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Abstract. We show how to compute prices of options knocked out when the
underlying price crosses smoothly-moving barriers. The method is to reduce
the problem to fixed barriers, by transformation of the statespace, and then
to change time so as to make the underlying diffusion into a Brownian motion
with time-dependent drift.

1 Introduction

The problem of pricing barrier options has been extensively discussed in the
literature; see, for example, the papers of Boyle & Lau [BL94], Goldman,
Sosin & Gatto [GSGT9], Kunitomo & Ikeda [KI192], Geman & Yor [GY96],
... , Broadie, Glasserman & Kou [BGK95] and [BGK96], Rogers & Stapleton
[RS97]. We will restrict attention here to the case of a two-sided knock-out
option, so that there is a fixed expiry T' > 0 of the option, and two functions
f:[0,T] = R and g : [0,7] — R, g < f such that the option pays off
(St — K)* at time T if g(t) < log S < f(¢) for all ¢ € [0,T], and otherwise
pays zero. Here, S; = Syexp(aW;+(r—a?/2)t) is the price of the share at time
t, with volatility o and interest rate r both assumed constant. Prices of knock-
in options, and all other variants, can be computed in a manner analogous to
that described here; we leave details to the interested reader.

We emphasise that the barrier functions f and g will be assumed to be once
continuously differentiable. This excludes important cases of interest, such as
step barrier options, where the barrier takes a constant value for part of the
life of the option, then moves to another constant value for the remainder.
We remark that any such option must inevitably be priced by considering the
two parts of the interval [0, 7] separately, so if we had moving barriers with
steps, we could break the interval into subintervals in which the barriers were
C', and solve in each subinterval using the method to be described, working
backward from the last subinterval.
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If X; = log So+ oW, +(r—a?/2)t = log So+ W, + ut denotes the log-price

process, the idea is firstly to introduce the process
Xi— g
fi—gc

The payoff of the option is then simply expressed as

Y, = (1.1)

(exp((fr — g7)Yr + 97) — K) T Liocv,<1 v uelo,m} (1.2)

which transforms the moving barriers for X into constant barriers for Y. We
next do a deterministic transformation of time to produce a process Y which
has unit volatility and time-and-space-dependent drift (the details are given
in Section 2). The numerical evaluation is done by dividing the time interval
into N equal pieces, and selecting a spatial grid size to match, so that 0 and
1 become grid points. We then do a trinomial tree evaluation, taking care to
vary the up and down probabilities at the different nodes of the grid so as to
match the time-and-space-dependent drift.

One of the problems identified early on with pricing (fixed) barrier options
was the fact that if the barriers did not lie on the spatial grid, then the knock-
out event was poorly approximated by the binomial method. Boyle & Lau
[BL94] chose to vary the number of time steps so that the barriers did lie
approximately on the grid, and other ways of getting around this have been
proposed since. Among these, we mention the work of Broadie, Glasserman
and Kou [BGK95], allowing one to correct a discretely-sampled knock-out
to get a better price for a continuously-sampled knock-out, and the work of
Rogers & Stapleton [RS97], providing a novel interpretation of the standard
binomial method which is ideally suited to pricing barrier options. It is clear
that the method described above will not in general result in the start price
lying on the grid, and we get round this by a suitable interpolation procedure.

For fixed barriers, closed-form solutions exist. These involve integrating
with respect to the transition density of a Brownian motion killed when it
leaves an interval; this can only be expressed as an infinite series, but in
practice it converges so rapidly that only a few terms are required. Kunitomo
& Tkeda [KI92] give a closed-form solution expressed in similar terms for the
case where the functions f and ¢ are linear, and the exact formulae are clearly
superior for speed and accuracy than a tree method in these special cases.
See the numerical results reported in [KI192]. However, for general barriers
no closed-form solution is known, and some tree method is a natural way to
proceed. We give the details of the methodology in Section 2, report on the
numerical results in Section 3, and conclude in Section 4.



2 Methodology

The transformation of X to Y given in (1) leads to the dynamics

di
i dWy +

dY; =
' ft_gt ft_gt

{n—gi = (] — g))Yi} (2.3)

for Y. If we now introduce the quadratic-variation-to-go, ¢(t), defined by

g(1) = /f(fs igs)st, (2.4)

the effective time 7', defined by

T = ¢(0), (2.5)
and the time-transformed process Y defined for 0 < ¢ < T by
Y, =Y(n), (2.6)

where the time-transformation 7 is defined by

q(m) =T — ¢, (2.7)

we end up with a diffusion ¥ which has unit volatility, and variable drift,
satisfying the stochastic differential equation

f(Tt) - Q(Tt)

dY, = dW; + = {n=g'(m) = (f'(m) = g'(m))Vi}dt  (2.8)

= dW, + b(L,Y;)dL.

