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1. Introduction.

Let (S,d) be a complete metric space with Borel o-field S, and let (X;);>o be an S-
valued strong Markov process whose paths are right continuous with left limits. We ask

Q s PX, =" =X, forsome 0 <ty < "-- <) > 07
This is equivalent to the question
Q) Is PX I~ XA) # D) > 0 for some disjoint compact intervals Iy, ..., I ?

We shall find conditions sufficient to ensure that X has k-multiple points with positive pro-
bability, and we will apply this to Lévy processes, providing another proof of a result of
I.eGall, Rosen and Shieh [6], and its improvement due to Evans {3]. However, it is
advantageous to begin with the easier question

Q) Is PXADA-.. ~ X0 # @) > 0 for some disjoint compact intervals Iy, ..., I ?

Here, X (1;) = closure ({Xs : 5 € I;}), a compact subset of S. In recent years, much effort
has been devoted to a study of (Q), usnally in the form of constructing some non-trivial
random measure on the set {(f1, .5} Xy, = +++ =X, } from which the existence of
common points in the ranges X (I;) follows immediately. We mention only the work of
Dynkin [1] and Evans [2] on symmetric Markov processes, of Rosen [8], [9], Geman,
Horowitz and Rosen [4], LeGall, Rosen and Shieh [6] and Evans {3] on more concrete

Markov processes in R”, as a sample of recent activity. Typically, one studies the random

variables

M Ze = [ &) Fedr,

where C = 1y X +++ X I, with the T; disjoint compact intervals in RY, U e S, and
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(A) UB2() S KWB:)) VeeOn,VzxeV;
® [, gorty)’ i) udy) < «=;
(C) foreach de (0,2T),
sup g2 (0y) < oo}
xnyeV

(D) foreach0 <a <b <o, g, (%) is lower semicontinuouson VX V;

(E) forsome e Uandzte (0,T),

g0x(68) > 0.

Remarks on conditions (A)-(E). Condition (A) seems fairly mild; it is trivially satisfied
for Lebesgue measure on Euclidean space. The purpose of (A) is to let us take

(6) Fe@y) = pB Y gy <e)

and estimate

) Fey) < K uBoct)! Iapyy<el
< KpBeOW! Loy <e
= ng(y,X) .

Condition (B) is the ‘folklore’ condition for k-multiple points. Condition (C) may appear
severe, but is frequently satisfied. Conditions (A)-(C) will give us (3.1), and conditions
(D) and (E) will give us (3.i)). We may (and shall) suppose that the T appearing in (E) isa
point of increase of g¢.(€,&).

THEOREM 1. Asswming conditions (A), (B), and (C), the family {Z¢:0 <& <n/k} is
bounded in L?. Assuming also conditions (D) and (E), there exist initial distributions

such that for some disjoint compact intervals Iy, ..., I

PXIDA...AXT)=D) > 0.

Proof. (i) Letm be the law of X¢. For ease of exposition, we shall suppose that X has a
transition density p,(=,+) with respect to 1; the result remains true without this assumption
though.



exploiting (6), integrating out X1,y 1, ....Xj-1,¥;-1 t0 leave as an upper bound
K42 .hv G v g (. y)F nidx;) ndyy)

which is finite, by assumption (B). Hence for 0 <g <k, E (Zg) is bounded above by a
finite constant independent of €, which proves the first statement.

(ii) 'We next exploit (D) and (E) to give us (3.ii). By the choice of the set C, we have
that for some small enough 6 > 0,
CoaCqy = (1, tp): 1—tig-tl <0 for i=1,.,k},

where tg = 0. Hence

EZ, 2 E [Lo dt IU(X,X)FE(X,)]
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where we write g as an abbreviation for gr.g ¢+g. Since T is a point of increase of
gaq,.(E.8), we know that g (§,8) > 0. Thus

k-1
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where
ge(xy) = inf{g(xy): d(xx;) < ke, d(yx1) < ke},

which, in view of (D), increases as € L0 to g(x1,x1). By integrating out the variables
Xg» Xp—l» - X2 in (8), we obtain the lower bound

EZ, 2 [m@ro)y6ey) g Goxy) gele)™ widry),
and hence the estimate

liminf EZ; 2 [ m(dxg) TyGry) g Croox ) gy, )F ! pidxy) .

