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Abstract
In 2017, the authors of Ernst et al. [2017] explicitly computed

the second moment of Yule’s “nonsense correlation,” offering the first
mathematical explanation of Yule’s 1926 empirical finding of nonsense
correlation. [Yule, 1926]. The present work closes the final longstand-
ing open question on the distribution of Yule’s nonsense correlation
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0 W1(t)W2(t)dt−
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∫ 1
0 W2(t)dt√∫ 1
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2
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(∫ 1
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)2√∫ 1
0 W

2
2 (t)dt−

(∫ 1
0 W2(t)dt

)2
by explicitly calculating all moments of ρ (up to order 16) for two
independent Wiener processes, W1,W2. These lead to an approxi-
mation to the density of Yule’s nonsense correlation, apparently for
the first time. We proceed to explicitly compute higher moments of
Yule’s nonsense correlation when the two independent Wiener pro-
cesses are replaced by two correlated Wiener processes, two indepen-
dent Ornstein-Uhlenbeck processes, and two independent Brownian
bridges. We conclude by extending the definition of ρ to the time
interval [0, T ] for any T > 0 and prove a Central Limit Theorem for
the case of two independent Ornstein-Uhlenbeck processes.

Keywords: Nonsense correlation; Ornstein-Uhlenbeck processes; Wiener
processes; Volatile correlation
MSC 2010 Codes: Primary 60J65, 60G15; Secondary 60G05

∗Department of Statistics, Rice University, Houston, Texas 77005, U.S.A.
†Statistical Laboratory, Center for Mathematical Sciences, Cambridge CB3 0WB, U.K.
‡Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A.

1



1 Introduction

Given a sequence of pairs of random variables {Xk, Yk} (k = 1, 2, . . . , n),
how can we measure the strength of the dependence of X and Y ? The
classical Pearson correlation coefficient offers a solution that is standard yet
often problematic, particularly when it is calculated between two time series.
Indeed, one may observe “volatile” correlation in independent time series,
where the correlation is volatile in the sense that its distribution is heav-
ily dispersed and is frequently large in absolute value. Yule observed this
empirically in his 1926 seminal paper [Yule, 1926], calling it “nonsense” cor-
relation, writing that “we sometimes obtain between quantities varying with
time (time-variables) quite high correlations to which we cannot attach any
physical significance whatever, although under the ordinary test the correla-
tion would be held to be certainly significant.”

Yule’s finding would remain “isolated” from the literature until 1986
[Aldrich, 1995], when the authors of Hendry [1986] and Phillips [1986] con-
firmed many of the empirical claims of “spurious regression” made by the
authors of Granger and Newbold [1974]. In particular, Phillips [1986] pro-
vided a mathematical solution to the problem of spurious regression among
integrated time series by demonstrating that statistical t-ratio and F-ratio
tests diverge with the sample size, thereby explaining the observed ‘statisti-
cal significance’ in such regressions. In later work Phillips [1998], the same
author provided an explanation of such spurious regressions in terms of or-
thonormal representations of the Karhunen Loève type.

Let (Xt)0≤t≤T be some process with values in Rd, defined over a fixed
time interval [0, T ]. Define random variables

X̄ := T−1
∫ T

0

Xs ds, Y :=

∫ T

0

(Xs − X̄)(Xs − X̄)T ds (1)

with values in Rd and Md respectively, where Md is the space of d × d real
matrices. Yij is the (i, j)-th entry of the matrix Y . In 2017, Ernst et al.
[2017] explicitly calculated the second moment of Yule’s nonsense correlation,
defined as

ρ :=
Y12√

Y11
√
Y22

(2)
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in the case d = 2, when X is a two-dimensional Wiener process1. This calcu-
lation provided the first mathematical explanation of Yule’s 1926 empirical
finding. The present work closes the final long-standing open question on the
distribution of Yule’s nonsense correlation by determining the law of ρ and
explicitly calculating all moments (up to order 16). With these moments in
hand, we provide the first density approximation to Yule’s nonsense correla-
tion. We then proceed to explicitly compute higher moments of Yule’s non-
sense correlation when the two independent Wiener processes are replaced
by two correlated Wiener processes, two independent Ornstein-Uhlenbeck
processes, and two independent Brownian bridges. This closes all previously
open problems raised in Section 3.3 of Ernst et al. [2017].

