

Multiple points of Markov processes in a complete metric space

by L.C.G. Rogers

1. Introduction.

Let (S,d) be a complete metric space with Borel σ -field S, and let $(X_t)_{t\geq 0}$ be an S-valued strong Markov process whose paths are right continuous with left limits. We ask

(Q) Is
$$P(X_{t_1} = \cdots = X_{t_k} \text{ for some } 0 < t_1 < \cdots < t_k) > 0$$
?

This is equivalent to the question

(Q') Is
$$P(X(I_1)_{0,\dots,0}X(I_k)\neq\emptyset)>0$$
 for some disjoint compact intervals I_1,\dots,I_k ?

We shall find conditions sufficient to ensure that X has k-multiple points with positive probability, and we will apply this to Lévy processes, providing another proof of a result of LeGall, Rosen and Shieh [6], and its improvement due to Evans [3]. However, it is advantageous to begin with the easier question

$$(\overline{Q})$$
 Is $P(\overline{X}(I_1)_{0},...,\overline{X}(I_k) \neq \emptyset) > 0$ for some disjoint compact intervals $I_1,...,I_k$?

Here, $\overline{X}(I_j) \equiv \text{closure } (\{X_s : s \in I_j\})$, a compact subset of S. In recent years, much effort has been devoted to a study of (Q), usually in the form of constructing some non-trivial random measure on the set $\{(t_1, ..., t_k) : X_{t_1} = \cdots = X_{t_k}\}$ from which the existence of common points in the ranges $X(I_j)$ follows immediately. We mention only the work of Dynkin [1] and Evans [2] on symmetric Markov processes, of Rosen [8], [9], Geman, Horowitz and Rosen [4], LeGall, Rosen and Shieh [6] and Evans [3] on more concrete Markov processes in \mathbb{R}^n , as a sample of recent activity. Typically, one studies the random variables

(1)
$$Z_{\varepsilon} \equiv \int_{\mathbb{C}} I_{U}(X_{t_{1}}) F_{\varepsilon}(X_{t}) dt,$$

where $C = I_1 \times \cdots \times I_k$, with the I_j disjoint compact intervals in \mathbb{R}^+ , $U \in \mathcal{S}$, and

(2)
$$F_{\varepsilon}(x_1, ..., x_k) \equiv \prod_{i=1}^{k-1} f_{\varepsilon}(x_i, x_{i+1}),$$

(A)
$$\mu(B_{2\varepsilon}(x)) \le K \mu(B_{\varepsilon}(x))$$
 $\forall \varepsilon \in (0,\eta], \forall x \in V$;

(B)
$$\int_{V\times V} g_{0,T}(x,y)^k \, \mu(dx) \, \mu(dy) \, < \, \infty \, ;$$

(C) for each $\delta \in (0,2T)$,

$$\sup_{x,y \in V} g_{\delta,2T}(x,y) < \infty;$$

- (D) for each $0 < a < b < \infty$, $g_{a,b}(\bullet, \bullet)$ is lower semicontinuous on $V \times V$;
- (E) for some $\xi \in U$ and $\tau \in (0,T)$,

$$g_{0,\tau}(\xi,\xi) > 0.$$

Remarks on conditions (A)-(E). Condition (A) seems fairly mild; it is trivially satisfied for Lebesgue measure on Euclidean space. The purpose of (A) is to let us take

(6)
$$f_{\varepsilon}(x,y) = \mu(B_{\varepsilon}(x))^{-1} I_{\{d(x,y) \le \varepsilon\}}$$

and estimate

(7)
$$f_{\varepsilon}(x,y) \leq K \, \mu(B_{2\varepsilon}(x))^{-1} \, \mathrm{I}_{\{d(x,y) \leq \varepsilon\}}$$
$$\leq K \, \mu(B_{\varepsilon}(y))^{-1} \, \mathrm{I}_{\{d(x,y) \leq \varepsilon\}}$$
$$= K \, f_{\varepsilon}(y,x) \, .$$

Condition (B) is the 'folklore' condition for k-multiple points. Condition (C) may appear severe, but is frequently satisfied. Conditions (A)-(C) will give us (3.i), and conditions (D) and (E) will give us (3.ii). We may (and shall) suppose that the τ appearing in (E) is a point of increase of $g_{0,\bullet}(\xi,\xi)$.

