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Abstract

We present a general framework to price contingent claims whose pay-
offs involve equity, credit and interest rate components. The common
cross-market dynamics are modeled via a Markov-chain ξ. The model is
dynamically consistent and allows for a high degree of flexibility. Prices
of various vanilla and more complex derivative products can be derived
analytically or resorting to integral transform techniques.

1 Introduction

In recent years the financial industry has witnessed the launch and growth of a
new class of derivatives products, so-called hybrid because they combine features
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and risks from different markets such as interest rates, equity and credit. From a
business point of view the purpose of these new financial instruments is to cap-
ture and trade the correlation between different markets. Modeling the common
dynamics of different markets in a tractable and realistic way is thus of extreme
importance.

In this paper we apply the potential approach of Rogers [R1] (see also [R2] and
[R3]). Although the original presentation of the methodology did not discuss
default risk, it is not hard to see how to incorporate this into the modelling; since
the basic probabilistic object in the potential approach is some fairly abstract
Markov process, it is natural to try to explain the default risk in terms of this
Markov process. Given that this is what we are going to do, we propose to let
the default intensity be simply a function of the underlying Markov process - the
doubly stochastic modelling idea used by Duffie, Saita & Wang [DSW], Frey &
Backhaus [FB], Di Graziano & Rogers [DR3], and others. Where our approach
differs is in the choice of a finite-state Markov chain as the underlying Markovian
driver. We make no attempt to interpret this chain as any sort of observable; its
sole purpose is to drive the stochastic processes of interest, just as the driving
Brownian motion in a SDE has no interpretation, though the solution generally
does.

This modelling approach is well suited to pricing hybrid derivatives. In particular,
we will concentrate on products involving credit, equity and interest rate risk.
The results presented can be easily generalized to include foreign exchange risk.

In more detail, we let the Markov chain be denoted by ξ a continuous-time
Markov chain with finite state space. We then model the stochastic hazard pro-
cess (λi

t)t≥0 for a given company i as a function of ξ, say λi
t ≡ λi(ξt) for t ≥ 0.

The stock price of a given company is viewed as the expected sum of all future
(stochastic) dividends and, given our modelling assumption, turns out to be a
Markov-modulated diffusion with jumps. The short rate rt is also assumed to be
a deterministic function of ξt. Conditional on ξ, everything (e.g. default time of
any two companies, or equity and credit risk) is independent, which in turn allows
us to express many pricing formulae in analytic or semi-analytic form. How does
the potential approach fit in this framework?

According to standard asset pricing theory, if we assume no arbitrage than there
exists some equivalent martingale measure under which discounted asset prices
are martingales. Equivalently, one can work under some reference probability
and discount assets by a state price density ζ obtaining again a martingale.
The potential approach offers us a recipe to choose the state price density in an
efficient, flexible and consistent way. In particular, in this paper we shall assume
that ζ is again some functional of ξ.
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Note that one of the most appealing features of the approach presented in the
paper is that correlation between assets and markets is modelled endogenously
via the process ξ without having to resort to exogenous structures like in the cop-
ula approach. Moreover correlation is modeled in a dynamically consistent way.
Another strength of the approach is that passing from single-name derivatives to
multi-name derivatives requires no change of the model!

We are currently investigating the ability of the model to fit quotes of liquid
instruments in multiple markets, in particular CDS and option prices.

