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Abstract

Von Neumann-Morgenstern preferences over terminal consumption can be
inferred from wealth on a single sample path when markets are complete and
returns follow a known law in a neoclassical investment problem in either a
discrete-time i.i.d. binomial model or a continuous-time diffusion model with
a Gaussian state variable.
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Most of demand theory focuses on the derivation of optimal demand and its
properties given preferences. The theory of revealed preference! focuses on
the reverse problem: what does observation of optimal demand tell us about
preferences? These results address both existence and uniqueness of prefer-
ences within a particular class that are consistent with a given demand func-
tion. Traditionally, revealed preference theory has related the entire demand
function to preferences in a minimally restricted class. A newer literature
on recoverability (or identifiability) of preferences, initiated by Green, Lau,
and Polemarchakis (1978) has explored the question of whether we can learn
preferences in a more narrowly defined class from more restricted informa-
tion about optimal demand. In this present paper, sufficient conditions are
given for the recoverability of von Neumann-Morgenstern preferences over
terminal consumption from the wealth along a single realized sample path of
stock prices. The main assumptions are complete markets and either returns
are 1.i.d. log-binomial in discrete time or there is a Gaussian state variable
in continuous time.

Recoverability results are of interest in their own right because they help
us to understand the assumptions we are making and their implications.
Perhaps more importantly, recoverability results have implications for em-
pirical demand analysis. In particular, recoverability results provide a guide
to what can and cannot be learned from different types of data. For ex-
ample, if the utility function cannot be recovered from perfect knowledge of
certain demand observations, then we cannot hope to recover a nonparamet-
ric estimate of preferences from a finite number of those observations, and
this will be known without any formal analysis of econometric identification.
Conversely, if the utility function can be recovered from perfect knowledge of
certain demand observations, then it is likely that identification will follow
from finitely many observations given almost any parametric restriction or
smoothing for interpolation. In fact, an early version of the argument in
this paper helped to motivate a proposal by Hodges (1991) of an interesting
procedure for evaluating portfolio performance.

In the binomial model, recoverability of preferences is closely tied to the path
independence result of Cox and Leland (1982). They note that when returns

'Richter (1987) is a good brief review of revealed preference theory.



are i.i.d. in a binomial model, optimal wealth is path-independent, that is, it
depends only on the reinvested value of the stock, not on the whole history
of stock prices. Path-independence says that we need only solve for wealth
on an “ingrown tree” that identifies nodes with identical stock prices at a
point in time but different histories. We can then start from knowledge of
the strategy on a single path to step through the entire tree using the one-
period valuation equation (that follows from absence of arbitrage as derived
by Cox, Ross, and Rubinstein (1979)). Knowing the entire wealth process is
equivalent to knowing the entire portfolio strategy, and is also equivalent to
knowing marginal rates of substitution of consumption at the wealth levels
of any pair of terminal nodes, which determines the marginal utility at all
terminal wealth levels that can be realized by the optimal strategy, up to
rescaling by a constant that does not change preferences.

We have the intuition that recoverability is more common in continuous time
than in discrete time. Our proof in continuous time admits a variety of non-
i.i.d. returns including an embedded Gaussian term structure model. The
critical assumption is that the conditional distribution at ¢ of the terminal
state-price density is log-Gaussian, although we conjecture recoverability is
much more general.

For the continuous-time result, the proof relies on a general version of the
path-independence result of Cox and Leland (1982), using a new state vari-
able which is the expectation at ¢ of the log of the terminal state-price den-
sity. The proof uses the properties of diffusion processes to show that all
derivatives of wealth with respect to the state variable can be computed
along the sample path, which gives the wealth as a function of the state
variable at a point in time given analyticity. This analyticity follows from
the smoothing effect of conditional expectations given the filtration gener-
ated by the Wiener process. By analyticity, this determines the wealth as a
function of the state variable at a certain point in time, and Fourier analysis
allows us to determine the terminal wealth. This paper is related to several
other papers on recovery of preferences for uncertain consumption. Dybvig
and Polemarchakis (1981) considers recoverability of twice differentiable von
Neumann-Morgenstern preferences from portfolio choice for all wealth levels
and all security prices in a one-period model with a riskless asset and a risky
asset. Dybvig (1982) considers recoverability of preferences over gambles in



real wealth given preferences over gambles in nominal wealth that include
price level uncertainty. The use of Fourier analysis in one part of the proof
in this paper is reminiscent of the use of Fourier analysis in that paper. Wang
(1993a, 1993b) are recoverability results in respectively continuous and dis-
crete time that are closest to the spirit of this paper, although those results
are significantly different since they are based on knowing the entire law for
the portfolio process in a model with consumption withdrawal, while the
present paper is based on knowing the portfolio process in a single realiza-
tion in a model with or without consumption withdrawal. Another paper,
He and Leland (1993), is less similar to this paper than might seem at first.
The results in that paper concern recovery of preferences in an economy with
a single agent. Unlike many results with additive preferences, those results
do not apply to economies with multiple agents with additive preferences but
different birth dates or horizons, nor do the results apply to individual agents.
For these reasons, their results seem to be of limited empirical interest.