Our method for explicitly calculating all moments (up to order 16) of
Yule’s nonsense correlation (Section 3), relies on the characterization of the
moment generating function of the random vector (Y11, Y12, Y22). This ap-
proach inherits from an older and well-developed literature, on the laws of
quadratic functionals of Brownian motion. There is a fine survey [Donati-
Martin and Yor, 1997] which presents the state of the subject as it was in
1997, and as it has substantially remained since then. A range of techniques
is available to characterize the laws of quadratic functionals of Brownian
motion, including:

1. eigenfunction expansions — see, for example, Lévy [1951], Fixman
[1962], Mac aonghusa and Pule [1989], Chan [1991], Chan et al. [1994],
Ernst et al. [2017];

2. identifying the covariance of the Gaussian process as the Green function
of a symmetrizable Markov process — see, for example, Chan et al.
[1994], Dynkin [1980];

3. stochastic Fubini relations — see, for example, Donati-Martin and Yor
[1997];

4. Itô’s formula — see Rogers and Shi [1992].

The first of these techniques is historically the first; using it to deliver a
simple closed-form solution depends on spotting a simpler form for an infinite
expansion. The second works well if we can see a Markov process whose

1Scaling properties of Brownian motion show that the law of ρ does not depend on the
choice of T > 0.
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Green function is the covariance of the Gaussian process of interest. The
third again requires an insight to transform the problem of interest into a
simpler equivalent. The fourth, not so often exploited, deals conclusively
with settings where the Gaussian process arises as the solution of a linear
stochastic differential equation (SDE); this is the approach we use in this
paper. It has the advantage that no clever insight is required — it is a
mechanical calculation, as we shall see when we extend the Brownian motion
result to correlated Brownian motions, Ornstein-Uhlenbeck processes and the
Brownian bridge; we make the obvious changes to the ODEs to be solved and
that is all there is.

The final part of the paper studies the asymptotic properties of ρ as T →
∞. For this discussion, we will write X(T ), Y (T ) in place of X, Y defined
at (1) and ρ(T ) in place of ρ defined at (2) to emphasize their dependence
on the time horizon T . In the case of Wiener processes, by the property of
self-similarity, it is straightforward to show that ρ(1) and ρ(T ) have the same
distribution. But for Gaussian processes which are not self-similar, ρ(T ) will
depend on the value of T . Section 5 investigates this statistic’s asymptotic
behavior as T → ∞. The key result is given by Theorem 4, which proves
that, in the case of two independent Ornstein-Uhlenbeck processes,

√
Tρ(T )

converges in distribution as T →∞ to a zero-mean Gaussian.

2 Quadratic functionals of Gaussian diffusions.

We shall use the notation Sd+ for the space of strictly positive-definite sym-
metric d×d matrices, with the canonical ordering A ≥ B meaning that A−B
is non-negative definite. The main result is the following.

Theorem 1. Suppose that σ : [0, T ] 7→Md is a bounded measurable function,
and that X solves2

dX = σdW, (3)

where W is d-dimensional Brownian motion. We write Σ = σσ>.
Suppose that Q : [0, T ]→ Sd+ and z : [0, T ]→ Rd are bounded measurable

2For notational simplicity, we will often omit the independent variable t.
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functions such that Q−1 is also bounded. Define

` :=
1

2
X ·QX + z ·X, (4)

F (t, x) := E

[
exp

{
−
∫ T

t

`(s)ds− `(T )

} ∣∣∣∣X(t) = x

]
. (5)

Then F (t, x) is given explicitly as

F (t, x) = exp

(
−1

2
x · V (t)x− b(t) · x− γ(t)

)
, (6)

where V, b, γ are obtained as the unique solutions to the system of ordinary
differential equations (ODEs),3

V̇ = V ΣV −Q, (7)

ḃ = V Σb− z, (8)

2γ̇ = b>Σb− tr (V Σ), (9)

subject to the boundary conditions V (T ) = Q(T ), b(T ) = z(T ), γ(T ) = 0.

Proof. (i) Notice that ` is bounded below by − 1
2
z ·Q−1z, which by hypothe-

sis is bounded below by some constant, therefore F defined by (5) is bounded.

(ii) The ODE (7) has a unique solution up to possible explosion, as the co-
efficients are locally Lipschitz. We claim that this solution remains positive-
definite for t ≤ T . Since Q(T ) ∈ Sd+, it has to be that there exists some
ε > 0 such that V (t) ∈ Sd+ for all t ∈ [T − ε, T ]. If V does not remain
positive definite, then there exists some non-zero w ∈ Rd and a greatest
t∗ ≤ T − ε < T such that w · V (t∗)w ≤ 0. But we see from (7) that
w · V̇ (t∗)w ≤ −w · Q(t∗)w < 0, contradicting the definition of t∗. Hence V
remains positive-definite all the way back to possible explosion. However, we
have that

V (t) = Q(T ) +

∫ T

t

{Q(s)− V (s)Σ(s)V (s) } ds ≤ Q(T ) +

∫ T

t

Q(s) ds.

So by hypothesis V is bounded above and no explosion happens. Since V
is continuous on [0, T ] and positive-definite everywhere, it follows that V is
uniformly positive-definite on [0, T ], that is, V −1 remains bounded.

3We use an “overdot” to denote the derivative with respect to t.
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It now follows easily that b and γ defined by (8) and (9) are unique, con-
tinuous and bounded.

