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Summary. The use of the state-price density as a modelling primitive in interest-
rate modelling has been advocated by Constantinides (1992) and by Rogers (1997).
Rogers shows how general concepts from the theory of Markov processes can be
used to create many different interest-rate models, starting from a given underlying
Markov process; this formulation has many advantages, conceptually and practi-
cally. In this paper, we investigate the calibration of potential models based on an
underlying Markov chain. Such a simple structure offers further advantages, and
appears well able to fit multi-currency yield curves and exchange rates.
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1 Introduction.

Within the mathematical finance literature, there have been several distinct classes
of interest-rate model. The first historically was the family of spot-rate models,
where one proposes a model for the evolution of the spot rate of interest under the
pricing measure, and then attempts to find expressions for the prices of derivatives;
the models of Vasicek [16], Cox, Ingersoll & Ross [7], Black, Derman & Toy [3]
and Black & Karasinski [4] are well-known examples of this type. Next came the
whole-yield models, starting with Ho & Lee [10] in a discrete setting, and then in the
continuous setting by Babbs [1] and Heath, Jarrow & Morton [9]. Lately, there has
been much interest in so-called market models, whose chief characteristic is the choice
of some suitable numéraire process, relative to which the prices of various derivatives
have some particularly tractable form; see Miltersen, Sandmann & Sondermann [12]
and Brace, Gatarek & Musiela [5] for examples of such models. These three classes
of models have been developed extensively; a thorough survey would be outside the
aims of this paper, but we refer the reader to the excellent recent monograph of
Musiela [11] for more details and references.

In amongst these, with elements in common but seemingly little noticed by the
mathematical finance community at large, there was another approach, advocated
by Constantinides [6] and by Rogers [14], named the potential approach. The key



element of this approach is to view the state-price density process as the modelling
primitive, and to express the prices of derivatives directly in terms of this. From
one point of view, this method is based on the choice of a numéraire process, rather
as in the market models, but the emphasis is very different; in the market model
approach, the numéraire is taken to be something very concrete, closely related to
some particular derivative of interest, and possibly to be chosen differently when
dealing with another range of derivatives, whereas in the potential approach, the
numéraire is something very abstract, and is viewed as something quite universal,
to be used for pricing every interest-rate derivative. This leads to models which
are typically harder to calibrate (and ease of calibration was a major reason for
the development of market models), but the reward is a consistent interest-rate
modelling system. As Rogers [14] emphasises, this consistency extends across many
different currencies very simply; valuing cross-currency derivatives is only a little
more difficult than valuing single-currency products.

To date, there has been very little work on fitting potential models to data (the
paper of Rogers & Zane [15] appears to be the only study so far), and this paper is
another contribution in that direction. Earlier references concentrated exclusively
on the situation where the underlying Markov process was a diffusion, but in this
paper we shall focus exclusively on the case where the underlying Markov process
is a finite Markov chain. There are advantages and disadvantages to this modelling
choice, which we shall discuss at length later. But for now, notice one clear advantage
which comes when we are trying to price a very general derivative. European-style
derivative prices are computed as an average over the statespace, so for a Markov
chain, this is just a finite sum. Pricing an American-style derivative is just an
optimal-stopping problem for a finite Markov chain, and provided the number of
states of the chain is not too big, this will be a very simple numerical exercise. In
fact, the number of states used in our calibrations was of the order of tens, so these
pricing calculations are always going to be extremely fast, in contrast to many other
methods.

The plan of the paper is as follows. In Section 2, we shall briefly summarise the main
ideas of the potential approach, as a way of setting up our notation, and pointing
out the special forms that some of the pricing expressions take in the Markov chain
situation. Section 3 describes the dataset used, and discusses various issues to
do with the calibration. In Section 4, we present and discuss the results of the
calibration, and finally in Section 5 we draw conclusions.

2 The potential approach.

We begin by recalling the main elements of the potential approach, as set forth
in Rogers [14], and making more explicit the forms they take when the underlying
Markov process is a finite-statespace chain. Arbitrage-pricing theory gives the time-¢



price of a contingent claim Y payable at time 7" > ¢ to be

Vi [ (- [ ' rds) I (21)

where (7¢)i>0 is the spot rate of interest process. The probability P used for the
expectation is some fixed risk-neutral measure. By taking some equivalent reference
measure P, we can express this price in terms of an expectation with respect to P
as

Y, = E[(rY]/G, (2.2)
where the state-price density process ( is defined by
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Assuming r > 0 (which we always shall), the process (; is a positive supermartingale,
and for any positive supermartingale (, (2.2) determines an arbitrage-free pricing
system. The potential approach therefore seeks to model the state-price density
process ¢ with respect to the reference probability P, and computes prices using the
characterisation (2.2).

One very natural way to build positive supermartingales is to take some Markov
process (X¢);>o with resolvent (R))aso, fix some a > 0, and some positive function
g on the statespace of X and make an interest-rate model by setting

G = e “Ryag(Xy). (2.4)

A particularly attractive feature of this modelling approach is that the spot rate
process 7 can be expressed very simply as

- 9<Xt)
Ty = 7Rag(Xt) . (2.5)

See Rogers [14], p.161 for the derivation.

In the context of a finite Markov chain X with finite statespace I and infinitesimal
generator (or @Q-matrix) @, the resolvent has the simple expression

R)\ = ()\ - Q)_la

when we regard the transition semigroup (P(t)):>o as a semigroup of matrices acting
on the vector space R/, expressible in terms of Q as P(t) = exp(tQ). Thus, for
example, the time-0 price of a zero-coupon bond delivering a riskless $ 1 at time T
is just

P(0,T) = exp(—aT)P(T)(a — Q) '1/R,g, (2.6)
regarded as a function on I. Here, 1 is the vector all of whose entries are equal to 1.

A further feature of the potential approach is the ease with which yield curves in
several countries can be modelled. Indeed, we can introduce another country j
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without introducing any further sources of randomness, simply by taking a new
positive function ¢’ and positive real o’ and defining the state-price density process
¢7 for country j by '

Cg = Rajg]<Xt)'
As Rogers [14] shows, if ¥;” is the time-¢ price in currency i of one unit of currency
j, then we have in general that

QYY) =N (2.7)

is a P-martingale orthogonal to all the P-martingales of the form Ctj Sg , where Sf is
a traded asset, valued in currency j. A special case of this (which we shall focus on
exclusively below) is when the martingale N/ is constant.