Section 1 contains the discrete-time results, and Section 2 contains the
continuous-time results. Section 3 contains simulations indicating how much
information can be drawn from noisy portfolio information in a single sample.
Section 4 contains a discussion of how the paper’s results can be extended to
a model with consumption withdrawal. Section 5 briefly closes the paper.

1 Binomial result

First, we consider a binomial model of investment opportunities, which is
essentially the one used by Cox, Ross, and Rubinstein (1979) (CRR) to price
options. There is a riskless asset (the bond) paying r units at the end of
the period for each unit invested in the riskless asset at the beginning of the
period (r is one plus the interest rate), and there is a risky asset (the stock)
paying a random amount z; at time ¢ per unit invested in the risky asset at
time ¢t — 1. We assume that either z; = u (up), with probability =, € (0,1),
or ; = d (down), with probability 7; = 1 — x,. The z,’s are i.i.d. over
time. The riskless return r does not vary over time. We will assume that
u > r > d to avoid arbitrage and degeneracy, and that =,u 4+ 74d > r, which



says that the expected return on the risky asset exceeds the riskless return.
The underlying parameters u, d, r, 7,, and the maturity 7" are assumed
known both to the agent making the choice and to the observer trying to
infer the utility function.

The investor has a von Neumann-Morgenstern utility function U/ : ., — R
that is strictly increasing and strictly concave, with a continuous first deriva-
tive that takes on all positive values. These conditions imply the existence
of an interior solution with positive consumption in all states. The investor
chooses the adapted portfolio choice a; (the proportion invested in the risky
asset) that maximizes the expected utility of terminal wealth given initial
wealth wg, solving Problem 1.

Problem 1 Choose the adapted process oy to mazimize E[U(wo I, (r +

e (z— 1))
We will indicate the wealth at time ¢ by

t

(1) ws = wo H(r + a,_1(x, —1)).

=1

It is useful to review several well-known properties of the binomial option
pricing model. We can represent the state of nature in the binomial model

as (21, z2, ..., x7), since the only uncertainty is the random payoff to the stock,
and (z1,..., ) represents what is known at ¢. Therefore, we can write wealth
at ¢ as wy(x1,...,7;) and the portfolio choice at ¢ as a;(z1, ..., x;).2 Define the

state-price densily process as starting at 1 and such that the stock price or
bond price (and by extension the value of any portfolio) times the state-price
density is a martingale. Then

(2) ft = 1:[ 771}333

2We will use the following common conventions. A function with an empty argument
list (e.g. wy(zg,...,x;) when t = 0) is a constant. An empty sum is 0, and an empty
product 1s 1.



where 1, and 1, are defined by

r—d

(3) Yu= mur(u — d)

u—r

(4) va= mar(u — d)

Then we have the following valuation equation. Whenever s,¢ € {0,1,...,T'},
s> 1,

S

_Sws]v

(5) we= Et[&

where F; denotes expectation conditional on information at . In terms
of risk-neutral valuation (using equivalent martingale measures), & is the
change-of-measure to risk-neutral probabilities times a discount factor. We
use this representation of pricing because of its close connection to agents’
first-order conditions.

For s =t 41, (5) says that

(6) wt(il?(), SRS) th) = 7-‘-u?7/}u7~0t+1(:[’107 ooy Tty u) + 7rd77bclr£‘9t+1(3707 ey Tty d)

which is easily verified from (1) and the definitions of v, and 4. For other
s, the result follows by induction using the law of iterated expectations. For
example,

(1) we = Et[i—:lwtﬂ]



Et[ijEtﬂ[&ithH
1 t+1
= Et[&—+2wt+2]

&

proves the result for s =1 + 2.