(iii) Now define the process

Zt = 1
2
Xt · VtXt + bt ·Xt + γt, (10)

and develop

dZt = (VtXt + bt, σt dWt dt) + 1
2
tr (VtΣt)dt+

{
1
2
Xt · V̇tXt + ḃtXt + γ̇t

}
dt,

d〈Z〉t = (VtXt + bt) · Σt(VtXt + bt)dt.

Now consider the process

Mt = exp

(
− 1

2

∫ t

0

`(s) ds− Zt
)
. (11)

Notice that M is bounded, because ` is bounded below, and so is Z since
we have proved that V −1, b and γ are all bounded on [0, T ]. Developing M
using Itô’s formula, with the symbol

.
= denoting that the two sides of the

equation differ by a local martingale and omitting explicit appearance of the
time parameter, we obtain

dMt

Mt

= −dZ + 1
2
d〈Z〉 − 1

2
X ·QXdt− z ·Xdt

.
=

{
− 1

2
tr (V Σ)− 1

2
X · V̇ X − ḃX − γ̇ +

+ 1
2
(V X + b) · Σ(V X + b)− 1

2
X ·QX − z ·X

}
dt

= 0

because of (7), (8) and (9). Thus M is a local martingale, which is also
bounded on [0, T ] so M is a bounded martingale, and the result follows.

Theorem 1 extends easily to the situation where X is the solution of a
linear SDE.

Theorem 2. Suppose that σ, B : [0, T ] 7→ Md and δ : 7→ Rd are bounded
measurable functions, and that X solves

dX = σ dW + (BX + δ) dt, (12)
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Suppose that Q : [0, T ] → Sd+ and z : [0, T ] → Rd are bounded measurable
functions such that Q−1 is also bounded, and suppose that ` and F are defined
as before at (4), (5).

Then F (t, x) is given explicitly as

F (t, x) = exp

(
−1

2
x · V (t)x− b(t) · x− γ(t)

)
, (13)

where V, b, γ are obtained as the unique solutions to the system of ordinary
differential equations (ODEs),4

V̇ = V ΣV − (V B +B>V )−Q, (14)

ḃ = (V Σ−B>)b− V δ − z, (15)

2γ̇ = b>Σb− tr (V Σ)− δ>b, (16)

subject to the boundary conditions V (T ) = Q(T ), b(T ) = z(T ), γ(T ) = 0.

Proof. The coefficients of the SDE (12) are globally Lipschitz, so it is a stan-
dard result (see, for example, Rogers and Williams [2000] Theorem V.11.2)
that the SDE has a unique strong solution. If we now set

X̃t = AtXt + ct, (17)

where A and c solve

Ȧt + AtBt = 0, A(0) = I, (18)

ċt + Atδt = 0, c(0) = 0, (19)

then a few simple calculations show that

dX̃ = Aσ dW

and Theorem 1 applies. The equations (14), (15) and (16) are easily checked
to be the analogues of (7), (8) and (9) respectively.

Remark 1. We will want to apply Theorem 1 to situations where Q(T ) = 0.
This is a simple limiting case of the problem where we take Q(T ) = εI and

4We use an “overdot” to denote the derivative with respect to t.
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let ε ↓ 0. In a little more detail, we let V ε, bε, γε denote the solution to
(14)-(16) with boundary condition Q(T ) = εI, and we write

qεt : x 7→ 1
2
x · V ε(t)x+ bε(t) · x+ γε(t), (20)

for the quadratic form − logF (t, x). Evidently qεt (x) is decreasing in ε for
each x and t, and from this it follows easily that limits of V ε(t), bε(t), γε(t)
exist for each t and determine F for the limit case when Q(T ) = 0.

Remark 2. Theorem 2 is a special case of the Feynman-Kac formula; the
fact that the process M defined in (11) is a martingale is equivalent to the
Feynman-Kac formula, and is valid for any additive functional ` of the dif-
fusion X. However, without the special linear form of the SDE for X and
the quadratic form of the additive functional ` it is rare that any explicit
solution can be found for F .

Remark 3. If σ is constant, we may assume that σ = I, the identity matrix.
To see this, let X̂ = Σ−1/2X, and note that the diffusion process X̂ solves
the linear SDE,

dX̂ = (Σ−1/2BΣ1/2X̂ + Σ−1/2δ)dt+ dW.

Letting Q̂ = Σ1/2QΣ1/2 and ẑ = Σ1/2z we obtain

` =
1

2
X>QX + z>X =

1

2
X̂>Q̂X̂ + ẑ>X̂,

and thus we can work with the process X̂ instead of X. However, it seems
simpler to provide the full form of the solution for the SDE (12) rather than a
reduced form which then requires a translation back to the original problem.