3 Discussion of the data and calibration method-
ology.

The data which is used in this study is daily yield curve data covering the period
from 2nd January 1992 to 1st March 19962

For each day we have values of the yield of bonds with maturity 1 month, 3 months,
6 months, 1 year, 2 years, 5 years, 7 years and 10 years. We shall use daily yield
curve data for three currencies; these are sterling (GBP), the US dollar (USD) and
the German Mark (DEM).

We also have daily exchange rate data between these three currencies, obtained from
the United States Federal Reserve Data Exchange?.

As a preliminary data-cleaning, any dates that were not common to every set were
removed from all sets. This included public holidays and other days where one or
more of the three markets was closed. In total we have 1029 days of data. Surface
plots of the yield curve for each country, together with graphs of the exchange rates
are shown in figure 1.

It is worth pointing out that the period under consideration in this study represented
a turbulent time in the world markets. The years of 1992 and 1993 saw both the US
and UK economies in the middle of deep recessions. Indeed, 1992 was a year of huge
turmoil for the UK economy; it saw the surprise re-election of the Conservative party
for a third consecutive term of office, and this was followed a few months later by
the embarrassing débacle of 16th September 1992 - “Black Wednesday” - in which
the UK was embarrassingly forced out of the ERM, losing 4 billion GBP trying to
stop the pound devaluing. On this day, the UK government announced a 5% rise

2We are grateful to Dr Simon Babbs for supplying the GBP and DEM data. The USD data
was taken from the website http://www.stls.frb.org/fred /index.html

3See http://www.federalreserve.gov /releases/H10/hist
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in the base rate taking the rate to 15% in a desperate attempt to stop the pound’s
value sliding. The turmoil in the UK economy at this point was partly attributed
(by many analysts) to the strength and dominance of the German Mark. In fact it
can be seen that the German economy had a strong influence on most of the other
major European economies at this time.

Conversely, 1994 to 1996 saw a weakening of the German dominance and a recovery
in the UK and US economies. These countries slowly came out of their long recession
and this is reflected in the shape of the yield curve and exchange rate over this period.
We have therefore chosen quite a varied and turbulent period for the calibration
exercise.

We shall attempt to fit the data using a potential model based on an underlying
Markov chain. In any of the calibration exercises, the first step is to fix the number
N of states of the chain. This done, there are in total N? free parameters to be
estimated: N? — N off-diagonal entries of the @Q-matrix @, N — 1 entries* of g, and
the one value a. However, to make the problem somewhat easier, we restricted the
fitting to reversible chains, where for some vector m of positive entries

mig;; = m;q;; for all 4, 5.

Thus the flux matrix A = (M;gij)ij=1,..~ IS symmetric with zero row sums. In
choosing the reversible @-matrix, we therefore have the choice of the N(N —1)/2
above-diagonal entries of A, and of NV — 1 of the entries of m; the diagonal entries
of A are then determined by the zero-row-sum condition, and the last entry of m
is fixed by the fact that the entries of m have to sum to 1. We therefore have
in total (N? + 3N — 2)/2 free parameters to estimate. By restricting to reversible
Markov chains, we have thus reduced the number of parameters by about half, but
the principal reason for making this restriction is that by so doing we guarantee that
all the eigenvalues of the ()-matrix are real, thereby avoiding the need to program
with complex variables throughout.

Nevertheless, it is clear that our modelling assumptions involve a large number of
parameters; in our examples, we took N in the range 10 to 25, so that the number
of parameters to be estimated was of the order of hundreds. Using daily yield curve
data for one week, the number of parameters is far in excess of the the number of
data-points. Conventional statistical wisdom would frown on such a model, for a
variety of reasons:

If you have more parameters than data points, you will be able to fit the data perfectly.
This is clearly false. If, for example, you wish to model real-valued observations
Y1, - - ., Yn taken at increasing times ¢q,...,%, as

J
yi =Y ajexp(=fiti) + &
i=1

4One degree of freedom represents a redundant scaling of g.
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for non-negative parameters «;, 3;, then however large you take J you will be
unable to fit the y; if they are not decreasing. The same is true for our application;
we are trying to fit a model with very strong structural properties, and there is
no guarantee that we will be able to get a perfect fit (in fact, we don’t). We need
a highly-structured model because we do not simply wish to be able to fit yield
curve data, we have to be able to price general derivatives; if we had simply done
a principal-components analysis of yield curve data, we would have been unable to
begin to value an American swaption.

Some of the parameters will be indeterminate. There are examples (such as a two-
way analysis of variance) where this does indeed happen, but this can arise even
when there are far more data points than parameters. Our estimation procedure
looks for the minimum of a real-valued function of many variables, and there is no
reason based on the number of data points why this minimum should not be unique.

The estimates of many of the parameters will be subject to large error. Though there
is no general reason why this must happen, we do observe this. But if we find that a
particular parameter cannot be estimated with high precision, this is because it has
relatively little influence on the model values for the observables, so it really does
not matter what value it takes! What matters is how well the fitted model fits the
data.

In summary, we regard such conventional statistical wisdom in this case rather as
the split infinitive (see Fowler [8], p 579, who distinguishes the meanings of ‘to
just have heard’ and ‘to have just heard’); we know the objections, and shall not
hesitate to completely ignore them. Our methods will be justified by the quality
of the fit that they achieve, and by the stability of the estimates we come up with.
It should be remarked that the finance industry routinely works with models with
time-dependent, coefficients, in which the parameter space is every bit as large as
those we shall be dealing with here, and in which problems of parameter stability
are very hard to deal with in a satisfactory manner.

To introduce the estimation methods we shall use, we now explain carefully the
modelling assumptions in use. Our model is parametrised by a vector® #. The
underlying Markov chain X takes values in a finite set I, and on day n we have a
vector y, of observations®. If the model were correct, the value of this observation
vector y,, would be Y (X, ), but we suppose that the observed values are the true
values plus some independent Gaussian noise. We adopt a Bayesian standpoint, and
suppose that the initial law of X is given by 7 = (m;)¥,, and the initial law of 6
is given by density fq(#); conceptually, 6 is unchanging with time, even though our

knowledge of it varies’.

5We can think of this as the above-diagonal entries of A4, the first N — 1 entries of m, the first
N — 1 entries of g, and the value of a stacked into a single vector if we wish.

6The observations happen to be the yields of the different maturities, though this is irrelevant
for the present discussion.