By lower semi-continuity and the fact that g (§,§) > 0, we know that g (x,y) is positive in
a neighbourhood of (£,€) and so taking m = 8, for example, yields

liminfEZ;, > 0. 0
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since Rg\Ry .ul X INX (1)), and XINX ) is contained in the (countable) set of
J =

left endpoints of jumps of X during time interval I;, it follows from (F) that the set Ipr\RK

is polar, contradicting (10). ¢

3. Multiple points of Lévy processes. Let X be a Lévy process in R”, with resol-
vent (U3 )% 0. We shall assume that the resolvent is strong Feller (equivalently, that each
U (x,.) has a density with respect to Lebesgue measure - see Hawkes [5]), in which case
there is for each A > 0 a h-excessive lower semi-continuous function u, such that

Urf@) = Jur0)fov+x)dy.

To establish sufficient conditions for k-multiple points, we shall need three lemmas
on Lévy processes of interest in their own right.

LEMMA 1. The resolvent (Uj)nso is strong Feller if and only if for every
0<a <b <o the kernel G, has a density g, p-

If this happens, the densities g, ,(.) may be chosen so that

1) g4 is lower semicontinuous for each0<a < b < oo

(i) (ab) = gup&) is left-continuous increasing in b and right-continuous
decreasing in a for each x;

(Gil) forall0<a <b <eandallx € R"

8ap®@) = lim 57 [ 20,50 8ap-5 x—¥)dy .

LEMMA 2. For a Lévy process with a strong Feller resolvent, the following are
equivalent:

(i) forsomee, T >0,

k oo -
{leSE}go,T(x) dx < oo



whence g 5 7(.) is bounded globally (exploiting lower semi-continuity).

This completes the proof that (11.i-ii) implies that X has k-multiple points with posi-
tive probability, and hence, by Borel-Cantelli, there are almost surely £-multiple points.

Proof of Lemma 1.  The arguments used are similar to those of Hawkes [3], so we will
just give an outline, The first statement of the lemma is immediate. To get good versions
of the densities g, p, firstly take any densities g, 5() for G, 4, 0 <p < g < oo rational,
then define

g ap(x) = sup {g’p ) : a<p<qg<b},

which have property (ii) (which remains preserved under the subsequent modifications).
Next, forn > (b —a)~! define

() = nfg050) gapsx-Ndy,  G=n")
which is lower semicontinuous in x (it is the increasing limit as M T o of
nJg0s0) (M AgapsG—y))dy,
which are continuous by the strong Feller property of G g 5). Finally, we take
2a5(Y=sup (2250 1 n > (B-a)"}.
Since, for fixed a < b, §2, p is increasing almost everywhere to a version of the density of

G o b, this providés a version with the desirable properties (i) - (iii). : 0

Proof of Lemma 2.  The implications (iii) => (iv) => () are trivial. The implication (ii)
=> (iii) follows easily from the estirnate

[ gaairtytax = [([Pauay) gort—y)ax
Jax [ Potay) gorx-y)

= .[gO,T(Z)k dz .
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So, finally, we assume (i) and prove (ii). Specifically, let K denote the cube
K = {xeR": Ix| < -%— for i=1,.,n}),

and assume without loss of generality that



Remarks. (1) Itisevident that (11.ii) is equivalent to the condition

(9.ii) forsome A>0, u@ > 0.

Hence, in view of Lemma 2, the conditions (11) are equivalent to those imposed by Evans

[3].

(ii) Similar techniques can be used to study the problem of the existence of common
points in the ranges of k independent Markov processes, a technically easier problen.
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