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A(t, B;) is not a semimartingale

by
L.C.G. Rogers and J.B. Walsh

1. Introduction. Let (B;);>o be Brownian motion on R, By = 0, and for each real =

define

T

t
At,z) = / I(—o,2(Bs)ds = / L(t,y)dy,
0 —0o0
where {L(t,y) : t > 0,y € R} is the local time process of B. The process A(t, z) enters
naturally into the study of the Brownian excursion filtration (see Rogers & Walsh
[1],[2], and Walsh [3]). In [2], it was necessary to consider the occupation density of

the process Y; = A(t, By), which would have been easy if Y were a semimartingale; it
is not, and the aim of this paper is to prove this.

To state the result, we need to set up some notation. Let (X¢)o<i<1 be the

process A(t, By) — fof L(u, By )dB,, and define for j,n € N

AF=X(27") - X(G-127"), <2,

]‘ pumn

and

277-

V=) |ATXP.

j=1

THEOREM 1. For any p > 4/3,
L2

(1) Vp" a.s. 0 (n — o0).
For any p < 4/3,
(2) hfzn—iip Vp" =+ a.s..

This proves conclusively that X (and hence Y') cannot be a semimartingale, because
if it were, it could be written as X = M + A, where M is a local martingale, A is a
finite-variation process (both continuous since X is; see Rogers & Williams [4], V1.40).
Now since V;* 2% 0, M must be zero, and X = A; but imV,® = 400 rules out the

possibility that X is finite-variation, as we shall see.

In outline, the proof runs as follows. Firstly, we estimate E|A;‘X|p above and
deduce from this that EV' — 0 for any p > 4/3; in fact, the L' convergence is

sufficiently rapid that V" 2%, 0. Next we estimate E|A§‘X|p below, and combine the

estimates to prove that EV4’}3 is bounded away from 0 and from infinity. The upper
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bound allows us to prove that {V4’}3 : n > 1} is uniformly integrable, and hence that
P(limsup Vﬁg > 0) > 0. From this, by Holder’s inequality, we prove that for any

p <4/3, Pllimsup V' = +o0] > 0. Finally, an application of the Blumenthal 0 — 1 law
allows us to conclude.

In the forthcoming paper, we analyse the exact 4/3-variation of X completely,
and prove that it is v fot L(s, By)?/3ds, from which the present conclusions (and more)
follow. (Here, v is 477_%F(7/6)E(f L(1,z)%dz)?/3.) The proof of this is a great deal
more intricate, however, and this paper shows how to achieve the lesser result with less
effort.

2. Upper bounds. To lighten the notation, we are going to perform a scaling so that
there is only one parameter involved. It is elementary to prove that for any ¢ > 0, the
following identities in law hold:

) e eoes 2 (2 (5:7))

. t =z
(4 (A(t,2))iso0.mcr 2 <c2A (—2, —)) ;
€ €J /) t>0,2eRr

(5) (Xe)izo = (€ XKifer) 5 -

Hence V7 2 N-» Zjvzl |X; — X;—1|?, where N = 2". We can write the increment
Xj+1 — Xj in the form

Bjt1

J+1 Jj+1
(6) X]‘_|_1 — X] = / I{BuSBj-H}du —I—/ L(],?:)d:x — / L(S,BS)dBS
J J

J
Bjt1

j+1
= / I{BugBj+1}du‘|’/ {L(y, )
J

J

41
— L(j,Bj)}dx — / {L(s,Bs) — L(j,B;)}dBs.

Let us write

j+1
/ I, <Bjpydu = Zja,

J

Bjt1
/ (L(j,x) — L(j, Bj)}d = Z;»,
B;

7+1
/ (L(s, B.) — L(j, B)}dB, = Z;.