"We shall later consider what happens if we modify this assumption.
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We shall use the notation z, = (z, ..., z,) in what follows to reduce the acreage of

formulae. Based on the assumptions above, and ignoring irrelevant constants, the
likelihood A, of (X,,,¥n,0) is

An = M(Xy, Y0, 0)

= fol0) mx, [ [ Px;-ix; (55 0) exp[—b(y; — Y(X;0))]

=1

(3.1)

where p;;(s;0) = Pp(X, = j|Xo = i), and b(z) = 52V 'z, where V is the covariance
matrix of the Gaussian errors. We have also used the notation s; = ¢; —t;_; for the
time between the (j — 1)th and jth observations. We shall be more interested in the
posterior distribution of (X, #) given y,, so we introduce the notation

Lo(z,yn,0) = > An(Xn, ¥, ), (3.2)

Xn: Xn=z

and notice that directly from the definitions

Lo(@,¥n,0) = Y Ln-1(&, ¥n1,0)pea(s0; ) exp[—b(yn — Y (x;6))]. (3.3)
¢

It is clear that for the Markov chain model in mind this expression will be far
too complicated to allow exact analysis, and we shall have to make simplifying
assumptions in order to make progress. Here are the simplifications which we used.

Day-by-day calibration. In this case, we simply ignore all the ‘earlier’ information
in (3.3) and, given the observations y, on day n, we just compute

mein b(yn — Y(z;6)), (3.4)

where in the minimisation we make the arbitrary convention that z is some dis-
tinguished state (say, the first) in the statespace. The labelling of the states of
the chain is clearly irrelevant under this simplifying assumption. This particular
method can be expected to be simple to implement, but cannot be expected to be
very stable. Nevertheless, it should furnish a lower bound for the fitting error; if the
results of fitting under this assumption are disappointing, then the results will be
disappointing under more realistic assumptions.

Rigid calibration. In this approach, we take some initial period of K days data,
and then try to fit the model using an approximation to the likelihood (3.1). This
calibration is more honest than the day-by-day fit, in that it requires the parameters
to be the same for all days. The simplification used is based on the observation that
the underlying state of the Markov chain does not change very frequently, so we
replace the true likelihood (3.2) - which involves a sum over all possible paths of the
chain during the K days of the calibration period - by the single term corresponding
to a path which remains at its initial state throughout the calibration period. This is
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a reasonable thing to do when the length of the calibration period is up to a few tens
of days, during which period a change of underlying state is comparatively unlikely.
Since the particular state is not important, we may as well assume that it is the first
one labelled, 1, say® The true calibration, involving a sum over all possible paths of
the underlying chain during the K days, would be far too slow. So the calibration
is achieved by minimising the expression

—log fo(6) + Z [b(y; — Y (1;0)) + as;], (3.5)

where —g; is the diagonal entry in the first position of the @-matrix Q.

Having found our calibrated values 6*, we can then check the model out-of-sample
by taking the days after the calibration period and trying to fit the yield curves by
allowing only changes in the (posterior) distribution of X.

Conditional-independence (CI) calibration. In this case, we imagine the sit-
uation where there has been a large amount of observed data, and we postulate
that

Ln(annae) = Wn(xayn) ln(‘gayn)- (3-6)

The motivation for this is that we have seen so much data that we have a pretty
good idea what the values of the parameters must be; the values of 6 will largely
be determined by the long-run historical average behaviour of the system. On the
other hand, the posterior distribution of X,, will be more influenced by recent history,
because of the ergodicity of the Markov chain, and so some approximate conditional
independence is reasonable; recent history tells us all we can know of X,,, distant
history tells us all we can know of §. We shall further assume that

1 N A

=50 =) - Sn(0 = 62)) (3.7)
for some positive-definite symmetric matrix S,,. If we think that we have nearly
identified the true value of 6, then such a quadratic approximation to the likelihood

is quite natural.

1.(0,yn) o< exp(

The values 6, S,,, and Tn(+, ¥n) are computed recursively, using the assumed form
(3.6) of the likelihood. Supposing that we know already 6,, 1, S,, 1, and 7, 1(-, ¥n_1),
returning to (3.3) and using (3.6) we see that

Lo(@,y0,0) = Y Ta-1(& Y1) bno1(0, Yn-1)Pea (503 0) exp[=b(yn — Y (x;0))]

'3
> T 1(€, Yn-1) Pex(5n; 0) exp[=b(yn — Y (z;0))]
3
x5 (0= ) S (0 — )] (3.8)

8 An extension of this fitting would be to allow the chain just one jump during the K days.
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We now sum this expression over z, and numerically pick § to maximise; the max-
imising value is our new estimate 6, of . By computing the second derivative matrix
with respect to 8 at 6,, we find the value of S,,? and finally we compute 7, by

7Tn(f13, yn) X Z anl(é‘a ynfl)pﬁz(sn; én) eXp[_b(yn - Y(x; én))]
13

Properly speaking, the posterior distribution 7, for X,, should be obtained by inte-
grating the likelihood (3.8) with respect to 6, but we approximate this by assuming
that the posterior distribution for 6 can be replaced by the point mass at 9n, to
avoid the need to integrate over a large number of dimensions.

Random walk (RW) calibration. This method is very similar to the previous
method, which can be seen as a special case. The theoretical justification is explained
in Appendix A in more detail, and is based on the Kalman filter. The idea is that
we shall now allow the value of 6 to change from day to day according to a random
walk. If the variance of the steps of the random walk is zero, then we arrive at
the CI method, but if we allow the variance of the random walk step to be a fixed
multiple of the posterior covariance of #, then we obtain

Z anl(fa ynfl) pfz(sn; 9) eXp[_b(yn_Y<xa 9))_§(e_enl)snl(e_enl))]a (39)
¢

where § € (0,1) is fixed. The closer § is to 1, the closer we are to the CI fit. In
the CI calibration, we expect that the matrices .S,, will be growing approximately
linearly with n, by analogy with the situation where we attempt to estimate the
mean of a Gaussian distribution using a sequence of noisy observations of the mean;
when we have seen n— 1 observations, the nth receives weight 1/n in the estimation.
The same thing happens with our CI calibration, so the most recent observations
get relatively little weight in relation to the average over earlier times. On the other
hand, we do not believe that there is no change in the interest-rate environment, and
by introducing the parameter 3, we allow the new day’s observations to have the
same importance in the estimation as yesterday’s new observations did yesterday;
the analogy is with the estimation of an underlying random walk process based on
noisy observations of that process.