THEOREM 1. Assuming conditions (A), (B), and (C), the family $\{Z_{\varepsilon}: 0 < \varepsilon < \eta/k\}$ is bounded in L^2 . Assuming also conditions (D) and (E), there exist initial distributions such that for some disjoint compact intervals $I_1, ..., I_k$

$$P(\overline{X}(\mathrm{I}_1)_{\cap\cdots\cap}\overline{X}(\mathrm{I}_k)\neq\varnothing)>0\;.$$

Proof. (i) Let m be the law of X_0 . For ease of exposition, we shall suppose that X has a transition density $p_I(\bullet, \bullet)$ with respect to μ ; the result remains true without this assumption though.

exploiting (6), integrating out $x_1, y_1, ..., x_{j-1}, y_{j-1}$ to leave as an upper bound

$$K^{2j-2} \int I_{V}(x_{j}) I_{V}(y_{j}) g(x_{j}, y_{j})^{k} \mu(dx_{j}) \mu(dy_{j})$$

which is finite, by assumption (B). Hence for $0 < \varepsilon < \eta/k$, $E(Z_{\varepsilon}^2)$ is bounded above by a finite constant independent of ε , which proves the first statement.

(ii) We next exploit (D) and (E) to give us (3.ii). By the choice of the set C, we have that for some small enough $\theta > 0$,

$$C \supseteq C_0 = \{(t_1, ..., t_k): |t_i - t_{i-1} - \tau| < \theta \text{ for } i = 1, ..., k\},\$$

where $t_0 = 0$. Hence

$$EZ_{\varepsilon} \geq E\left[\int_{C_0} dt \, I_U(X_{t_1}) \, F_{\varepsilon}(X_t)\right]$$

$$= \int m(dx_0) \, I_U(x_1) \prod_{i=1}^k g(x_{i-1}, x_i) \prod_{i=1}^{k-1} f_{\varepsilon}(x_i, x_{i+1}) \, \mu(dx) \,,$$

where we write g as an abbreviation for $g_{\tau-\theta, \tau+\theta}$. Since τ is a point of increase of $g_{0, \bullet}(\xi, \xi)$, we know that $g(\xi, \xi) > 0$. Thus

(8)
$$EZ_{\varepsilon} \geq \int m(dx_0) I_U(x_1) g(x_0, x_1) g_{\varepsilon}(x_1)^{k-1} \prod_{i=1}^{k-1} f_{\varepsilon}(x_i, x_{i+1}) \mu(dx),$$

where

$$g_{\varepsilon}(x_1) \ \equiv \ \inf\{g\left(x,y\right)\colon d\left(x,x_1\right) \le k\varepsilon, \, d\left(y,x_1\right) \le k\varepsilon\} \; ,$$

which, in view of (D), increases as $\varepsilon \downarrow 0$ to $g(x_1, x_1)$. By integrating out the variables $x_k, x_{k-1}, ..., x_2$ in (8), we obtain the lower bound

$$EZ_{\varepsilon} \geq \int m(dx_0) I_U(x_1) g(x_0,x_1) g_{\varepsilon}(x_1)^{k-1} \mu(dx_1),$$

and hence the estimate

$$\liminf_{\varepsilon \downarrow 0} EZ_{\varepsilon} \geq \int m(dx_0) \, \mathrm{I}_U(x_1) \, g(x_0, x_1) \, g(x_1, x_1)^{k-1} \, \mu(dx_1) \, .$$

By lower semi-continuity and the fact that $g(\xi, \xi) > 0$, we know that g(x, y) is positive in a neighbourhood of (ξ, ξ) and so taking $m = \delta_{\xi}$, for example, yields

$$\liminf_{\varepsilon \downarrow 0} EZ_{\varepsilon} > 0.$$

since $\overline{R}_K \backslash R_K \subset \bigcup_{j=1}^K (\overline{X}(I_j) \backslash X(I_j))$, and $\overline{X}(I_j) \backslash X(I_j)$ is contained in the (countable) set of left endpoints of jumps of X during time interval I_j , it follows from (F) that the set $\overline{R}_K \backslash R_K$ is *polar*, contradicting (10).