Remark 4. Although Theorem 2 deals with the general case where Q, z are
measurable functions, in the remainder of this paper we only need invoke
Theorem 2 for the special case in which Q and z are constants. For this
reason, we will sometimes use the alternative expanded notation

F (t, x) := F (t, x;Q, z) (21)

when we want to make explicit the dependence of F on the coefficients Q
and z appearing in `.
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3 Computing the moments of ρ

Henceforth, we deal exclusively with cases where

d = 2.

Recall the definition (10) of the 2×2 random matrix Y . Let φ be the moment
generating function of the joint distribution of (Y11, Y12, Y22), which can be
expressed using quadratic functionals of X as

φ(S) := E [exp {− 1
2
(s11Y11 + 2s12Y12 + s22Y22)}]

= E

[
exp

{
−1

2

∫ T

0

(X(u)− X̄) · S(X(u)− X̄)du

}]
.

(22)

Here, S is a 2× 2 positive-definite symmetric matrix with entries denoted by
sij (i, j = 1, 2). As we shall show in the following proposition, the function φ
is all we shall need to evaluate the moments of ρ.

Proposition 1. Let ρ = ρ(T ) be as given in (2) and φ(s11, s12, s22) = φ(S)
be as given in (22). For k = 0, 1, 2, . . . , we have

Eρk =
(−1)k

2kΓ(k/2)2

∫ ∞
0

∫ ∞
0

s
k/2−1
11 s

k/2−1
22

∂kφ

∂sk12
(s11, 0, s22) ds11 ds22. (23)

Proof. It is well known that the moments of a random variable can be
obtained by differentiating the moment generating function, given it ex-
ists [Billingsley, 2008]. Now note that for any fixed nonnegative s11, s22, there
exists ε > 0 such that S = [sij] is positive semi-definite for any s12 ∈ [−ε, ε]
and thus φ(s11, s12, s22) ≤ 1. Hence, the partial derivative with respect to s12
exists at s12 = 0. Applying Fubini’s Theorem we obtain

(−1)k
∂kφ

∂sk12
(s11, 0, s22) = E

[
Y k
12 exp

{
−1

2
(s11Y11 + s22Y22

}]
.

Next, recall that by the definition of Gamma function, for any α > 0,

y−α =
1

Γ(α)

∫ ∞
0

tα−1e−tydt =
1

2αΓ(α)

∫ ∞
0

sα−1e−sy/2ds.

Since ρk = Y k
12 Y

−k/2
11 Y

−k/2
22 , we can apply the above formula to obtain (23)

(by Tonelli’s Theorem, the order of integration can always be exchanged).
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So we see that the distribution of ρ is determined by (22), from which
moments can in principle be derived using Proposition 1; but we need to get
hold of the expression (22). This is where Theorem 2 comes in. If X is a
solution of a linear SDE (12), starting at X0 = 0 to fix the discussion, and
we set

Q(t) = S, z(t) = a ∈ R2 ∀0 ≤ t < T, Q(T ) = 0, z(T ) = 0,

then Theorem 2 tells us how to compute

F (0, 0; a) = E

[
exp

{
−
∫ T

0

{ 1
2
X(u) · SX(u) + a ·X(u)} du

}]
(24)

= exp(−γ(0; a)), (25)

where we have written F (t, x; a) and γ(0; a) to emphasize dependence on a.
If we now integrate over a with a N(0, T−1S) distribution the right-hand side
of (24) becomes

E

[
exp

{
−
∫ T

0

1
2
X(u) · SX(u) du+ 1

2
TX̄ · SX̄

}]
= φ(S). (26)

The strategy now should be clear. In any particular application, we use
Theorem 2 to obtain γ(t; a) as explicitly as possible, and then we integrate
(25) over a to find φ(S).

4 Examples.

In this Section we will carry out the program just outlined in four examples,
and obtain remarkably explicit expressions for everything we need.

In the first three examples, the two-dimensional diffusion process X has
two special properties:

(i) The law of (RXt)0≤t≤1 is the same as the law of (Xt)0≤t≤1 for any fixed
rotation matrix R;

(ii) The two components of X are independent.

Consequently, if we abbreviate X1(t) = xt, x̄ =
∫ 1

0
xs ds, and define

ψ(v) = E

[
exp

{
− 1

2

∫ 1

0

v(xu − x̄)2du

}]
, (27)
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it follows that the function φ(S) defined at (22) simplifies to the product

φ(S) = ψ(θ21)ψ(θ22), (28)

where θ21, θ
2
2 are the eigenvalues of S. This observation simplifies the solution

of the differential equations (14)-(16) considerably, reducing everything to a
one-dimensional problem.

The final example, that of correlated Brownian motion, reduces to the
Brownian example by linear transformation.