The last three approaches to calibration are (quasi-)Bayesian and produce estimates
of the posterior distribution m, of the underlying Markov chain X,, at time n, as
well as point (ML) estimates 0, of the parameter §. Thus to price a derivative on
day n, we shall use the expression

> al@, yn)F(z,00), (3.10)

where F'(z,6) is the price which the Markov chain potential model would produce
if the starting state were x and the true parameter value were . This would apply,

9In practice, we compute only the diagonal terms of S,
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for example, to the pricing of zero-coupon bonds; so, in particular, we end up with
a continuum of possible yield curves at any given time, even though the model with
known € could only produce one yield curve for each possible state of the Markov
chain.

4 Numerical results.

The heart of the calibration procedure is a minimisation routine, and for this we
chose the NAG routine E04JYF. Of several which we investigated, this one seemed
to do the best job. Our first fitting attempt was a day-by-day calibration; we do
not of course believe in this approach, but if the results of this fit were poor, then
it would be impossible that a more realistic fitting procedure will produce anything
other than poor results. For purposes of comparision, we split the dataset into 19
overlapping blocks of 100 days, and computed summary statistics, which we present
in Table I. The data was GBP data, and we used 15 states in the Markov chain.
Here we took the covariance matrix V, in (3.4), to be the identity matrix.

Perhaps the most interesting figures in this table are in the Median column. These
present the median values of the sum of absolute errors in basis points for each day’s
fit. This sum consists of 8 terms, one for each maturity, so the basis-point error per
maturity is 1/8 of the figure given in the Median column. The worst values are in
the turbulent months of 1992, when the median error per maturity is 2bp, but for
most of the periods under study, the error is 1bp or even a lot less. Even looking at
the upper quartile, we find that only in three of the 19 periods did the error exceed
2bp per maturity. For more detailed analysis, we chose to use an 11 state Markov
chain and focus on period 14 which contains two base rate changes occuring on 7th
December 1994 (day 43) and 2nd February 1995 (day 79). The plots in Figure 2
refer to this period and show the stability of the parameters g; and «, as well as the
contributions of different maturities to the total residual error. We normalised the g
values to sum to one, so as to remove the degree of indeterminacy and all maturities
were weighted equally. The parameters exhibit no particular stability, which is not
a surprise, but what is encouraging about these fits is that the errors are small,
the median fit per maturity is consistently below 2 bp, and the upper quartile is
below 4 bp, often a lot less. A model that is fitting yields to within a basis point is
good enough to trade off, and we are here getting close to that degree of precision,
without any particular effort, and with relatively few states.

The next fitting exercise we carried out was the rigid calibration, which one would
expect to be quite poor in comparison with the day-by-day fit, and indeed it was.
Working again with the GBP data, and taking a chain with 11 states, we used five
consecutive days of data to calibrate the model, and then stepped ahead through
the next 100 days (period 14) computing the fit each day. So at the end of the
five-day calibration period, we have found a value 6* for the parameter 6, and for
subsequent days we hold this value fixed, but use the data to update the posterior
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distribution for X, by the recipe

7Tn<xa yn) & Z ﬂnfl(fﬁ Ynfl)pﬁz‘(sn; 9*) exp[—b(yn - Y(.?;‘, 0*))]
3

The bond prices were then computed following (3.10). It is inconceivable that in
practice one would fit a model to just five days’ data and then run with that unaltered
for the next 100 days, and the results of this fitting procedure, presented in Table I1I
and in Figures 3 and 4, show why. These Figures and Table show also the results of
variants of the rigid calibration, where we recalibrate the model every J days, using
again the latest K = 5 days of data. The panels in Figures 3 and 4, correspond to
J =100, J =10 and J = 1. For the case J = 100, we see from Table III that the
median error in bp per maturity is of the order of 35, which is really quite useless.
Notice that Figure 3 shows how the quality of fit deteriorates as we get further into
the 100-day period, as one would expect. The fits for the case J = 1 are a lot better,
but even here the median error is three times the worst that occurred in Table III,
amounting to around 6bp per maturity.

This calibration is poor not only because of the rigidity imposed by the assumptions,
but also because we have trained the model on just 5 consecutive days’ data. Since
this tiny calibration set cannot possibly represent the variety of yield curves that
might arise, it is not surprising that as time rolls forward we encounter days where
the yield curve is far from the possibilities of the 5 day calibration period, and so
the fit is very poor. A better recipe might be to take the last 5 Mondays for our
calibration set. The problem with this is that the assumption that the underlying
state has not changed in this time becomes untenable, and we would have to evaluate
a sum over all possible paths of the chain during this calibration period, and this
would be slow and clumsy. We do need to have more influence of past data in our
calibration method, but the obvious way to do this is via some recursive approach,
and this was what we tried next.

The next fitting exercise was an implementation of the CI/RW fitting strategy (3.8)
and (3.9); since the CI fitting is the special case 3 = 1 of the RW fitting, it makes
sense to consider them all together. We started with Sy equal to the identity, b,
equal to zero, and the prior distribution for X to be uniform over the 11 states. The
data used was period 14 of the GBP data. Table IV shows summary statistics for
the fits. Taking # = 1, we obtained a median error of just over 5bp per maturity,
already better than even the one-day-ahead form of the rigid fit, and with g = 0.2
- allowing a random step with 4 times the posterior covariance - we obtained a
median error of 2.5 bp per maturity, with the upper quartile at a little over 3 bp
per maturity. Figures 5 and 6 display various results of the fitting procedure: notice
the quite impressive stability of the g; for the 8 = 0.2 case (compare with Figure
2). This justifies empirically the (at first sight) low value of §; although we have in
principle allowed the random walk a lot of freedom to move, it turns out in practice
that it is not moving very much.

It appears therefore that the CI/RW fitting methodology represents a good com-
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promise between the unstable but close fitting day-by-day approach, and the very
stable but poorly-fitting rigid approach. Moving on to the simultaneous fitting of
yield curves in more than one country, and the exchange rate(s), we concentrated on
the CI/RW calibration approach. The first fitting exercise we carried out was using
USD and GBP data from the period 5th October 1994 to 6th March 1995, with 11
states in the Markov chain; we report summary statistics for these in Table V, with
various diagnostics displayed in Figures 7 and 8. The fit was noticeably poorer than
the single-country fit, as one would expect; for # = 0.2 we found a median fitting
error of 3.5-4.5 bp per maturity We then moved on to fit three currencies, USD,
GBP and DEM, summarising the results in Table VI, with diagnostics displayed in
Figure 9. The inclusion of Germany worsens the fit of the US and UK very slightly,
but with = 0.2 we are still finding median errors of 3.5-4.5 bp per maturity.