The price of the option is simply expressed in terms of the diffusion Y:

Price = e B [(exp((fr — g7)V(T) +gr) — K)* : 0 <V, < 1Y u € [0,7]].

(2.9)
The goal is therefore to evaluate the right-hand side, which we do using a
trinomial tree method. In more detail, firstly fix the number N of time steps,
each of length At = T/N, and then choose the spatial grid step Az (in a way
to be explained shortly) so that Az = 1/m for some integer m. Now define
the value function for the discretised problem via the dynamic-programming
equations:

V(0,j) = (exp((fr — gr)jAz + g7) — K)T,



Vin+1,3) = pln+ L)V, + 1)+ 00+ 1,§)V(m,§) + 4o+ 1, 1)V g — 1)
forl<j<m-—1land 0 <n < N, and set V(n,0) = V(n,m) = 0 for all n.
The non-negative parameters p(n + 1,7), (n + 1,5), and ¢(n 4+ 1,7) add to
one, and are chosen to match the first and second moments of the increments
of V:

(p—q) Az = bAt(p+ q) Az = (bAL)* + At,

where b denotes the drift of Y evaluated at time (N —n —1)At and position
jAx. Hence

17 At bAt bAL
- o)

2| Az2 + Ax (Ax
q:l Al N bAt(bAt_l)]
2 [Ax? Az " Az
and § = 1 — p — ¢g. In order that all of these should be positive, we need
to ensure that At¢/Az? should be less than one, so fix some A € (0,1) (we

used A = 0.7) and then take m to be the integer part of y/A\/At. This does
not guarantee that p, ¢ and # are all positive, but as the second part of the
expression for p is O(\/E), we can confidently expect that except in cases of
extreme drift they will be. In fact, we never had any problems with this.

If Yo = jAxz for some integer j, then the price of the option would just
be e=""V(N, 7). However, if the initial value of ¥ does not lie exactly on the
spatial lattice, we simply do a cubic-spline interpolation of the values at the
two grid points above and the two grid points below Yj. In fact, we used one
further refinement; we continued the dynamic-programming recursion to time
step N + 1, and replaced the values V(N,j) by (V(N —1,7) + 2V(N,j) +
V(N 4 1,7))/4. This removes any ‘odd-even’ effect in the time-parameter (a
known snag with the binomial method), and does so in a way that also corrects
for linear dependence on time.

3 Results

We computed prices of various options; constant barriers, barriers varying lin-
early in the log scale (as in Kunitomo & Ikeda [KI92]), and barriers varying
linearly in the actual price. For the first two examples, there are known formu-
lae and we are able to compare our results for accuracy with those obtained in
[GY96], [KI92] and [RS97]. For the last example, no closed-form expressions
exist, and no answer in terms of an integral is known, so we are forced to rely
on numerical methods.

In all cases, we computed the prices using N = 25, 50, 100, 200, 400, 800,



1600, 3200. The prices have been computed using a Sun SparcStation 5 and
the CPU times that are quoted throuhgout the paper have been measured
using the x05baf subroutine from the NAG library.

3.1 Constant barriers
3.1.1 Geman-Yor

These are the results contained in [GY96] where they are compared to the
results in [K192] and to the Monte Carlo price.
In the table L is the lower barrier and U is the upper barrier for the price.

o .2 .5 )
T .02 .05 .05
T 1 1 1
So 2 2 2
K 2 2 1.75
L 1.5 1.5 1
U 2.5 3 3
GY 0411 0178 07615
KI .041089 .017856 076172
MC .0425 .0191 0772
N=800 | .041041(.31) | .017791(.16) | .076018(.26)
N=1600 | .041061(.87) | .017819(.47) | .076111(.76)
N=3200 | .041079(2.46) | .017837(1.33) | .076147(2.09)

3.1.2 Rogers-Stapleton

The results are now compared to the example in [RS97] (page 11).

ol r |T]| Sy K |L| U
100 | 100 | 75 | 125

O
o
O
[

These are the results:



‘ N ‘ RS price ‘ RS time ‘ RZ price ‘ RZ time ‘
25 2.1472 0.007 1.9886 0.003
50 2.0518 0.0095 2.0244 0.005
100 | 2.0984 0.012 2.0339 0.015
200 | 2.0591 0.025 2.0430 0.04
400 | 2.0642 0.047 2.0503 0.11
800 | 2.0578 0.11 2.0520 0.31
1600 | 2.0558 0.30 2.0530 0.87
3200 | 2.0558 0.82 2.0539 2.46

Numerical integration price (see [RS97]) 2.0544 (time: 0.03).

