies on a structural-type approach.
The description that follows is vague, not least because the details of the methodology
are proprietary. The value of the firm’s assets are modelled by a log-Brownian motion,
Vt = V0 exp(σWt+(m−σ2/2)t), and the probability of default at time T is the probability
that the value of the firm does not cover the liabilities K of the firm at that time, namely,

Φ(−d2)

where
d2 = (log(V0/K) + (m− σ2/2)T )/σ

√
T

is the so-called distance to default. In common with other structural approaches, the
estimation of the parameters is a difficult matter, and the identification of the equity as
a call option on the value of the firm allows an estimate of the volatility to be made. The
total liabilities and market value of equity need to be observed or estimated. It is not
clear how m is determined. The distance to default is used in conjunction with empirical
data on the relation of defaults to the distance-to-default to estimate the probability of
default.

The use of widely-available equity price data is an appealing feature of this approach
(though this would render it unsuitable for pricing sovereign debt). The assumption of
constant interest rates is a limitation also.

Example 6. Another structural approach to credit risk is given by [14] , who assume
that the value of the firm’s assets obeys the SDE

dVt = Vt(σdWt + (α− γ)dt)

for constants σ, α, and γ. They assume that the interest rate process is a Cox-
Ingersoll-Ross model, and that the bond-holders must be paid coupons at constant rate

15



c. Bankruptcy is triggered when the cash flow γVt from the firm is no longer sufficient
to cover the coupon payments which have to be made, that is, when V drops to c/γ.
The authors compute values of convertible and non-convertible bonds in this model, and
assert that the spreads which result are consistent with market values.

4 Some nice ideas.

This short section gathers some neat ideas which do not fit obviously in any of the
preceding sections.

The paper of [9] contains some simple but attractive ideas for dealing with credit risk.
They present a general characterisation of the time-t price of some risky contingent claim
paying off X at time T if there is no default before time T , and otherwise paying δτYτ

at default time τ , where Yt is the time-t price of a riskless asset paying X at time T .
Their expression is

Et

[
e−RtT wtT X

]
, (17)

where wtT is the expectation of δτ conditional on the interest-rate process between t and
T , and on the final contingent claim X. Of course, this is too general to be of much use
as such; we could think of this expression as an alternative description of the price in a
hazard-rate model, so until we have been much more specific about the hazard rate, we
can go no further. Nevertheless, Hull & White use (17) quite effectively to bound the
price of a credit-risky call option on a log-Brownian stock, assuming constant interest
rate. In this situation, we shall have that wT is a function of ST , wT = u(ST ). The price
of the risky option is

e−r(T−t)Et

[
u(ST ) (ST −K)+

]
, (18)

which has to be consistent with the market price of the credit-risky zero-coupon bond
of the call writer,

PC(t, T ) = e−r(T−t)Et

[
u(ST )

]
. (19)

Since 0 ≤ u(S) ≤ 1, we maximise the value of the risky option by taking u(S) = I{S>s1}
for a constant s1 chosen to make (19) hold, and we minimise it similarly by taking
u(S) = I{S<s2} for suitable s2. Numerical examples using a call writer with log-Brownian
asset value process and bankruptcy when the value falls to some trigger level show that
these bounds are not very tight, but perhaps by incorporating the information from
other market prices they could be improved.

Hull & White also remark that a credit-risky American option will be exercised no later
than its credit-risk-free counterpart; the reason is easy to see on a moment’s reflection.

For a very quick and dirty approach, Hull & White also discuss the situation where the
default process is independent of the interest-rate and the payoff of the contingent claim
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in the pricing probability. Then using the market prices of credit-risky and default-free
bonds, it is immediate that

PC(t, T )/P (t, T ) = E(wtT ), (20)

and so the price of the risky contingent claim would be simply

YtPC(t, T )/P (t, T ),

where Yt is as before the time-t price of the default-free contingent claim. This approach
can be extended to deal with swaps by using (20) for a range of values of T .