The final fitting study we carried out was to include exchange rate data. Once again,
we took USD and GBP data from 5th October 1994 to 6th March 1995, with 11
states in the Markov chain; we report summary statistics for these in Table VII,
with various diagnostics displayed in Figures 10, 11, 12 and 13 By including the
exchange rate in the calculation, we worsen the fit of the yield curves by about 1 bp
per maturity at # = 0.2. The fit of the exchange rate is very good, mostly within
about 0.5 bp. We tried to trade off the quality of the fit of the exchange rate and
the fit of the yield curves, by attaching more weight to poorly fitting yields, but it
seemed impossible to improve the fit of the yield curves very much by this. Rogers
& Zane [15] found a similar behaviour. In view of the fact that we were fitting the
exchange rate much better than the yield curves, it seems that the assumption made
at (2.7) that the martingale N/ is constant is relatively harmless; taking something
more general would give greater flexibility to fit the exchange rate, but that is not
where we appear to need the flexibility.
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qI

Calendar Day BRC Statistics of day-by-day calibration, all values in bp
Period numbers Mean | Std. Dev. | Min | QI |[Median| Q3 | Max

1 || 17th Feb 1992 - 15th July 1992 | 30-129 1 18.538 6.453 10.076 | 13.796 | 16.565 | 21.385 | 35.305
2 || 5th May 1992 - 25th Sept 1992 | 80-179 2 19.015 8.334 9.395 | 13.768 | 16.543 | 21.672 | 69.703
3 16th July 1992 - 7th Dec 1992 | 130-229 3 18.196 | 26.629 0.001 | 6.939 | 14.672 | 21.268 | 226.958
4 || 28th Sept 1992 - 18th Feb 1993 | 180-279 3 10.238 6.147 1.70 | 5.773 9.44 | 13.117 | 26.423
5 8th Dec 1992 - 7th May 1993 230-329 1 9.677 4.77 0.975 | 6.107 | 9.443 | 12.852 | 21.472
6 19th Feb 1993- 19th July 1993 | 280-379 0 6.678 4.613 0.001 2.94 6.422 | 8.992 | 23.569
7 || 10th May 1993 - 28th Sept 1993 | 330-429 0 5.261 3.382 0.128 | 2.874 4.5 7.631 | 15.704
8 20th July 1993 - 8th Dec 1993 | 380-479 1 5.397 3.488 0.055 | 2.692 | 4.463 | 8.144 | 15.510
9 || 29th Sept 1993 - 23rd Feb 1994 | 430-529 2 6.310 3.949 0.12 | 3.358 | 5.181 9.322 | 16.944
10 || 9th Dec 1993 - 11th May 1994 | 480-579 1 7.248 4.738 0.039 | 4.099 | 6.833 | 9.466 | 31.231
11 24th Feb 1994 - 22 July 1994 530-629 0 9.649 6.118 0.164 | 5.39 8.263 | 13.457 | 30.662
12 || 12th May 1994 - 4th Oct 1994 | 580-679 1 10.005 5.32 0.443 | 6.337 | 9.482 | 13.508 | 27.236
13 || 25th July 1994 - 16th Dec 1994 | 630-729 2 7.02 4.188 0.558 | 3.646 | 6.328 | 10.086 | 18.910
14 5th Oct 1994 - 6th Mar 1995 680-779 2 8.402 4.03 1.036 | 5.273 | 8.463 | 11.09 | 21.629
15 || 19th Dec 1994 - 23rd May 1995 | 730-829 1 8.437 2.608 0.77 | 6.666 | 8.243 | 10.081 | 15.573
16 7th Mar 1995 - 3rd Aug 1995 780-879 0 7.846 3.370 0.795 | 5.78 8.132 | 9.687 | 17.092
17 || 24th May 1995 - 16th Oct 1995 | 830-929 0 4.524 3.286 0.081 | 2.152 | 3.733 | 5.952 | 16.660
18 || 4th Aug 1995 - 28th Dec 1995 | 880-979 1 2.586 1.844 0.001 | 1.058 | 2.231 3.576 | 8.969

19 || 17th Oct 1995 - 8h Mar 1996 | 930-1029 3 5.503 3.436 0.001 | 2.387 | 4.956 | 8.552 | 14.726

Table I: Results of fits for the day-by-day calibration using the 19 sample periods of 100 days. Note that these results were
obtained using a 15-state data imposed underlying Markov chain. The column marked ‘mean’ above refers to the average basis
points (bp) error between model and observed values per day. The standard deviation is that of the daily basis point error in
the period. Q1 and Q3 denote the first and third quartiles. Min, Median, Max again refer to the basis point error per day. BRC
is used to denote the number of Bank of England base rate changes.



Diagnostic plots for day-by-day calibration
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Figure 2: Diagnostic plots for the day-by-day calibration using period 14 GBP data
and an 11-state Markov chain. The basis point error plot (top left) shows the total
error, given in basis points, between the market and model yield curves for each
fitted day. The evolution of the parameters g and a over the whole fitting period
are given in the top right plot. Finally we give a series of boxplots showing the mean
and quartiles of the mod residuals for each maturity.

Day-by-day calibration statistics (all values are in basis points)
Data H Mean ‘ Std. Dev. ‘ Min ‘ Q1 ‘ Median ‘ Q3 ‘ Max

| Period 14 || 7.585 [ 3.588 [ 0.693 | 4.842 [ 7.302 |10.400 | 16.619 |

Table II: Summary statistics for the day-by-day calibration using an 11-state Markov
chain on period 14 GBP data.
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Rigid calibration statistics (all values are in basis points)
5 day calibration period
Re-calibrate After H Mean ‘ Std. Dev. ‘ Min ‘ Q1 ‘ Median ‘ Q3 ‘ Max
100 days 257.09 101.87 42.24 | 175.79 | 270.46 | 349.67 | 416.87
50 days 140.04 68.08 34.50 | 90.40 | 124.44 | 180.32 | 313.13
25 days 105.78 54.04 21.64 | 63.58 95.44 | 136.31 | 246.78
10 days 94.12 53.45 19.73 | 49.82 82.93 | 128.65 | 232.33
5 days 76.17 45.65 19.71 | 41.97 63.46 99.50 | 200.14
2 days 60.11 38.63 7.34 | 30.51 48.62 74.47 | 192.79
1 day 55.34 33.99 7.22 | 29.46 47.81 66.60 | 162.49

Table III: Summary statistics for the rigid calibration procedure. The results are
for fits over a 100 day period using different re-calibration intervals. All results are
for an 11-state chain using GBP data.