7
j+1
/ {L(j.B,) — L(j. B;)}dB, = Z; ,
J
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so that

We now estimate various terms. For p > 2, with ¢ denoting a variable constant

(i) Zja

J+1
E|/ I{BuSBj+1}du|§1;
J

j+1
(i) E|Z;4)" = E| / (L(. Ba) — L(s, B.))dB, "
J
j+1
< cE( / (L(j, B.) — L(s, B,))?ds)/?
7
j+1
< cE/ |L(j,BS) — L(S,BS)|pds
7
1
:c/ EL(u,0)?du,
0

by reversing the Brownian motion from (s, By);
<c.

(iii) By Tanaka’s formula,
t
L{t,) = L(t,0) =B, — o] = |a| = |Bi| = [ (sn(B. — ) - sgn(B.)dB.,
0

and

1Bt — 2| = || = [Bil| < 2(|Bi| A |]),

so we have the estimation
t
E|L(t,z) — L(£,0)]" < c{[e|? A P/% + E|/ o<, <|ayds|?’?};
0

but . "
E|/ [(0<BS<|I|)dS|p/2 = E|/ L(t,y)dy|p/2
0 0

o) /T
= tp/QE(/ L(1,y)dy)"’?,
0

using the scaling relationship (3);

vz (121 p/2_1E Wﬁf: 1,y)?/*d
<t L ,
= (\ﬁ) / (1,y)""dy

0
< i (@ P Ja|
- Vi NG
= c|x|P/24P/2,
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Hence for p > 2

(8) E|L(t,z) — L(t,0)]" < c{[a[? A tP/2  |a|P/2P/*}.
Bjt1

(iv) E|\Z;,|P = |/B {L(j,z) — L(y, Bj) }dz|”
J W

0
where W is a Brownian motion independent of (B;)o<s<j;
|VV1|
— B [ (L)~ LG, 0))dol
0
< E(/ Iu<iwip|L(j, ) = L(j, 0)[Pda [W1 [P71)
0

— [ deBILG.2) - LG OPE(WAP W > ),
0
and the function ®,(z) = E(|W1|P~1;|W1| > z) decreases rapidly, so

= c/ooo((ll’l AP+ |2 P20 By (x)de, Dy (i)

< (14574,

7+1
v) E|Z;4" = E| / (L(j. B.) — L(j. B;))dB.|?

< e / (L(G. W) — L(j,0))2ds)?,

where W is a Brownian motion independent of (B;)o<s<j;

1
<cE [ |1 - LG0)Pds
0

= 0/91(y)E|L(j,y) — L(5,0)["dy,

where gq is the Green function of Brownian motion on [0, 1];
<c [ ool AV? + ol ) dy, by i)
< e(1+ 5774,

Thus of the four terms in (7) making up X,41 — X;, the p'! moments of Z;; and
Z;3 are bounded, and the p'" moments of Z;, and Z,4 grow at most like 1 + gr/4,
(Notice that the bounds for the p't moments, proved only for p > 2, extend to all p > 0
by Hoélder’s inequality.) We shall soon show that this is the true growth rate. Firstly,
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though, we complete the upper bound estimation by replacing X ;1 — X; by something
more tractable, namely

Bjt1 J+1
(9) & E/ ’ L(j,;z;)dx—/ L(j, Bs)dB;
J

B;Hq J+1
= [ LU0 - LGB - [ (LGB - L. BB,
Bj J

To see that this is negligibly different from X;; — X, observe the elementary inequality
valid for all p > 1, and a,b € R:

(10) [oIP — [al”| < [b— alp(lalP~" v [p|P~1).
Now since {; = Zj2 — Zj4s = Xj41 — X; — Zj1 + Z; 3, we conclude from (10) that
E||6 = X1 = X571 < pE{|Zj1 = Zjsl (16177 V [ X = X577}
<p(B|Zjx = Zig|)V (BG4 | X — X070
for any a,b > 1 such that a™! + 57! = 1;
<1 _|_j(10—1)/4)7

using the estimates (i), (ii), (iv) and (v). Thus since V! 2 N-v Zjvzl |X; — X407,
we have for p > 1
N—-1
EINTP Y (117 — [Xj11 — X7

j=

2 &

< eNTP (1 _|_]'(P—1)/4)
j:
<e(l+ N—3(p—1)/4)

— 0 as N — oo,

e}

so for each p > 1, V' — ‘N/p" — 0in L', where
N B(j27") 27"
| L((j —1)27", 2)dx —/ L((j —1)27",B;)dB,|?