2 Model setup

Consider a filtered probability space (Ω,F , {F}t≥0, P ) and assume there exists a
pricing operator πtT such that if YT is a FT measurable random variable (such as
the payoff of an option maturing at time T ), then its price Yt at time t is given
by

Yt = πtT (YT ). (1)

Taking a simple axiomatic approach, Rogers [R3] proves that such an operator
can be represented in terms of a positive supermartingale (ζt)t≥0, the so-called
state price density process:

πtT (YT ) =
Et[ζT YT ]

ζt

, t ≤ T. (2)

Note that asset prices are martingales under the reference probability measure,
when discounted by ζ. All we need to do in order to be able to price contingent
claims then, is to specify a form for the state price density process ζ. Rogers
[R1] gives various examples of pricing kernels based on Markov processes. In this
paper, we will restrict our attention to a very simple but convenient form for ζ,

ζt = exp

(
−

∫ t

0

α(ξu)du

)
f(ξt), (3)

where ξ ∈ {1, . . . , N} is a continuous time, irreducible, N -state Markov chain,
with infinitesimal generator Q. Note that the matrix Q fully characterizes the
transition semigroup of the chain. In order for ζ to be a supermartingale we shall
require that

Qf − αf ≤ 0, (4)

where in this equation α denotes the point-wise multiplication operator, (αf)i =
αifi.

Remarks (i) Since the process ξt can only take a finite number of values, any

function of the chain g(ξ) can be thought of as a N -dimensional vector whose ith
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component is given by gi ≡ g(ξ) |ξ=i. In this paper, we shall use the notation g(ξ)
or gξ to indicate component ξ of the vector and g without subscripts to denote
the whole vector.

(ii) The functions f(·), α(·), the infinitesimal generator Q and the other functions
of ξ which shall use later in the paper will be specified by calibrating to market
data. The vectors f , α, the matrix Q, etc should be seen as parameters of the
problem and calibrated to volatility surfaces, CDS quotes and risk-free bonds.
Depending on the availability of data it may be necessary to adjust the number
of states of the chain and/or put some structure on the parameters.

(iii) The state-price density process ζ can be viewed as the product of the discount
factor and the change-of-measure martingale which transforms from the reference
measure to the pricing measure. In the simple modelling set-up which we adopt
here, the riskless rate is a function of the chain, and is

rt =
(α −Q)f(ξt)

f(ξt)
(5)

consult [R3] again.

(iv) We shall adopt the following notational convention: if A is a matrix and b is
a vector, we will write A− b to indicate A− diagb. Similarly, by Ab(i) we mean
(Ab)i.

2.1 Stock price derivation

The goal of this section is to derive the price of a stock, when we allow the
company to default. In our set up, the stock price today is given by the expected
sum of all future dividends, up to default, appropriately discounted.

Assume, for the time being, that the market consists of a risky, defaultable asset
(the stock) paying a continuous stochastic dividend δ which obeys

dδt

δt

= µ(ξt)dt + σ(ξt)dWt. (6)

Here, µ and σ are deterministic functions of ξ, and W is a one dimensional
standard Brownian motion independent of the Markov chain ξ. Following the
approach of Di Graziano and Rogers [DR3], we shall define the probability of
survival of a given firm, conditional on the path of the chain up to time t as

qt ≡ P
(
τ > t | F ξ

t

)
= exp

(
−

∫ t

0

λ(ξu)du

)
, (7)
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where τ is the default time and F ξ
t = σ(ξs : s ≤ t). Although in this section we

will be dealing with one defaultable stock only, it is straightforward to extend
the analysis to incorporate multiple defaultable companies. We will come back
to the more general case in Section 3.

The value of the stock can be viewed as the expected sum of all future dividends
up until default appropriately discounted, more precisely

St = ζ−1
t Et

[∫ τ

t

ζuδudu

]
. (8)

Using specification (3) for the state-price density, it is possible to derive explicitly
the stock price St at time t in terms of the dividend process and a function of
the Markov chain. Taking t = 0, with no loss of generality and defining the
martingale