Daily basis point error plots for the rigid calibration
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Figure 3: ‘Basis point error’ plots showing the cumulative error in basis points for
each day over the 100 day fitting period, recalibrating after 100 days, 10 days, and
1 day.
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Boxplots of mod residuals for the rigid calibration

Mod residuals boxplots for 100 day re—calibration Mod residuals boxplots for 10 day re—calibration

b :

Maturities (years)

| e

Maturities (years)

Mod residuals boxplots for 1 day re—calibration
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Figure 4: Three boxplots of the mod residuals for each maturity for the 100 day, 10
day and 1 day recalibration.

CI/RW GBP calibration statistics (all values are in basis points)

B | Mean | Std. Dev. | Min | Q1 | Median | Q3 | Max
1.0 (CT) | 47.936 22.253 8.441 | 30.155 | 41.755 | 65.786 | 107.383

0.8 34.995 14.942 8.432 | 23.944 | 34.272 | 45.493 | 78.581

0.6 26.398 11.243 7.734 | 18.004 | 25.72 | 34.134 | 62.514

0.4 23.957 10.172 5.751 | 15.95 | 23.216 | 30.261 | 53.292

0.2 21.346 9.48 5.462 | 13.35 | 20.529 | 26.704 | 45.744

0.1 20.339 9.31 4.917 | 13.062 | 18.942 | 26.088 | 45.509

Table IV: This table contains summary statistics relating to the one country (GBP)
CI/RW fits. Note that the case f = 1.0 corresponds to the CI calibration. These
are daily fits on period 14 for varying values of the RW parameter 3.
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Diagnostic plots for GBP CI calibration
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Figure 5: These plots relate to the one country (GBP) CI calibration for period
14. The ‘Parameter change’ plot shows how the g vector and « scalar change over
the 100 day fitting period. We give a surface plot which shows the evolution of the
posterior distribution over the 100 day fit. We also show the characteristics of the
residuals in the ’Sorted mod residual’ and the boxplots.
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Diagnostic plots for GBP RW calibration (3 = 0.2)
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Figure 6: These plots relate to the one country CI calibration described in Case A.
The ‘Basis point error’ plot shows the cumulative error in basis points for each day
over the 100 day fitting period. The ‘Parameter change’ plot shows how the g vector
and « scalar change over the 100 day fitting period. We give a surface plot which
shows the evolution of the posterior distribution over the 100 day fit. We also show
the characteristics of the residuals in the 'Sorted mod residual’ and the boxplots.

20



CI/RW calibration statistics for two country fit
(all values are in basis points)

USD FIT

I} H Mean ‘ Std. Dev. ‘ Min ‘ Q1 ‘ Median ‘ Q3 ‘ Max
1.0 (CI) || 93.082 | 36.671 28.606 | 60.205 | 87.108 | 127.584 | 168.642

0.8 59.183 19.086 16.899 | 45.524 | 55.416 | 71.192 | 123.935

0.6 47.947 | 13.160 18.402 | 38.282 | 47.458 | 54.798 | 91.380

0.4 43.583 11.195 16.978 | 36.625 | 42.664 | 50.295 | 74.498

0.2 38.153 11.564 15.619 | 30.589 | 37.258 | 45.501 | 73.653

0.1 36.775 11.586 15.335 | 29.052 | 35.939 | 44.924 | 73.549

GBP FIT

I} H Mean ‘ Std. Dev. ‘ Min ‘ Q1 ‘ Median ‘ Q3 ‘ Max
1.0 (CI) || 62.968 26.815 9.552 | 41.592 | 62.022 | 81.679 | 128.058

0.8 37.816 13.280 9.292 | 30.283 | 37.566 | 46.950 | 76.318

0.6 33.551 12.923 8.444 | 24.170 | 33.806 | 41.459 | 76.651

0.4 31.264 12.261 12.330 | 22.219 | 28.115 | 38.620 | 74.929

0.2 29.184 12.738 6.061 | 19.819 | 27.085 | 38.287 | 73.427

0.1 28.338 12.902 7.086 | 19.283 | 26.448 | 37.447 | 72.702

Table V: Summary statistics for the two country CI/RW fits, period 14 of GBP and
USD. This table gives breakdowns for the GBP and USD fits individually.
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Diagnostic plots for two country (USD & GBP) CI calibration
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Figure 7: These plots refer to the two country fits for the CI calibration, USD and
GBP, period 14. In this figure we show the basis point error plots (top left) for both
the USD and the GBP. The worst fit (blue) is the USD.
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Diagnostic plots for two country (USD & GBP) RW calibration (3 = 0.2)
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Figure 8: These plots refer to the two country fits for the RW calibration, USD and
GBP, period 14. In this figure we show the basis point error plots (top left) for both
the USD and the GBP. The worst fit (blue) is the USD.
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CI/RW calibration statistics for the three country fit
(all values are in basis points)

USD FIT

I} H Mean ‘ Std. Dev. ‘ Min ‘ Q1 ‘ Median ‘ Q3 ‘ Max
1.0 (CI) || 115.678 | 32.023 | 48.308 | 100.543 | 115.006 | 136.413 | 211.331

0.8 86.260 22.713 | 34.222 | 66.194 | 86.097 | 106.046 | 130.637

0.6 67.065 20.279 14.589 | 52.759 | 63.658 | 83.099 | 113.933

0.4 50.983 14.494 23.901 | 41.129 | 50.661 | 57.949 | 89.969

0.2 39.511 10.414 21.605 | 30.209 | 39.640 | 47.340 | 67.369

0.1 35.153 10.444 17.487 | 27.883 | 33.912 | 42.666 | 66.016

GBP FIT
I} H Mean ‘ Std. Dev. ‘ Min ‘ Q1 ‘ Median ‘ Q3 ‘ Max
1.0 (CI) || 84.958 29.853 | 28.229 | 60.984 | 81.629 | 107.327 | 149.090

