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Abstract. A general relationship between potential functions and moiré
patterns can be realized in a number of forms. The potential function can be
worked as an optical surface and combined with other potential functions
similarly worked to give the solution to a complex potential problem. Contour
fringes can be produced from the optical surfaces or generated on a computer
graph plotter directly, When superimposed these contour lines generate
moiré fringes which are also solutions to potential function problems but with
an essential ambiguity of sign. Two circularly symmetrical potential wells have
been contoured and moiré {ringe solutions to simple problems are given.

1. Imtroduction

In an. earlier paper a method of calculating moiré patterns by using spatial
frequency vectors was described [1]. It was also shown that the spatial frequency
vectors can generally but not invariably be represented as the gradients of a
potential surface. There are some cases, such as those where the potential is
not single-valued, where special limits must be placed on the field. This is
particularly the case for a set of radial lines where a cut must be imposed,
e.g. at 0=0. ,

It is of importance and of optical interest to note that we can construct an
optical element, e.g. a plano-aspheric surface, such that its thickness at any
point represents the potential function. If we now photograph contour fringes
between the aspheric surface and a reference plane, this gives us a representation
of the corresponding generating grid.

There are now two closely related optical operations we may perform. We
may take two plano-aspheric elements and place them in contact, with or without
lateral displacements or twists, ‘'The resulting optical component will produce
at any point a deviation which is the vector sum of the deviations in the two
elements at the given point. Alternatively, we may use the corresponding grids
to produce a moiré pattern when it will be found that the moiré pattern produces
a diffractive deviation of an incident ray equivalent to the refractive deviation
of the compound optical system.

Put another way, we can regard the grids as holograms of the corresponding
optical elements and the moiré pattern as arising from the combination of two
holograms.
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In a very simple case we can regard two spherical surfaces—a plano-convex
and a plano-concave lens—as particular cases of aspheric elements. The con-
tour fringes of either will form a zone plate to a close approximation. Two
zone plates placed with their centres laterally displaced [2] give rise to linear
fringes equivalent to a thin prism. The corresponding lenses also give rise to a
thin prism [3] if combined with their centres laterally displaced.

It will be noted that the grids have an essential ambiguity when used as
diffracting elements, since an incident wave gives rise to two diffracted waves,
one on each side of the incident direction. This is analogous to the essential
ambiguity in holography [4-7] and arises from the fact that stationary contour
fringes do not distinguish the hills' from the valleys. In a Twyman—Green
interferometer it is necessary to touch one of the elements to ascertain which
way the fringes move.

If it is desired to produce an unambiguous optical result, plano-aspheric
elements must be used rather than grids.

Another factor of these interlocking relationships is that a grid may be
regarded as defining the contour fringes of either a convex or a concave surface.
Grids will, in general, give rise to two sets of moiré fringes, one a sum set and
one a difference set [1]. Thus two overlapping zone plates are equivalent either
to two lenses of opposite sign—giving a prism—or two lenses of the same sign,
giving a lens of twice the power centred mid-way between the other two centres

1, 8].

2. Lens or zone plates of variable power

. Lohmann and Paris [9] have described a number of ways of generating grids
which give a zone-plate moiré pattern of variable power, the power being a
function of the relative positioning of the grids. Of these systems, by far the
most important is the cubic function x=x+y® or its equivalent form z—x
(x®+3y7) obtained by an axial rotation and change of scale. A variable focus
zone plate is obtained by displacing two copies of the former along the lifie
x¥=2y ot two copies of the latter along the x azis, This system occurred in-
dependently to one of us (L.C.G.R.) since two second-order functions (zone
plates) give a variable linear output (prism) and it was argued that therefore two
cubics would give a variable second-order output (zone plate). We suggested
the use of this cubic to Burch and Williams, who are now developing an improved
version for application to large-scale alignment [10].

Alvarez [11] has constructed the equivalent optical system using two plano-
aspheric elements. He has also shown that a lens with a variable amount of
astigmatism can be produced by displacmg the elements oblique to the line
producing circular symmetry.