Mt ≡ exp

(
−1

2

∫ t

0

σ2(ξu)du +

∫ t

0

σ(ξu)dWu

)
, (9)

and setting,
ᾱ ≡ α + λ− µ (10)

we have,

S0 = ζ−1
0 E0

[∫ τ

0

ζtδtdt

]
=

δ0

f(ξ0)
E0

[∫ ∞

0

Mt1{τ>t} exp

(∫ t

0

(µ− α)(ξu)du

)
f(ξt)dt

]
=

δ0

f(ξ0)
E0

[∫ ∞

0

E[Mt1{τ>t} | F ξ
t ] exp

(∫ t

0

(µ− α)(ξu)du

)
f(ξt)dt

]
=

δ0

f(ξ0)
E0

[∫ ∞

0

exp

(
−

∫ t

0

ᾱ(ξu)du

)
f(ξt)dt

]
=

δ0

f(ξ0)
(ᾱ −Q)−1f(ξ0). (11)

A proof of the last equality (11) can be found in appendix A. Setting

v(ξ) ≡ (ᾱ −Q)−1f(ξ)

f(ξ)
, (12)

we shall have more generally that

St = δtv(ξt). (13)

Note that the stock price at any time depends on the current state of the chain
ξt, which we assume to be unobservable. We will estimate the distribution of the
current chain state from market prices.
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Remarks. (i) Between jumps, the stock price evolves as a geometric Brownian
motion with constant drift and volatility. As the chain jumps to state j, say, the
stock price jumps to a new level and its dynamics will be characterized by a new
drift µ(j) and volatility σ(j) until the next jump.

(ii) The use of Markov-modulated log-Brownian dynamics is gaining in popular-
ity; see, for example, [BE], [C], [DR1], [GZ], [JR], [YZ]. In our notation, the
effect of this is to take St ≡ δt, satisfying the dynamics

dSt = St

{
σ(ξt)dWt + µ(ξt)dt

}
.

Though such a model lacks a clear equilibrium derivation, it may be preferred
for some purposes.

The ultimate goal of the paper is to derive a model capable of pricing derivatives
whose payoff depends on the behavior of the underlying stock as well as the time
of default. A viable model thus has to be able to fit liquid instruments in the
credit, volatility and bond market. In the following few sections we will derive
analytic and semi-analytic formulas to price bonds, CDS and vanilla options (put
and call), which will be used in the calibration.

2.2 Pricing bonds

The simple techniques introduced in the previous sections can be applied in a
straightforward manner to price bonds. As an example, consider a security which
pays 1 at maturity if default has not occurred and zero otherwise. For notational
convenience set,

α̃ ≡ α + λ, (14)

then the price of the zero recovery bond is given by

P̄ (0, T ) ≡ 1

ζ0

E0

[
1{τ>T}ζT

]
=

1

f(ξ0)
E0

[
exp

(
−

∫ T

0

α̃(ξu)du

)
f(ξT )

]
=

1

f(ξ0)
exp

(
T (Q− α̃)

)
f(ξ0) (15)

The price of a non defaultable bond P (0, T ) can be obtained from (15) simply
by setting λ(ξ) = 0 for all ξ.
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2.3 CDS pricing

The most traded (vanilla) instruments in the default market are credit default
swaps (CDS). In a standard CDS contract, the protection seller agrees to pay par
minus recovery in case of default of the reference entity (default leg). In order
to be compensated for his default exposure, the protection seller periodically
receives a constant spread s until maturity or default, whichever happens first
(premium leg). The initial spread s is chosen in such a way that the two legs of
the swap have equal value. In the simple framework introduced in the previous
sections, it is possible to derive the CDS spread explicitly.

Assume for simplicity that the recovery rate R at default is independent of ξ.
The default leg of the CDS maturing at T is then equal to

DLT

1− E[R]
≡ 1

ζ0

E0

[
ζτ1{τ≤T}

]
=

1

f(ξ0)
E0

[∫ T

0

exp

(
−

∫ t

0

α̃(ξu)du

)
λ(ξt)f(ξt)dt

]
=

1

f(ξ0)
Q̃−1(eQ̃T − I)f̄(ξ0),

where Q̃ ≡ Q− α̃, f̄ = fλ.