3.2 Linear barriers for the log-price
3.2.1 Kunitomo-Ikeda

Let us compare the prices with the results in [K192] (page 284). We have linear
bounds for the log-price. The bounds for the price are given by the functions
U exp(61t) and L exp(dat) (so f(t) =log(U) + 61t and ¢g(t) = log(L) + 62 1).

The following parameters are fixed:

ol r |T| Sy K
.21.05 1000 | 1000

Ut

Let 6; = —65 = 0.1, we have

L U | KI price | RZ price | RZ time
500 | 1500 | 67.78 67.7834 2.37
600 | 1400 | 64.63 64.6401 1.87
700 | 1300 | 55.20 55.1992 1.41
800 | 1200 | 34.58 34.5713 0.98

Let 6; = —6, = —0.1, we have

L U | KI price | RZ price | RZ time
500 | 1500 | 62.75 62.7532 2.14
600 | 1400 | 52.50 52.5021 1.66
700 | 1300 | 33.45 33.4429 1.19
800 | 1200 | 10.86 10.8217 0.77




3.2.2 Rogers-Stapleton

The results are now compared to the example in [RS97] (page 11).

o |r|T|S| K o1 U P L
2501111951100 0.1 160 |-0.11]90

These are the results:

‘ N ‘ RS price ‘ RS time ‘ RZ price ‘ RZ time ‘
25 5.2504 0.01 5.3577 0.002
50 5.3107 0.015 5.3567 0.005
100 5.3270 0.023 5.3675 0.01
200 5.3598 0.043 5.3680 0.03
400 5.3602 0.093 5.3684 0.10
800 5.3660 0.21 5.3682 0.30
1600 | 5.3668 0.53 5.3681 0.85
3200 | 5.3672 1.31 5.3680 2.42

The price computed using the Kunitomo-Ikeda approach is 5.3679 (time
0.05)(see [RS97]).

3.3 Linear barriers for the price

Finally we give the results for the price of a double-barrier option in the case
in which the barriers for the price process are linear in time, i.e. f(t) =
log(ay + agt) and g(t) = log(f1 + B2 1).

Let us consider the following parameter values

o |lr|T|S | K | a |5
25 1.1 11195100 | 160 | 90

If ay = —3 = 5, we have:

‘ N ‘ price ‘ time ‘
25 | 4.2622 | 0.003
50 | 4.3342 | 0.005
100 | 4.3392 | 0.01
200 | 4.3422 | 0.03
400 | 4.3431 | 0.09
800 | 4.3435 | 0.27
1600 | 4.3435 | 0.75
3200 | 4.3438 | 2.09




If ay = —y = —5, we have:

‘ N ‘ price ‘ time ‘
25 | 2.3634 | 0.003
50 | 2.5197 | 0.005
100 | 2.5314 | 0.01
200 | 2.5387 | 0.03
400 | 2.5414 | 0.09
800 | 2.5426 | 0.24
1600 | 2.5436 | 0.67
3200 | 2.5438 | 1.84

To compare the results, we see that this method gets the constant barrier price
accurate to 1 part in 1000 in about 1 second. The accuracy is much better than
Monte Carlo, and comparable with the transform method of Geman& Yor, but
it is impossible to compare speeds as these were not reported in [GY96]. (We
assume that the quasi-analytic method of Kunitomo & Tkeda [K192] gives high
accuracy for this problem).

Comparing with the approach of Rogers & Stapleton [RS97], both methods
give accuracy of 1 part in 1000 in about 0.3 seconds.

For linearly-moving barriers for log-price, except in one case we have agree-
ments with Kunitomo & Ikeda [KI92] to much better that 1 part in 1000 in
times of the order of 1-2 seconds.

On the example used by Rogers & Stapleton, this method is accurate to 1 part
in 10,000 in a time of 0.01 seconds, whereas the method of [RS97] achieves this
accuracy in 1.31 seconds.

The computations for the barriers which are linear in price show stability and
rapid convergence: for the first example of a growing region, we may be rea-
sonably confident of the answer 4.344 in 2 seconds, and in the second example
we may be reasonably confident of 2.544 in about the same time. There is
no quasi-analytic method now available to confirm these results, but for the
same problem with static barriers at 90 and 160, we get the price 3.4607 by
numerical integration; this is less than 4.344 and more than2.544, as it should

be.

4 Conclusions

We have presented here a simple method to transform smoothly-moving barrier
option pricing problems to fixed barrier problems, and have demonstrated that
typically accuracy of the order of 1 in 1000 can be achieved in times of about



1 second and often much better than that. This appears to be an effective
solution to the problem.
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