3. Use of moiré patterns to solve potential probléms

Potential field problems can in principle be solved by combining a number of
plano-aspheric elements in an optical system. 'I'he construction of the elements
can be difficult, and the resulting element is inflexible. It is relatively easy to
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generate the grids appropriate to the various potentials of the input and obtain
sum and difference effects. Tt is also relatively easy to scale them in a photo-
graphic enlarger to correspond, e.g., to charges of different magnitude. Grids
can be computer-generated [9] but in the special case of circular symmetry they
can be cut on a lathe [12].

We have constructed circular grid patterns corresponding to a point charge
{2cc(1/r)] and a line charge (zoc log #).  There is a limit to the extent to which a
lathe will cut a fine line, and to avoid a big gap in the centre these systems have
been built up in two stages. The outer rings are photographed direct from a
master cut in a lathe, the black region being in hollows and the white regions
(corresponding to the naked bare materials) being exposed by a skimming cut
over the painted surface {12]. The inner rings are produced by a photographic
print from another master originally cut on a much larger scale. In the case of
the log law the same master does for each part, a reduced photo of the master
being stuck in the middle. '

Figures 1 (a) and (b) give the circular masters appropriate to a point and a
line change respectively. TIigure 2 (4) shows the equipotentials due to two equal

Figure 1(q)

(continued overleaf)

0.A. B
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Figure 1 {contimed)

®

Figure 1. Contoured potential wells for (a) point charge, (&) line charge.

and opposite point charges and figure 2 (b) the corresponding curves for line
changes. 'The moiré patterns map the equipotentials and, in order to bring out
the straight line zero potential as a black line, a negative image of figure 1 (a)
or (b) is used together with the corresponding positive image [13].

Figure 3 (a) shows the effect of superimposing two point-charge grids with
their centres well separated. In this case a sum moiré pattern is generated
showing the neutral point half-way between two equal charges of the same sign.
Figure 3 (b) shows the effect of superimposing three grids. Neutral points
due to charges taken in pairs are readily seen and the neutral point at the centre
of the triangle can just be discerned. In principle a large number of grids
could be superimposed but the moiré patterns become progressively fainter. .

It is possible to study the effect of two unequal charges (figure 3 (¢}) by
reproducing the grids on different scales. Figure 3 (d) shows point and line
charges with a closed-loop equipotential round the neutral point. Should it be
necessary to find an exact solution to a multichange potential problem this can
always be done uniquely if the corresponding plano-aspheric elements can be
manufactured. 'There is now no ambiguity in the system and the overall
optical system gives the equipotentials without confusion.
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)

Figure 2. Equipotentials for equal and opposite charges; (&) point charges, (b} line charges.
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Figure 3. Equipotentials for (a) two equal and similar point charges, showing neutral
point, (b} three equal and similar point charges showing triangular contours round
neutral point, {¢) two unequal and opposite point charges, (d) two unequal and
opposite charges, one a point charge and the other a line charge. A closed equi-
potential contour can just be seen round the neutral point on one side.
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On peut réaliser de plusieurs fagons une relation générale entre fonctions potentielles
et figures de Moiré. La fonction potentielle peut &tre travaillée comme une surface
optique et combinée avec d’autres fonctions potentielles travailiées de fagon analogue afin
de donner la seclution d’un probléme de potentiel complexe. Des franges de contour
peuvent &tre produites & partir des sutfaces optiques ou engendrées directement sur un
traceur de courbes associé 3 une calculatrice. Lorsqu’elles sont superposées, ces lignes
de contour engendrent des franges de Moiré, qui sont aussi des solutions de problémes de
fonction potentielle, mais avec une ambiguité de signe essentielle. On a formé les contours
de deux puits de potentiel circulairement symétriques et 'on présente des solutions, a I'aide
de franges de Moiré, pour des problémes simples.
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