The premium leg can be calculated similarly. As a first approximation, assume
that no accrued is paid at default. Let 0 = T1 < . . . < Tn = T be the payment
dates of the CDS and call ∆j the daycount fraction for the interval (Tj−1, Tj].
The ex-accrued premium leg (PL) is then simply,

PLT ≡ s

ζ0

E

[
n∑

j=1

∆j1{τ>Tj}ζTj

]

= s

n∑
j=1

∆jP̄ (0, Tj)

where P̄ (0, t) is the value of a zero recovery risky bond as given by (15).

If the reference entity defaults between two payment dates, the protection buyer
has to pay his counterpart the amount of the protection fee matured up the
default date, that is, the accrued spread. Let D be the length of the reference
period defined in the day-count convention (e.g. 360 or 365 days). The value of
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the accrued leg is equal to

AT ≡ s

ζ0D
E

[
n∑

j=1

1{Tj−1<τ≤Tj}(τ − Tj−1)ζτ

]

=
s

f(ξ0)D

n∑
j=1

E

[∫ Tj

Tj−1

(u− Tj−1) exp

(
−

∫ u

0

α̃(ξs)ds

)
f̄(ξu)du

]

=
s

f(ξ0)D

{
Q̃−2(I − exp(TQ̃))f̄(ξ0) +

n∑
j=1

(Tj − Tj−1)Q̃
−1eQ̃Tj f̄(ξ0)

}
.

The initial spread can be recovered as usual as the ratio between the default leg
and the premium leg. The simple results of this section can be used to calibrate
the parameters of the model to quoted CDS prices.

2.4 Hybrid option pricing

In this section we shall show how to use integral transforms to price vanilla options
involving equity and credit. Note that in our set-up, the Markov chain connects
the equity and the credit market; in particular, ξ determines the interaction
between equity and credit. Our framework can be easily extended to incorporate
the interest-rate and FX markets as well.

As a first example we shall show how to price a simple hybrid put option which
pays (K − ST )+ if the company does not default before the maturity T and zero
otherwise. We shall derive the Laplace transform of the price explicitly and then
invert it numerically using the Hosono-Abate-Whitt method [Ho], [AW].

The price of a no-default put option with maturity T is given by

PT (k) ≡ 1

ζ0

E
[
ζT

(
ek − es

)+
; τ ≥ T

]
, (16)

where s and k are the log stock and the log strike respectively. The following
calculations are very similar to the ones appearing in [DR1] to which we refer to
for more details. Given a complex number η such that Re(η) > 1 we define the
Laplace transform of the put price as

P̂T (η) ≡
∫ ∞

−∞
e−ηkPT (k)dk. (17)

In order to ease notation set

zη ≡ (1− η)(µ− 1

2
σ2) +

1

2
(1− η)2σ2 − α − λ, (18)
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and

Mη
t ≡ exp

(
(1− η)

∫ t

0

(µ− 1

2
σ2)(ξs)ds + (1− η)

∫ t

0

σ(ξs)dWs

)
. (19)

Applying Fubini’s theorem to (17), and performing some standard calculation, it
follows that

P̂T (η) =
1

ζ0

∫ ∞

−∞
e−ηkE

[
ζT

(
ek − es

)+
; τ ≥ T

]
dk

=
1

η(η − 1)ζ0

E [ζT exp(−(η − 1)s); τ ≥ T ]

=
1

η(η − 1)f(ξ0)
E

[
exp

(
−

∫ T

0

α(ξu)du

)
f(ξT )S1−η

T ; τ ≥ T

]
=

δ1−η
0

η(η − 1)f(ξ0)
E

[
exp

(
−

∫ T

0

(α + λ)(ξu)du

)
Mη

T f(ξT )v(ξT )1−η

]
=

δ1−η
0

η(η − 1)f(ξ0)
E

[
exp

(∫ T

0

zη(ξu)du

)
f(ξT )v(ξT )1−η

]
=

δ1−η
0

η(η − 1)f(ξ0)

(
e(Q+zη)T f̂

)
(ξ0)

where f̂(ξ) ≡ f(ξ)v(ξ)1−η for all ξ ∈ {1, . . . , N}.