4.1 Brownian motion.

For a standard one-dimensional Brownian motion x(t), consider the function
F (t, x; θ2, z) where θ ≥ 0 and z ∈ R. By Theorem 2, the solution has the
following form (the subscript “Bm” is Brownian motion)

FBm(t, x; θ2, z) = exp
{
− 1

2
V x2 − bx− γ

}
,

which leads to the following system of ordinary differential equations

V̇ − V 2 + θ2 = 0,

ḃ− V b+ z = 0,

2γ̇ − b2 + V = 0.

Using the boundary condition V (T ) = 0, we obtain

V (t) = θ tanh θτ,

where τ = T − t. Using the condition b(T ) = 0, one can show that the
solution for b is

b(t) =
z

θ2
V (t) =

z

θ
tanh θτ .

Solving the third ODE, we obtain

2γ(t) = log cosh θτ +
z2

θ3
(−θτ + tanh θτ) ,

and thus

F (0, 0; θ2, z) = exp

{
− z2

2θ3
(−θT + tanh θT )− 1

2
log cosh θT

}
.
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As at (26), we now mix this expression over z ∼ N(0, θ2/T ) to discover that
in this example the function ψ (defined at (27)) takes the simple explicit
form

ψBm(θ2) =

(
θT

sinh θT

)1/2

. (29)

From (28) therefore, the moment generating function φ(S) is given by

φBm(S) =

(
θ1θ2T

2

sinh θ1T sinh θ2T

)1/2

, (30)

where θ21, θ
2
2 are the eigenvalues of S. These eigenvalues are given in terms

of the entries of S as

θ2i =
1

2

(
s11 + s22 ±

√
(s11 − s22)2 + 4s212

)
, (31)

where sij is the (i, j)-th entry of S.
Consider E(ρk) for k = 0, 1, 2, . . . . Note that for any k, the expectation

always exists since ρ ∈ [−1, 1]. Further, all the odd moments, i.e. E(ρ2k+1),
are zero by symmetry. To compute an even moment of ρ, we apply for-
mula (23). For example, consider the second moment. Straightforward but
tedious calculations yield

Eρ2 =

∫ ∞
0

∫ v

0

uv
√
uv

(v2 − u2)
√

sinhu sinh v

(
1

u tanhu
− 1

v tanh v
− 1

u2
+

1

v2

)
du dv,

where we have applied a change of variables, u =
√
s11, v =

√
s22. Note

that this is exactly the same as the formula provided in Ernst et al. [2017,
Proposition 3.4].

For higher-order moments, the calculation of ∂kφ/∂sk12 is extremely labo-
rious. We use Mathematica to perform symbolic high-order differentiation
and then the two-dimensional numerical integration. The numerical results
are summarized in Table 1. The choice of T is irrelevant since the distribution
of ρ(T ) does not depend on T .

We proceed to use the numerical values of E(ρk) to approximate the
probability density function of ρ. For example, we may consider a polynomial
approximation

f̂(ρ) = a0 + a1ρ+ a2ρ
2 + · · ·+ akρ

k.
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k 2 4 6 8
Eρk 0.240523 0.109177 0.060862 0.037788

k 10 12 14 16
Eρk 0.025114 0.017504 0.012641 0.009385

Table 1: Numerical values of the moments of Yule’s nonsense correlation for two indepen-
dent Wiener processes (T = 1).

Figure 1: The 12th-order polynomial approximation to the probability density function of
ρ for two independent Wiener processes.

The coefficients (a0, a1, . . . , ak) can be computed by matching the first k +
1 moments of ρ (including the zero moment which is always equal to 1).
This is also known as the Legendre polynomial approximation to the density
function [Provost, 2005]. The 4th-order, 6th-order and 8th-order polynomial
approximations are provided below.

f̂4(ρ) = 0.59081 + 0.31001ρ2 − 0.97075ρ4,

f̂6(ρ) = 0.60057 + 0.10518ρ2 − 0.35627ρ4 − 0.45062ρ6,

f̂8(ρ) = 0.61200− 0.30638ρ2 + 1.9073ρ4 − 4.3742ρ6 + 2.1019ρ8.

The 12th-order approximation is drawn in Figure 1 above, which looks almost
the same as the 8th-order one (not shown here). The above expressions
constitute the first density approximations to Yule’s nonsense correlation.
It can be seen that the distribution of ρ is dispersed: the density remains
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approximately constant for ρ ∈ (−0.5, 0.5).
We have only provided the numerical values of E(ρk) up to order 16. This

has been done for two reasons. Firstly, for practical purposes such density
approximation, moments of even higher orders are of much less interest.
Secondly, the calculations of the derivative ∂kφ/∂sk12 and the double integral
become extremely slow and require massive memory.