The valuation equation (5) is actually a complete characterization of feasi-
ble wealth processes. To replicate a payoff of x, conditional on up and z4
conditional on down in one period, we invest wealth w = (7,2, + Tgt0a24)

with a proportion o = (2, — 24)/w(u — d) invested in the stock. In general,
a positive random terminal wealth wr is feasible if and only if

(8)  wo = Eo[{rwr],

corresponding to a wealth process

_ 5_TwT
(9) wt—Et[f ].

t

This wealth process is then generated by a portfolio policy

Wi (T1, 0, Tpy U) — Wi (T, .0, T4, d)

we( Ty, .y ) (u — d)

(10) ol ) =

This completes our review of binomial option pricing.

Given the representation of terminal consumption, we can write the following
reduced-form version of Problem 1.

Problem 2 Choose random terminal wealth wr to mazimize E[U(wr)] sub-
ject to Eérwr] = wo.



The choice of portfolio strategy is implicit in the problem and given by (9)
and (10). The first-order condition for Problem 2 is the existence of A such
that

(11) wr = I()\fT),

where [(-) is the inverse function of marginal utility U'(-).

The following result due to Cox and Leland (1982) is central to our analysis.
Cox and Leland refer to the property in the theorem as “path independence,”
since the various quantities depend only on the reinvested return on the stock,
not the whole price path.

Theorem 1 (Cox and Leland) The shared solution to Problems 1 and 2
has a wealth process that is path-independent, i.e., w; depends on the state
(1,22, ...,2¢) only through the product xqx4...2¢.

ProoF It suffices to show that w; depends only on ¢, since & =
"™y, where n, is the number of ups before or at , and n, =
log((z122...x¢)/d") [/ log(u/d). By (9) and (11), w, = E[I(Xr)ér/&], which
depends only on & and ¢, since ¢ is Markovian, proving path-independence
of w;. |

Now we are prepared for our main result, which is the recoverability of the
entire wealth process from its trajectory in a single realization.

Theorem 2 Assume the return parameter values r, u, d, and © are known.
Then, the wealth process for the solution to Problem 1 given a single realiza-
tion of x1,...,xp determines the entire solution. Therefore we learn as much
about preferences from a single realization as we do from seeing the entire
strateqy. This amount of information is the marginal utility at the different
terminal wealths across states, up to the arbitrary normalization that does
not affect preferences.



PROOF Given path-independence (Theorem 1), we can write wealth at ¢ as
wy = Wi(x122...2¢), where the product zyxs...2; can take on the ¢ 4+ 1 values
u™d"=" for n, € {0,...,1}, where n, is the number of ups before or at ¢. The
proof is by induction on ¢. The inductive hypothesis is that we can use the
particular realization to construct the optimal strategy w(-) for all s < t.
The induction starts trivially, since wq is on the observed sample path.

Now we need to show the induction step: given knowledge of the wealth
process in one realization and the entire wealth function w, for s < ¢, we
must show how to infer the entire wealth function at ¢ + 1. From (6), we
have

(12) wp(u™d"™) = mutby i (W™ T d ™) + mathgtbspr (u™d ).

Knowledge of wealth along the sample path gives us ;41 (u™d"t' ") for one
value of n, and the inductive hypothesis tells us w;(u™d"=") for all values
of n,. Furthermore, solving (12) for one of the ;11 expressions on the right-
hand side allows us to step up and down through all values of n, and solve
for gy (u™d™1 =) for all n, in {0,1,...,t+1}. This completes the induction
step, and we have shown that the entire wealth process is determined by one
sample path.

Finally, it follows from the first-order condition (11) that what we learn from
this is exactly the marginal utility (up to the arbitrary rescaling) on the set
of terminal wealth levels achieved by the optimal strategy. 1

The intuition of the proof of Theorem 2 is shown in Figure 1. Suppose the
stock price moves in order up, down, up. Path-independence implies we can
consider an ingrown tree as in Figure 1. We are given the wealth at nodes 0,
1, 4, and 7. The valuation equation (or its underlying arbitrage) then imply
the wealth at node 2 (from nodes 0 and 1), at node 3 (from nodes 1 and 4),
at node 5 (from nodes 2 and 4), at node 8 (from nodes 4 and 7), at node 6
(from nodes 3 and 7), and at node 9 (from nodes 5 and 8). This is the entire
wealth function. The first-order condition determines (up to the arbitrary
constant) the marginal utility at the terminal wealth levels.
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Figure 1 Path-independence allows us to infer the entire portfolio strategy
from the strategy in a single realization. Absence of arbitrage yields a pricing
result that relates wealth at a node and the two following nodes. If we know
the wealth at nodes 0, 1, 4, and 7, we can infer the wealth at node 2 from
the wealth at nodes 0 and 1, at node 3 from nodes 1 and 4, and similarly all
through the tree to determine the entire stralegy.