Remark: The transform of the classical vanilla put can be recovered from the
previous calculation simply by setting the vector λ = 0.

Defaultable vanilla options with barriers can be also priced in our framework
thanks to the techniques developed by Di Graziano and Rogers [DR2].

So far we have only dealt with single name options. Extending the model to
handle options involving more than one reference entity is straightforward. The
following section gives some basic examples of hybrid options involving stocks
and portfolios of defaultable entities. Some of the results are related to the
model of Di Graziano and Rogers [DR3], which however did not involve any
equity component.

3 Hybrid multiname structures

Consider a market consisting of M defaultable securities, say CDS, and let {Si
t}t≥0

and {λi(ξt)}t≥0 be the the stock price process and the default intensity process
of company i respectively. Let li be the (possibly random) individual losses at
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default and Lt ≡
∑N

i=1 li1{τ i≤t} be the cumulative losses of the CDS portfolio at

time t. Note that conditional on the filtration generated by the chain F ξ
t , defaults

are independent.

As an example, suppose we want to price a European call on asset i which gets
knocked out if the total losses of some the basket exceeds some threshold; the
final payoff is

CT ≡ (Si
T −K)+1{LT≤x}. (20)

The contingent claim considered above is a call option on stock i, which pays
nothing if losses in the credit portfolio exceeds the threshold x. The price at
t = 0 of such a claim will be given by

C0 =
1

ζ0

E
[
ζT (Si

T −K)+1{LT≤x}
]
, (21)

which requires the knowledge of the joint distribution of Si
T and LT . The key

thing to notice here is that conditional on the chain, S and L are independent.
Using standard techniques it is easy to prove that,

Cξ
T ≡ E

[
(Si

T −K)+ | F ξ
T

]
= AΦ̄(a− ΣT )−KΦ̄(a), (22)

where Φ̄ is the tail of the standard N(0, 1) law, A ≡ δi(0)vi(ξT ) exp(
∫ T

0
µi(ξs) ds),

Σ2
T ≡

∫ T

0
σi(ξs)

2 ds and

a =
log(K/A) + 1

2
Σ2

T

ΣT

The joint density can be derived by inverting the Laplace transform of the mod-
ified loss process,

ĈT (θ) ≡ 1

ζ0

E
[
ζT (Si

T −K)+e−θLT
]

(23)

=
1

ζ0

E
[
ζT E

[
(Si

T −K)+ | F ξ
T

]
E

[
e−θLT | F ξ

T

]]
(24)

=
1

f(ξ0)
E

[
exp

(
−

∫ t

0

α(ξs)ds

)
f(ξT )Cξ

T Πξ
T (θ)

]
, (25)

where Πξ
T (θ) is the Laplace transform of the cumulative loss LT , conditional on

F ξ
T ,

Πξ
T (θ) ≡

N∏
j=1

(
qj
t + (1− qj

t )E
[
e−`iθ

])
(26)
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and qj
t is the conditional survival probability for company j,

qj
t ≡ exp

(
−

∫ t

0

λj(ξu)du

)
. (27)

Note that the expectation on the right most hand-side of (25) only involves func-
tionals of the chain. The easiest way to calculate ĈT (θ) is thus to simulate the
path of the chain up to time T . This can be done efficiently using the algorithm
presented in appendix B. Once the modified Laplace transform of the loss process
has been computed, we can used the Hosono-Abate-Whitt inversion method to
recover the desired density.