0.8 45.772 13.036 12.617 | 36.644 | 46.403 | 52.012 | 82.245
0.6 39.031 13.808 12.529 | 31.140 | 37.188 | 46.512 | 87.466
0.4 35.006 12.430 13.078 | 27.435 | 33.425 | 40.875 | 76.725
0.2 31.140 10.532 12.523 | 24.456 | 29.408 | 37.529 | 70.204
0.1 29.123 10.458 7.467 | 22.943 | 27.858 | 35.956 | 67.502

DEM FIT

I} H Mean ‘ Std. Dev. ‘ Min ‘ Q1 ‘ Median ‘ Q3 ‘ Max
1.0 (CI) || 66.798 21.886 | 32.260 | 50.378 | 62.351 | 79.501 | 132.468

0.8 49.857 10.955 | 30.902 | 41.828 | 47.704 | 56.204 | 86.001

0.6 45.070 9.925 28.391 | 38.174 | 43.194 | 50.179 | 74.346

0.4 40.557 8.014 25.880 | 35.359 | 40.172 | 45.085 | 72.847

0.2 37.050 6.360 23.124 | 32.613 | 37.530 | 41.188 | 59.138

0.1 35.640 5.704 23.380 | 32.013 | 34.881 | 39.556 | 55.702

Table VI: Summary statistics for the 100 day, three country CI/RW fits on period
14. This table gives breakdowns for USD, GBP and DEM fits.
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Diagnostic plots for three country

(USD, GBP & DEM) RW calibration (3 = 0.2)

Basis point error for USD, GBP and DEM fits, RW calibration Evolution of the posterior distribution: (USD, GBP & DEM) RW calibration
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Figure 9: These plots are for a three country fit using the RW calibration method
with # = 0.2. The first plot shows the basis point error for each of the three
countries. The worst fit (blue line) is achieved by the USD and the the best fit (red
line) is the GBP. The second plot (top right) shows the evolution in the posterior
distribution during the fitting process. The boxplots are of the mod residuals for
each maturity.
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CI/RW calibration statistics for two country and exchange rate fit
(all values are in basis points)
USD FIT
I} H Mean ‘ Std. Dev. ‘ Min ‘ Q1 ‘ Median ‘ Q3 ‘ Max
1.0 (CI) || 146.245 | 54.529 | 38.552 | 101.450 | 158.334 | 190.084 | 310.810
0.8 82.139 29.645 | 35.550 | 60.063 | 78.209 | 105.595 | 144.969
0.6 72.696 29.291 | 30.794 | 51.712 | 62.452 | 98.970 | 138.709
0.4 58.471 20.738 21.819 | 43.719 | 52.419 | 71.981 | 115.074
0.2 49.979 16.727 | 19.442 | 37.926 | 47.491 | 60.373 | 96.033
0.1 42.505 12.762 5.670 | 34.353 | 42.572 | 48.860 | 82.313
GBP FIT
I} H Mean ‘ Std. Dev. ‘ Min ‘ Q1 ‘ Median ‘ Q3 ‘ Max
1.0 (CI) || 103.685 | 41.776 | 16.543 | 72.962 | 101.316 | 129.850 | 211.00
0.8 48.495 17.366 | 10.098 | 39.003 | 47.939 | 58.941 | 86.957
0.6 42.928 14.936 | 13.318 | 32.262 | 40.831 | 53.962 | 83.303
0.4 32.557 12.410 | 10.285 | 22.825 | 32.933 | 40.758 | 74.011
0.2 35.910 12.144 | 13.076 | 27.088 | 34.235 | 43.552 | 79.165
0.1 30.402 11.581 | 10.049 | 21.721 | 29.326 | 36.612 | 73.550

Table VII: Summary statistics for the two country and exchange rate CI/RW fits

over 100 days (period 14). This table has breakdowns for the USD and GBP fitting

errors.
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Diagnostic plots for two-country (USD & GBP)
CI calibration with exchange rates

Basis point error for USD and GBP fits, Cl calibration Evolution of posterior distribution: (USD, GBP & FX rate) Cl calibration
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Figure 10: These plots refer to the two country and exchange rate fits for the CI
calibration, period 14, over a 100 day period using USD and GBP data. In this
figure we show the basis point error plots (top left) for both the USD and the GBP,
the worst fit (blue) is the USD.
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Diagnostic plots for two-country (USD & GBP)

CI calibration with exchange rates

Mod residuals boxplot, CI calibration (GBP)
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Figure 11: These plots refer to the two country and exchange rate fits for the CI
calibration of the USD and GBP, period 14 data. The penultimate plot in this figure
shows the observed data and the fitted curve for the exchange rates (there are two
curves in this picture). The final plot is of the fitting error in the exchange rate.
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Diagnostic plots for two-country (USD & GBP)
RW calibration with exchange rates (3 = 0.2)

Basis point error for USD and GBP fits, RW calibration Evolution of posterior distribution: (USD, GBP & FX rate) RW calibration
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Figure 12: These plots refer to the two country and exchange rate fits for the CI
calibration, period 14, over a 100 day period using USD and GBP data. In this
figure we show the basis point error plots (top left) for both the USD and the GBP,
the worst fit (blue) is the USD.
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Diagnostic plots for two-country (USD & GBP)

RW calibration with exchange rates (3 = 0.2)

Mod residuals boxplot, RW calibration (GBP)

Mod residuals boxplot, RW calibration (USD)

] ]
S 2
2 2 )
& o | 8 8 o : -
5] ] o : :
_ —_ H ; :
‘ - : - 8 ‘ ‘
1 | o P
! ! o 8 : : ? '
o : - : —a - . o —_ o : —_— ! : ; H o
= : : : : s _ : : g : 2 ﬁ - =
T T T T T T T T T T T T T T T
w2 1 2 s 7 112 va 1w 1 2 s 7 10

12 i 10

Maturities (years)

Sorted mod residuals: two country and exchange rate RW calibration (GBP)

Days Maturities

Maturities (years)

Sorted mod residuals: two country and exchange rate RW calibration (USD)

Days

Maturities

ctual an odel Exchange rates: calibration 4 itting error for the exchange rate: calibration
Actual and Model Exch USD & GBP) RW calibrati <10 Fitt for the exch USD & GBP) RW calibrati
1.66 T T T T T T T T T 25 T T T T T T T T
2 n
1641 = H
o |
|| | I
) I
162} I I |
V| LA (.
05} Vv il \ - it A &
. . L“MM | N Al
g g I \ " A AN
£ 16f . £ op |/ 1 | ( [N NIV AN ARVAR
: AT | T WA i
\/ “\ VIV Y I
e LR TR A |
1 | |
1s8F 9 | MHV |/ |
-1 w‘\\‘ \f |
VT
[ |
-15 M
156 ’ ‘
1sa . . . . . . . . . s . . . . . . . . .
) 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 90 100
Days Days

Figure 13: These plots refer to the two country and exchange rate fits for the RW
calibration of the USD and GBP, period 14 data. The penultimate plot in this figure
shows the observed data and the fitted curve for the exchange rates (there are two
curves in this picture). The final plot is of the fitting error in the exchange rate.
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5 Conclusions.