= JBG-n2m) (j-1)2-n

N

D e

=N7F Z €i—1]P.
j=1

V)

Henceforth, we shall concentrate on f/'p", that is, on the ;. Notice that we can say
immediately that for p > 4/3

N
EV}) =NPEY |X; - X, 4|
j=1
N
< eNTPY (1450
j=1
< ON7P(1 4 NP/
< c N —3p/4+1
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so that not only does V' — 0 in L', but also the convergence is geometrically fast in
n, so there is even almost sure convergence. This proves the statement (1) of Theorem

1.

3. Lower bounds. We can compute

B(&\F) = B[ LUia)del 7]

B;
(LGB, +2) — LGBy — 2))8(2)da

where <I> P(B; > z) is the tail of the standard normal distribution;

Z
/ — L(j,—2)}®(z)da
X

IiS}

(|1Bj — x| — |B; + z|)®(x)dz

12 /0 7 /0 : I_y.2(B)dB.)3(x)dx

by Tanaka’s formula.

We estimate the p'" moment of each piece in turn, the first being negligible in com-
parison with the second. Indeed, since ||B; — z| — |B; + z|| < 2|z|, the first term is
actually bounded, and for the second we compute

[ tenatmoazgio: = [ o

where f(x f ®(y)dy, so that by the Burkholder-Davis-Gundy inequalities, the p'h

moment of the second term is equivalent to

/ F(B,)%ds)P? = /f z)dz)P/?

— oI / Fa) L(L,2//f)da)"/?
~ P E( /f L(1,0)dx)P/?

as j — 0o. Thus we have for each p > 1 that

(11) BI&,I" > EIB(GIF)P > pil,

which, combined with the bounds of §2, implies that for each p > 1 there are constants
0 < ¢p < Cp < oo such that for all 7 >0

Bl
P — 1_|_]p/4 -

(12)
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Hence in particular

(13) 0 <liminf BV}, < limﬁsup EV/); < o0,

n— 00

and for each p < 4/3

(14) lim EVP" = +o0,

n— 00

making the conclusion of the Theorem look very likely.

4. The final steps. We shall begin by proving that {V4’;3 :n > 0} is uniformly
integrable. Indeed, for each p > 1

N
IV Ml = IV -1l
i=1

N
<N NEi-al?ll2
j=1

N
<eNTPY (1457

J=1

by (12). Hence for p = 4/3, the sequence (V") is bounded in L?, therefore uniformly
integrable. Hence

(15) P(lim sup Vijs > 0) >0,

because otherwise V4T;3 — 0 a.s., and hence in L' (by uniform integrability), contra-

dicting (13). Now define

2" 1]
Vi) =) |AX P,
j=1

and let
2n—k
F. = {limsup Z |A;‘X|4/3 > 0},

an event which is F(Z_k)—measurable. Notice that Fi41 C F}; and by Brownian scaling,
all the Fj have the same probability, which is positive by (15). By the Blumenthal 0—1
law, P(F}) =1 for every k, and hence for each ¢ > 0

(16) P {lim_}sup Vs (t) > 0] =1.

Now suppose that X were of finite variation, so that there exist stopping times T} T 1
such that Vi(Ty) =1 limp—eo V" (Tk) < k. Choose a > 1 > a > 0 such that 4aa/3 =1,
and let b be the conjugate index to a (b=!' + a~! = 1). By Holder’s inequality,

V4n/3(Tk) < (Vln(Tk))l/a(V4%(1—a)/3(Tk))1/b
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and since 4b(1 — a)/3 > 4/3, the second factor on the right-hand side goes to zero a.s.
as n — oo. The first factor remains bounded as n — oo, by definition of Tj. Hence
V4’}3 (Tx) 2%, 0 as n — oo, which is only consistent with (16) if each T} is zero a.s.,
which is impossible since T}, T 1.
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