4 Conclusions

We presented a framework for the pricing of hybrid derivatives, in particular we
considered contingent claims whose pay-off depends on default, equity and inter-
est rate risk. By modelling the common dynamics of different company/markets
via a continuous time-finite state Markov chain ξ we obtain tractable solutions
for a range of hybrid structures. The modelling approach is also dynamically
consistent and allows for enough flexibility to calibrate (at least in theory) to
market instruments. We are currently investigating how well the model does in
simultaneously fitting CDS prices, volatility surfaces and bond prices. The for-
eign exchange market has not been considered explicitly in the paper, but the
potential approach allows us to extend the analysis to incorporate FX risk in a
natural fashion (see Rogers [R1] for some example).

A Exponential functionals of continuous time

Markov Chains

This section contains some basic results about continuous time Markov chains.
This material is well known in some circles, but perhaps not amongst practi-
tioners. The reader is referred to Rogers and Williams [RW] and Bielecki and
Rutkowski [BR] for a more detailed and rigorous treatment.

In order to calculate individual survival probabilities, stock and other security
prices, we had to evaluate expressions of the form

g(0, ξ0) ≡ E

[
exp

(∫ T

0

φ(ξu)du

)
η(ξT )

]
, (28)
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where ξ is a continuous-time, irreducible, N -state Markov-chain with infinitesimal
generator Q and φ(·) is a deterministic function of ξ. Since the chain takes values
in the set {1, 2, . . . , N}, we can view g as a N -dimensional column vector whose

ith component is given by gi ≡ g(ξ) |ξ=i. Define

g(t, ξt) ≡ Et

[
exp

(∫ T

t

φ(ξs)ds

)
η(ξT )

]
. (29)

By Dynkin’s formula, the process

Mt ≡ g(t, ξt)− g(0, ξ0)−
∫ t

0

(
∂g

∂t
+ Qg)(u, ξu)du (30)

is a martingale (and not merely a local martingale). Of course,

(Qg)i =
N∑

j=1

Qijg(t, j). (31)

By applying Itô’s formula to the martingale

Yt ≡ g(t, ξt) exp

(∫ t

0

φ(ξu)du

)
= E

[
exp

(∫ T

0

φ(ξu)du

)
η(ξT )

∣∣∣∣ Ft

]
we obtain

dYt $ exp

(∫ t

0

φ(ξs)ds

) [
∂g (t, ξt)

∂t
+ (Qg) (t, ξt) + φ(ξt)g(t, ξt)

]
dt, (32)

where the symbol $ indicates that the two sides of (32) differ by a martingale.
This implies that

dg

dt
+ Qg + φg = 0, (33)

where w(t) is a vector function whose ith component is w(t, i). The system (33)
of ordinary differential equations in t, with boundary w(T, ξ) = η(ξ), has solution

g(t, ξ) = exp((T − t)(Q + φ) )η(ξ).

B Monte Carlo simulation for continuous time

Markov-chains

One of the great advantages of using Markov-chains as opposed to other contin-
uous time Markov processes is that the simulation of their sample path is easy,
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accurate and fast. In this section, we review some standard techniques used to
simulate continuous time, discrete space Markov-chains.

The following algorithm assumes the knowledge of the Q-matrix Q (in what
follows we will let Qij ≡ qij) and the initial state of the chain, say ξ ∈ {1, . . . ,M},
where is the number of states of the chain. Let ξ0 = i and note that qi = −qii is
the is the rate at which the chain jumps out of state i.

1. Let i be the current state of the chain. Generate an exponential(1) random
variable z,

2. let τ denote the time elapsed from the last jump: set τ = z/qi,

3. if τ ≥ T , stop otherwise go to step 4,.

4. sample ξ(τ) according to probabilities (qij/qi), where j 6= i and j ≤ M ,

5. go to step 1, and set i = ξ(τ).

Remark. Note that a new simulation of the path of the chain is only needed
if we change its transition matrix Q. In order words, we can simply simulate
a number of paths once and then re-use the same paths to price a variety of
contingent claims. Even changing the functions µ, σ, λi etc, does not require a
new simulation, with obvious computational advantages.
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