2 Continuous-time result

Our result for continuous time is based on the standard model first analyzed
by Merton (1971). We assume that security returns are identically and in-
dependently distributed and that uncertainty is driven by an N-dimensional
Wiener process 7;. We assume there is a locally riskless asset bearing a
continuously-compounded interest rate following the process r; and that there
are N risky assets whose rates of return over dt are given by u,dt + o,dZ;,
where the adapted N-dimensional process p; is the local mean return and
the adapted invertible N x N-dimensional process o; gives the risk exposures
of the assets. Note that invertibility of o; is the assumption that markets are
locally complete. As before, the law defining returns and the maturity date
T" are known both to the agent making the choice and to the observer trying
to infer preferences.

A portfolio strategy is an adapted N-dimensional process a;. Initial wealth
is exogenously given as wg, and given «; the wealth process solves

t
(13) w; = wy —I—/ ws(rsds + ol ((ps — rsl)ds + o5dZs)),
s=0

where 1 indicates a vector of ones. A portfolio process is feasible if the
wealth process satisfying (13) is positive for all time with probability 1. This

9



restriction to positive wealth processes is consistent with our conditions on
the utility function and also rules out doubling strategies and other arbitrages

(see Dybvig and Huang (1988)).

As in the discrete-time case, we will assume the agent has a von Neumann-
Morgenstern utility function U of terminal wealth wyp that is strictly increas-
ing and strictly concave, with a continuous first derivative that takes on all
positive values. In addition, to ensure existence of an optimum we assume
that the inverse marginal utility function /(-) is bounded by some power
function plus a constant, i.e., there exist constants kg, k1, and p such that,
for all m > 0,

The investor’s decision problem follows.

Problem 3 Choose adapted oy to mazimize E[U(wr)] s.t. (Vt € [0,T])(w; >
0), where the process w; solves (13).

The investor’s task is to maximize expected utility of terminal wealth subject
to wealth staying nonnegative. As in the discrete-time case, there is an
equivalent asset-pricing version of the choice problem. Define the state-price
density process

11 13
(15) & =exp (—/ reds — / (ﬂ’sts + %ﬂ;ﬁstD ,
0 0

where fi; = 0,7'(ps — r¢1) and the integrals defining the process are assumed
to exist (are finite). Equivalently, &, = 1 and

(16) d, = &(—redt — jibdZ,).

10



The state price density process ¢ is designed so that for every feasible strategy
the wealth times the state price density is a local martingale (and is a mar-
tingale if the strategy is not dominated, see Dybvig and Huang (1988)). The
state-price density process is a discounted version of the change of probability
to the risk-neutral probabilities.

Problem 4 Choose random terminal wealth wr to mazimize E[U(wr)] sub-
ject to Eérwr] = wy.

In the discrete problem, we assumed i.i.d. returns, which would be analogous
to assuming that p, r, and o are constant in the continuous-time problem,
which is much stronger than we need to assume. Our proof relies on con-
ditional lognormality of {7, but we conjecture that these conditions can be
weakened much further and that recoverability is quite general.

Assumption 1 Conditional on F;, log ér has a Gaussian distribution with
mean y; = Fi(log ér) and variance v, = var(log ér|Fy), where v is a strictly
decreasing continuous adapted process.

We think of normality as the most important part of this assumption: given
that v; is the variance of é7 conditional on information at ¢, it is necessarily
nondecreasing in time. In most applications, it will either automatically be
strictly decreasing or will be strictly decreasing given some minimal nonde-
generacy condition. Since the state-price density process is not a primitive in
the problem, it is useful to provide a couple of examples of classes of processes
for which the assumption is satisfied.

Example 1 Deterministic parameters: Suppose that uy, ry, and oy are deter-
ministic, and for all t, p, —ry1 # 0 and oy is invertible, and that the integrals
defining & in (15) exist. Then from (15), & is a lognormal diffusion and
log(&:) has independent and nondegenerate increments. If in addition py, ry,
and o; are constant, returns are i.i.d. over time and so are the increments

of log(&:)-

11



The return processes in the second class can have embedded a model of bond
pricing with a Gaussian interest rate process, as well as nontrivial models
with both stocks and bonds.