4.2 Ornstein-Uhlenbeck process.

Consider a one-dimensional Ornstein-Uhlenbeck (OU) process which starts
from X(0) = 0 and evolves according to the following stochastic differential
equation:

dX(t) = −rX(t)dt+ dW (t), r ∈ (0,∞). (32)

By Theorem 2, the solution has the form

FOU(t, x; θ2, z) = exp

{
−1

2
V x2 − bx− γ

}
,

which can be obtained by solving the following system of ODEs

V̇ − 2rV − V 2 + θ2 = 0,

ḃ− (V + r)b+ z = 0,

2γ̇ − b2 + V = 0.

Using V (T ) = 0, we solve the first equation to obtain

V (t) =
θ2

r + η coth ητ
,

where η =
√
r2 + θ2. The second differential equation is first-order linear, so

can be solved explicitly; after some routine calculations we obtain

b(t) =
z

r + η coth ητ

(
1 +

r

η
tanh

ητ

2

)
.

Finally, solving the last differential equation yields

2γ(t) =
z2

θ2


(

1 + r
η

tanh ητ
2

)2
r + η coth ητ

− r2

η3
tanh

ητ

2
− θ2τ

η2

− rτ + log

(
cosh ητ +

r

η
sinh ητ

)
.
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r 0.1 0.2 0.3 0.4 0.5 1
Eρ2 0.23209 0.22438 0.21734 0.21091 0.20504 0.18231

r 2 5 10 20 50 100
Eρ2 0.15583 0.11454 0.07627 0.04404 0.01907 0.00971

Table 2: Numerical values of the second moment of Yule’s nonsense correlation for two
independent Ornstein-Uhlenbeck processes with mean reversion parameter r (T = 1).

Mixing over z with a Gaussian law as before, and using tanh(x/2) = coth x−
cschx, we obtain

ψOU(θ2; r) =
√
TerT/2

{
θ2

η4
[2r(cosh ηT − 1) + η sinh ηT ] +

r2T

η3
[η cosh ηT + r sinh ηT ]

}−1/2
.

If we have two independent Ornstein-Uhlenbeck processes X1(t), X2(t)
which both start at zero and have common mean reversion parameter r, one
can check that an orthogonal transformation of X = (X1, X2) leaves the
joint distribution invariant. Indeed, the new two-dimensional process follows
exactly the same SDE. Hence, the moment generating function in this case
can be computed by

φOU(S; r) = ψOU(θ21; r)ψOU(θ22; r),

where θ21, θ
2
2 are the eigenvalues of S.

In Table 2 above we give the numerical values of Eρ2 for independent
Ornstein-Uhlenbeck processes with mean reversion parameter r (T = 1).
Note that as r → ∞, the processes converge to constant zero and thus
Eρ2 (the variance of ρ) goes to zero. Our numerical results show that Eρ2

decreases slowly.

4.3 Brownian bridge.

For a more complicated example, consider a standard Brownian bridge (de-
noted by “Bb”) which satisfies X(0) = X(1) = 1. In this case, we must fix
T = 1 and let τ = 1− t. The dynamics of X(t) can be described by (see for
example Rogers and Williams [2000] Theorem IV.40.3)

dX(t) = −X(t)

1− t
dt+ dW (t).
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Though this SDE has the linear form, the drift coefficient −(1−t)−1 explodes
at t = 1. Hence, it does not satisfy the conditions required in Theorem 2.
However, the singularity can easily be isolated, by freezing everything at
t = 1− ε and applying Theorem 2 to that; we can then let ε ↓ 0 and we find
the instances of the ODEs (14)-(16) to be

V̇ − 2V/(1− t)− V 2 + θ2 = 0,

ḃ− [V + (1− t)−1]b+ z = 0,

2γ̇ − b2 + V = 0.

Solving the first differential equation with limt→1 V (t) = 0 yields

V (t) =
θτ cosh θτ − sinh θτ

τ sinh θτ
.

One can check that limt→1 V̇ (t) = −θ2/3. Similarly, the solution to the
second ODE is given by

b(t) =
z(cosh θτ − 1)

θ sinh θτ
;

Though at first sight this might appear to have a singularity at τ = 0 it is
in fact analytic. The solution to the third differential equation is given by

2γ(t) =
z2

θ2

(
2(cosh θτ − 1)

θ sinh θτ
− τ
)

+ log
sinh θτ

θτ
.

One can also check that limt→1 γ(t) = limt→1 γ̇(t) = 0. Using this, we have

FBb(t, x; θ2, z) = exp

{
−1

2
V x2 − bx− γ

}
.

Hence

FBb(0, 0; θ2, z) = exp {−γ(0)}

=

√
θ

sinh θ
exp

{
− z2

2θ2

(
2(cosh θ − 1)

θ sinh θ
− 1

) }
Mixing over z ∼ N(0, θ)2) gives the one-dimensional generating function

ψBb(θ2) =
θ

2 sinh(θ/2)
.
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k 2 4 6 8
Eρk 0.149001 0.047864 0.0201829 0.009876

Table 3: Numerical values of the moments of Yule’s nonsense correlation for two indepen-
dent Brownian bridges.