One neat idea, to be found in [1] and [19], is to try to hedge out all credit risk, using a
single credit-sensitive instrument. The idea is very simple. If your portfolio is vunerable
to default of a counterparty, and if there is a liquid asset which is also sensitive to
the default of the same counterparty, then you take up a dynamically-adjusted position
in the liquid asset so that upon default, the loss to your portfolio is zero. Thus you
choose the holding of the liquid asset to exactly cancel out the loss that the rest of
your portfolio will make on default. This done, there are no jumps in the value of your
combined portfolio and (under Brownian market assumptions) you may therefore hedge
the combined portfolio perfectly.

As a parting remark, it may be of interest to note that formally the reduced-form ap-
proach may be thought to include the structural form approach, in that the default
intensity becomes infinite at the moment that the asset price in the structural descrip-
tion reaches the default boundary. This does not (of course!) mean that we can throw
away the structural approach.

5 Summary.

Each of the two main classes of approach has its strengths and weaknesses. For the
structural approach, we have:

• a clear link between economic fundamentals and defaults. This helps to understand
losses on default, and the correlation of defaults of different firms;

• reliance on economic fundamentals and the value of the firm’s assets which may be
hard to estimate with any accuracy;

On the other hand, features of the reduced-form approach are:

• a model which is sufficiently close to the data that it is always possible to fit some
version of the model;
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• the fitted model may not perform well ‘out of sample’;

• in the case of proportional losses, it is hard to distinguish the hazard rate and the
percentage loss on default;

• pricing of convertible bonds does not fit well into this framework.

Where might the modelling of credit risk be going now? Within the reduced-form frame-
work, it seems that there is little one may do except explore further parametric forms
of the intensity and loss-on-default processes. In the structural approach, we need to
incorporate jumps in the value of the firm in a reasonable way, and we need to develop
a filtering approach to the estimation; realistically, we cannot assume that we know the
value of the firm with precision, nor how its rate of return will depend on the economic
fundamentals, so we have to confront that uncertainty honestly. Ultimately, the quality
of what we can create will be constrained by the quality of the data to calibrate it, so
we probably should not be trying to do anything too sophisticated!

6 Epilogue.

... and yet we have! Since 1999, we have seen the improbable rise and overdue demise of
the ‘industry-standard’ Gaussian copula, we have seen the publication of excellent mono-
graphs on the subject, such as [18], and vigorous development of new modelling ideas.
We have, for example, seen developments of filtering ideas, such as in [7], and in works
of Monique Jeanblanc and her co-workers; and we have seen enormous effort expended
in modelling and fitting CDOs and other derivatives which depend on the defaults of
more than one name. Most attention has focused on the reduced-form approach, and
while it is regrettable that we are not able to offer a structural story that really works
in practice, it is inevitable that we will not be able to build something that could handle
the complexities and heterogeneities of the practical world. Ease of calibration has been
the over-riding consideration, and many quite strange models (in reality, fits) have been
pressed into service because they were easy to align to market data, without possessing
any other virture, such as intertemporal consistency.

This is an area which I have stood back from since these notes were first prepared, with
one exception, the paper [6]. The approach adopted there is I believe quite simple;
it is self-consistent; it can handle corporate and government debt in one model; and
it can in principle embrace FX also, and therefore offers a sensible approach to hybrid
pricing. Indeed, the whole modelling approach can be thought of in terms of the potential
approach [17].

In the markets, we have experienced the liquidity drought following from the sub-prime
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fallout of the summer of 2007, exacerbated by the profusion of repackaged credit risks,
and understanding these presents huge challenges for the industry and the academic
profession. Credit risks are more similar to insurance risks than to market risks, as the
range of useable hedging instruments is far more restricted, and in the end if everything
goes sour at once, no portfolio of market instruments will save you. Ratings agencies
have been criticised in the wake of the sub-prime disaster, and I feel that some more
rational characterisation of corporate credit-worthiness is required. The very granular
nature of credit ratings causes corporations a lot of difficulty if a downgrade should
occur, and probably some index of credit-worthiness which is real-valued would make
more sense. Even better would be some index of exposure of the firm to a number of
major macroeconomic indicators; this would prevent the meaningless comparison of one
company being ‘more risky’ than another.
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