In this study, we have carried out a number of calibration exercises for potential
models of interest rates based on an underlying Markov chain. At a theoretical
level, such models offer persuasive advantages:

e the approach generates a model to account for all derivatives;

e pricing of a European-style derivative is simply a sum over a (typically small)
finite number of states, and pricing of an American-style derivative is an optimal
stopping problem for a Markov chain with (typically few) states;

e adding a new country can be done without complicating the underlying Markov
process;

e exchange rates are modelled within the same modelling framework as interest
rates.

What we have done here is by way of a pilot study, to investigate the feasibility
of this approach. Most of the fitting runs were done using only 11 states of the
Markov chain, and we were insisting on fitting a time-homogeneous model, both
very stringent requirements which would undoubtedly be abandoned in practice. If
we allowed a different model to be fitted each day, we were able to come up with fits
of the yield curve in one country with median errors of the order of 1bp per maturity;
sometimes more, sometimes less. At the other end of the scale, by calibrating to 5
days’ data and then using the calibrated model to fit the next day, we were coming
up with median errors of the order of 6 bp per maturity, which is too high to be
much use. By taking a fitting methodology in between these two extremes, we were
able to produce one-country fits with median errors of around 2.5 bp per maturity,
with good parameter stability.

Incorporating more than one country inevitably worsened the fit; when we fitted
USD and GBP data, we came up with median errors of the order of 3.5-4.5 bp per
maturity, and including DEM as well increased the errors very slightly. However,
including the exchange rate in the USD/GBP fitting exercise worsened the median
fit by about 1 bp per maturity, which would lead to quite significant mispricing.

Given the restrictions to time-homomogeneous chains with no more than 11 states,
the fits we have come up with are very encouraging. There are obvious extensions
which could be carried out, and some will be the subject of a later study. For exam-
ple, we could simply increase the number of states. Since the calibration procedure
was quite lengthy on the machine'? available to us (of the order of 200 CPU minutes
to fit a single country, of the order of 300 CPU minutes to fit two countries), we
preferred to investigate a larger number of relatively small problems, rather than try
a few huge fits. Another obvious place where the modelling could be extended would

10A Sun Ultra E3500 with 400 MHz UltraSPARC II processor
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be by dropping the reversibility criterion; this requires code which can cope with
complex eigenvalues, but the principles are the same. Another extension would be
to allow time-dependent Markov processes. In some sense, this is completely trivial;
as Rogers [13] remarked (p 101), if we take a time-homogeneous model and apply a
deterministic time-change, we can exactly fit any given initial yield curve! However,
this is really far too easy, and we need to be aware of the model changing completely
in a day, always a problem with time-inhomogeneous models.

BOTBand 1 rate v1 Month Libor

15

13

1
10

Rate

Figure 14: Base Rate against 1 Month LIBOR

The relative success of such a primitive probabilistic model is either to be expected,
or something quite remarkable, depending on your point of view. On the grounds
that there are many parameters, it might be thought to be expected; but our earlier
comments show that large parameter spaces are not in themselves guarantors of a
close fit. To be able to fit more than one yield curve reasonably closely using nothing
more sophisticated than an 11 state chain does seem to us to be remarkable. In
Figure 14, we present a plot of 1-month LIBOR and Bank of England band one
stop rate. The agreement is evident, and the conclusion unavoidable: if we were
able to model the band one rate, we would already have a good model for 1-month
LIBOR! Now the band one rate is a jump process, taking relatively few values. It is
not fanciful to imagine that this could be well modelled by a Markov chain with a
small number of states. Indeed, looking at Figure 14, the interpretation of 1-month
LIBOR as a noisy observation of the band one rate seems quite natural, and the
very interesting paper of Babbs & Webber [2] uses elements of this interpretation in
its modelling. In short, focusing on the volatilities of various yields and rates may
actually be concentrating on the noise in the system, and overlooking the signal/

32



Appendix A

For ease of reference, we summarise here the Kalman filter argument which we used
as the basis of the fitting procedures of the earlier parts of the paper. To begin with,
suppose we have a pair of discrete-time vector processes # and Y evolving according
to the dynamic linear model

Oy = On1+en, (A1)
Y, = CO,+n,, (A.2)

where the ¢ are independent N(0,Q) and the n are independent N(0, R) random
variables. If ), denotes the o-field generated by {Yy : k < n}, and if we have that
conditional on ), the law of 6, is N(6,,V,,), then

(B ]o) ~ 5 ((G) (&%) Giaien)). @

and likewise

W) () (05 D). s

It is an easy though tedious exercise to confirm from (A.3) that the law of 6,4, given
Ynt1 18 N(0pi1, Viy1), where 6,1 is the value of § maximising the joint density of
the distribution (A.3) or equivalently (A.4):

0n+1
Yn+1 - an+1

SO=0.)7Q+ V)0 -0~ - COTRy-CO)), (A3

exp| —

and —V,7 is the second derivative of the log-likelihood with respect to 6. The

actual estimation problem we face has non-linear dynamics, but we shall suppose
that a local linear approximation is adequate, so we replace (A.2) with

Y, = Y(xnaen) + M,
giving the analogue of (A.5) to be
1 A N A 1 _
exp[ =2 (0= 0.)" (Q+ Vo) (6 = 0n) = Sy =V (2n,0) "R (y = Y (20, 0)) |- (A6)
If we have @ = 0, the full CI fitting assumption, we find that (A.6) reduces to the

exponential terms in (3.8), and if we take Q@ = (87! — 1)V},, we obtain exactly the
exponential terms in (3.9).
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