As in the case case of Ornstein-Uhlenbeck processes, the moment generating
function is φBb(S) = ψBb(θ21)ψBb(θ22).

In Table 3 we provide the moments of ρ for independent Brownian bridges.
Comparing with Table 1, we can see that ρ has smaller variance for two
Brownian bridges. Intuitively, this is because Brownian bridges are forced to
fluctuate around zero more frequently than Brownian motions: a Brownian
bridge has to return to zero at t = 1 but a Brownian motion is likely to make
long excursions away from zero.

4.4 Correlated Brownian motion.

Let X1(t), X2(t) be two Brownian motions with constant correlation c, rep-
resented by the following SDE

dX1(t) = dW1(t), dX2(t) = cdW1(t) +
√

1− c2dW2(t).

To compute the moment generating function φ(S), we take the approach
outlined in Remark 3. Define a matrix M as

M = M(c) =

[
1 0

−c(1− c2)−1/2 (1− c2)−1/2
]
.

Then the process MX(t) is a two-dimensional Brownian motion with inde-
pendent coordinates. The inverse of M is

M−1 = M−1(c) =

[
1 0

c
√

1− c2

]
.

We now transform the problem to the uncorrelated case by

φcBm(S) = φBm((M−1)>SM−1),

17



c 0 0.1 0.2 0.3 0.4
Eρ 0 0.08873 0.17792 0.26804 0.35963
Eρ2 0.24052 0.24550 0.26061 0.28636 0.32368

Var(ρ) 0.2405 0.2376 0.2290 0.2145 0.1943

c 0.5 0.6 0.7 0.8 0.9
Eρ 0.45338 0.55004 0.65071 0.75698 0.87151
Eρ2 0.37407 0.43986 0.52477 0.63509 0.78298

Var(ρ) 0.1685 0.1373 0.1013 0.0621 0.0235

Table 4: Numerical values of the moments of Yule’s nonsense correlation for two correlated
Brownian motions with correlation coefficient c (T = 1).

where we use “cBm” to indicate that X is a correlated two-dimensional
Brownian motion. The solution may be expressed as

φcBm(S; c) =

(
λ1λ2

sinhλ1 sinhλ2

)1/2

, (33)

where λ21, λ
2
2 are the eigenvalues of the matrix (M−1)>SM−1. Routine calcu-

lation yields

λ2i =
1

2

{
s11 + s22 + 2cs12 ±

√
(s11 − s22)2 + 4(cs11 + s12)(cs22 + s12)

}
.

In Table 4 we give the first and second moments of ρ for two-dimensional
correlated Brownian motion with correlation coefficient c. Observe that E(ρ)
is always slightly smaller than c if c ∈ (0, 1). The variance of ρ, computed as
Var(ρ) = Eρ2− (Eρ)2, is decreasing (as c increases) but very slowly. Indeed,
the standard deviation of ρ is 0.49 for c = 0, 0.41 for c = 0.5 and 0.25 for
c = 0.8.

5 Asymptotics of ρ(T ) as T →∞
The fundamental reason that the statistic ρ(T ) has been called “nonsense
correlation” is that, in the case of two independent Wiener processes, its
asymptotic variance is quite large, rendering it useless for statistical inference.
This being said, might ρ(T ) be useful for testing the independence of some
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other pair of stochastic processes? In fact, the answer is yes ; ρ(T ) may be
used to test independence of two Ornstein-Uhlenbeck processes. We prove
this claim by first showing a Strong Law result, that for two independent
Ornstein-Uhlenbeck processes, ρ(T ) converges almost surely to 0 as T →∞.
We next prove a Central Limit result,that

√
Tρ(T ) converges in distribution

as T →∞ to a zero-mean Gaussian5.

Theorem 3. For two independent Ornstein-Uhlenbeck processes, X1(t) and
X2(t), which both follow the SDE (32) with r > 0, the “nonsense” correlation
statistic ρ(T ) converges almost surely to zero as T →∞.

Proof. If X1(0) and X2(0) are both distributed according to the invariant
N(0, 1/2r) distribution of the OU process (32), then the bivariate process
(X1, X2) is ergodic, so, by Birkhoff’s Ergodic Theorem, time-averages con-
verge almost surely to expectations. Thus (recall the notations (??) and
(??)) we have

X̄i → E[Xi(0)] = 0 a.s. as T →∞, i = 1, 2

T−1Y12(T ) → E[X1(0)X2(0)] = 0 a.s. as T →∞
T−1Yii(T ) → E[Xi(0)2] = (2r)−1 a.s. as T →∞, i = 1, 2

Dividing the numerator and denominator of ρ(T ) defined at (??) by T , it is
immediate that ρ(T ) converges almost surely to 0 if the initial distribution
is the invariant distribution.