3. Multiple points of Lévy processes. Let X be a Lévy process in \mathbb{R}^n , with resolvent $(U_{\lambda})_{\lambda>0}$. We shall assume that the resolvent is strong Feller (equivalently, that each $U_{\lambda}(x,.)$ has a density with respect to Lebesgue measure - see Hawkes [5]), in which case there is for each $\lambda>0$ a λ -excessive lower semi-continuous function u_{λ} such that

$$U_{\lambda}f(x) = \int u_{\lambda}(y)f(y+x) dy.$$

To establish sufficient conditions for k-multiple points, we shall need three lemmas on Lévy processes of interest in their own right.

LEMMA 1. The resolvent $(U_{\lambda})_{\lambda>0}$ is strong Feller if and only if for every $0 \le a < b < \infty$ the kernel $G_{a,b}$ has a density $g_{a,b}$.

If this happens, the densities $g_{a,b}(.)$ may be chosen so that

- (i) $g_{a,b}(.)$ is lower semicontinuous for each $0 \le a < b < \infty$;
- (ii) $(a,b) \rightarrow g_{a,b}(x)$ is left-continuous increasing in b and right-continuous decreasing in a for each x;
- (iii) for all $0 \le a < b < \infty$ and all $x \in \mathbb{R}^n$

$$g_{a,b}(x) \ = \ \lim_{\delta \downarrow 0} \delta^{-1} \int g_{0,\delta}(y) \, g_{a,b-\delta} \left(x - y \right) dy \; .$$

LEMMA 2. For a Lévy process with a strong Feller resolvent, the following are equivalent:

(i) for some ε , T > 0,

$$\int_{\{|x|\leq \varepsilon\}} g_{0,T}(x)^k\,dx\;<\;\infty\;;$$

whence $g_{\delta,T}(.)$ is bounded globally (exploiting lower semi-continuity).

This completes the proof that (11.i-ii) implies that X has k-multiple points with positive probability, and hence, by Borel-Cantelli, there are almost surely k-multiple points.

Proof of Lemma 1. The arguments used are similar to those of Hawkes [5], so we will just give an outline. The first statement of the lemma is immediate. To get good versions of the densities $g_{a,b}$, firstly take any densities $g'_{p,q}(.)$ for $G_{p,q}$, $0 \le p < q < \infty$ rational, then define

$$g''_{a,b}(x) \equiv \sup \{g'_{p,q}(x) : a$$

which have property (ii) (which remains preserved under the subsequent modifications). Next, for $n > (b-a)^{-1}$ define

$$\tilde{g}_{a,b}^{n}(x) = n \int g_{0,\delta}(y) g_{a,b-\delta}(x-y) dy, \qquad (\delta \equiv n^{-1})$$

which is lower semicontinuous in x (it is the increasing limit as $M \uparrow \infty$ of

$$n\int g_{0,\delta}(y)\;(M\wedge g_{a,b-\delta}(x-y))\;dy\;,$$

which are continuous by the strong Feller property of $G_{0,\delta}$). Finally, we take

$$g_{a,b}(.) \equiv \sup \{ \tilde{g}_{a,b}^{n}(.) : n > (b-a)^{-1} \}.$$

Since, for fixed a < b, $\tilde{g}_{a,b}^n$ is increasing almost everywhere to a version of the density of $G_{a,b}$, this provides a version with the desirable properties (i) - (iii).

Proof of Lemma 2. The implications (iii) => (iv) => (i) are trivial. The implication (ii) => (iii) follows easily from the estimate

$$\int g_{a,a+T}(x)^k dx = \int (\int P_a(dy) g_{0,T}(x-y))^k dx$$

$$\leq \int dx \int P_a(dy) g_{0,T}(x-y)^k$$

$$= \int g_{0,T}(z)^k dz.$$

So, finally, we assume (i) and prove (ii). Specifically, let K denote the cube

$$K \equiv \{x \in \mathbb{R}^n : |x_i| \le \frac{1}{2} \text{ for } i = 1, ..., n\},$$

and assume without loss of generality that

Remarks. (i) It is evident that (11.ii) is equivalent to the condition

- (9.ii) for some $\lambda > 0$, $u_{\lambda}(0) > 0$. Hence, in view of Lemma 2, the conditions (11) are equivalent to those imposed by Evans [3].
- (ii) Similar techniques can be used to study the problem of the existence of common points in the ranges of k independent Markov processes, a technically easier problem.

Acknowledgements. It is a pleasure to thank my hosts at the Laboratoire de Probabilités, especially Marc Yor, for numerous stimulating discussions on these and other subjects during my visit to Paris in October 1987; and a referee for helpful criticisms on the first draft of this paper.