If the initial distribution is something else, then we still have these re-
sults by coupling with an independent stationary copy of the OU process -
see Rogers and Williams [2000] Theorem V.54.5, which proves that the two
diffusions couple in finite time almost surely, so that the long-time averages
have the same limits.

We now prove a central limit theorem for ρ(T ) as T →∞.

Theorem 4. For two independent Ornstein-Uhlenbeck processes, X1(t) and
X2(t), which both follow the SDE (32) with r > 0, we have that

√
Tρ(T )

D→ N

(
0,

1

2r

)
.

5Of course, the Strong Law result Theorem 3 is not needed to prove the Central Limit
result Theorem 4, but as the proof is very simple we record it.
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Proof. Firstly, as we proved in the previous result, we have

Y11(T )

T
=

1

T

∫ T

0

X1(s)
2ds− X̄1(T )2

a.s.−→ E[X1(0)2] =
1

2r
.

We now need to obtain weak convergence of

Y12(T )√
T

=

∫ T

0

X1(s)X2(s)
ds√
T
− TX̄1(T )X̄2(T )√

T
. (34)

Let us first consider the second term of the right-hand side of the above
equation. For simplicity, assume X1(0) = 0 and then

X1(t) = e−rt
∫ t

0

ersdWs ,

so that

TX̄1(T ) =

∫ T

0

X1(t)dt =

∫ T

0

e−rt
∫ t

0

ersdWs dt

= r−1
∫ T

0

ers
(
−e−rT + e−rs

)
dWs

= r−1
∫ T

0

(
1− e−r(T−s)

)
dWs.

Hence

E[X̄1(T )2] =
1

r2T 2

∫ T

0

(
1− e−r(T−s)

)2
ds ≤ 1

r2T
,

and so

E

[(√
TX̄1(T )X̄2(T )

)2]
≤ 1

r4T
→ 0.

Thus
√
TX̄1(T )X̄2(T ) converges in L2 to 0, and so we need now only consider

the first term of the right-hand side of equation (34). For θ ∈ R, let us
evaluate the characteristic function by firstly conditioning on X2:
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E exp

{
iθ√
T

∫ T

0

X1(s)X2(s) ds

}
=E exp

{
iθ√
T

∫ T

0

e−rsX2(s)

∫ s

0

erudW1(u) ds

}
=E exp

{
iθ√
T

∫ T

0

eru
∫ T

u

e−rsX2(s) ds dW1(u)

}
=E exp

{
− θ

2

2T

∫ T

0

(∫ T

u

e−r(s−u)X2(s)ds

)2

du

}
.

Again by the ergodic theorem, we have

1

T

∫ T

0

(∫ T

u

e−r(s−u)X2(s)ds

)2

du
a.s.−→ E

[(∫ ∞
0

e−rsX2(s)ds

)2
]

=
1

8r3
.

We thus obtain

1√
T

∫ T

0

X1(s)X2(s)ds
D→ N

(
0,

1

8r3

)
,

from which the stated result follows.

Acknowledgments Philip Ernst is very grateful to Professor Frederi Viens
for many illuminating conversations about this work. Philip Ernst acknowl-
edges support from Army Research Office Young Investigator Program grant
ARO-YIP-71636-MA, National Science Foundation (NSF) grant DMS-1811936,
and Office of Naval Research (ONR) grant N00014-18-1-2192.

21



References

J. Aldrich. Correlations genuine and spurious in Pearson and Yule. Statistical
Science, 10(4): 364–376, 1995.

P. Billingsley. Probability and Measure. John Wiley & Sons, 2008.

T. Chan. Indefinite quadratic functionals of gaussian processes and least-
action paths. Annales de l’IHP Probabilités et Statistiques, 27(2):239–271,
1991.

T. Chan, D. S. Dean, K. M. Jansons, and L. C. G. Rogers. On polymer confor-
mations in elongational flows. Communications in Mathematical Physics,
160(2):239–257, 1994.

C. Donati-Martin and M. Yor. Some Brownian functionals and their laws.
The Annals of Probability, 25(3):1011–1058, 1997.

E. B. Dynkin. Markov processes and random fields. Bulletin of the American
Mathematical Society, 3(3):975–999, 1980.

P. A. Ernst, L. A. Shepp, and A. J. Wyner. Yules “nonsense correlation“
solved! The Annals of Statistics, 45(4):1789–1809, 2017.

M. Fixman. Radius of gyration of polymer chains. The Journal of Chemical
Physics, 36(2):306–310, 1962.

C. Granger and D. Newbold. Spurious regression in econometrics. Journal
of Econometrics, 2: 111–120, 1974.

D.F. Hendry. Economic modelling with cointegrated variables: an overview.
Oxford Bulletin of Economics and Statistics, 48(3): 201–212, 1986.
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