Example 2 Gaussian interest rates: Suppose that r; = r¢ 4+ [I_ h(s,1)dZ,
where r§ is deterministic, and h(s,t) is continuous and bounded for all t >
s. Suppose further that for all t, [i; is deterministic, and that the integrals
defining & in (15) exist. Then, excepting degenerate cases, log(&) and ry
are Gaussian, but the returns and increments of log(&;) are not independent
over lime.> Special cases of this model include some Gaussian lerm structure
models of Vasicek (1977). For example, a one-factor mean-reverting Vasicek
model with unpriced interest rate risk can be obtained by taking N =1, oy > 0
constant, r{ =T+ (ro—T) exp(—«t), h(s,1) = ogexp(—k(t—3)), and ps = rs.

Given our assumptions, there exists a unique optimum.* The first-order
condition for the solution is the budget constraint F[{rwr] = wo and

(17) U'(wr) = Xr

for some Lagrange multiplier A > 0. This first-order condition and our
regularity conditions on U imply together that the solution is a positive
random variable that has full support on R, (as does &). It is a standard
result that for the solution, adjusted wealth &w; is given by the martingale

(18) §owy = Et[fTwT]-

3By the definition of ¢; and the assumptions made here, log(¢;) is a stochastic integral
with fixed coefficients, and is therefore Gaussian. The conditional variance can never be
decreasing (by the law of iterated expectations); the slight non-degeneracy is needed to
imply conditional variance is actually increasing.

4With a small amount of work we could apply a result in Cox and Huang (1990) given
the bound on I and the fact that & possesses all moments. These facts imply that
EolérI(Aér)] is continuous and bounded and ranges through all positive reals as A varies.
When this equals wq, then wpr = I(Aér) is a solution satisfying the first-order conditions.

12



The portfolio choice can be inferred from the adjusted wealth process. The
portfolio choice a; must make the local change in &w, implicit in (13) and
(15) the same as what comes from (18). Specifically, adjusted wealth has a
martingale representation

(19) d(éwy) = Bid7Z;.

But we also know from (13) and (16) that

(20) d(&wr) = Gwilator — fiy)dZy

and therefore

) a= ) (ot )

ft’wt

can be inferred from the adjusted wealth process and the return processes.
This shows how to construct the supporting portfolio strategy given a wealth
process satisfying (18).

If we had assumed a single security and independent returns or something
slightly weaker, we would have another path-independence result from Cox
and Leland (1982), as in the binomial case, saying that wealth depends only
on the stock price and time and not on the whole history. Given our As-
sumption 1, we have another type of path-independence result saying that
adjusted wealth depends only on y; = Fiflog 7] and v; = var(log {7|F).

Theorem 3 The shared solution to Problems 3 and 4 has an adjusted wealth
process thal is path-independent in the sense that adjusted wealth &,w, depends
on the state {Zs}, s € [0,t], only through y; and v.,” i.e. &wy = Wy, vy) for
some function W possessing all own and cross partial derivatives.

5In many cases of interest, v; is deterministic and y; is the only state variable.

13



PROOF From Assumption 1, (17) and (18),

(22) &y = EiférI(Ar)]
— /ex]()\em)p(vtvx —yt)dl‘
= W(yt, ’Ut)7

say, where p(1,2) = (2r1)"Y/2exp(—2?/2t) is the Gaussian density. To prove
that all derivatives of W exist, we notice that for any non-negative integers
n and k, and for any positive (' and ¢,

e < Ple)(exp(—c(e — C)2/2)

sup sup

— (¢ —
|Z|SC gSth—l |aynatk( 7:[j y)|

T exp(—e(a + C)2/2))

where P is some polynomial (whose coefficients depend on n, k, C' and ¢).
Now in conjunction with the bound (14) we can deduce that on any compact
set all derivatives of W exist. 1

Now we are prepared to state our main result for the continuous model.
In the case that there is a constant spot rate and a single stock with i.i.d.
returns, knowing y; is the same as knowing the accumulated stock return,
and the result is fully analogous to Theorem 2. However, much less structure
is required for this result.

Theorem 4 Under Assumption 1, the wealth process for the solution to
Problem 3 is determined (a.s.) by a single realization of adjusted wealth
&w; and the state variable y; in an open interval N = (0,1*) of times t < T
for some t* > 0. Then, this determines the ulility function U(-) up to an
affine transform which does not affect preferences.

PROOF Recall that (y), the quadratic variation process of the martingale
y, 1s the unique continuous increasing adapted process A vanishing at 0 for

14



which y? — A, is a martingale. Consider the process v; + (y);, which we will
show to be a finite-variation martingale and therefore constant (e.g. by The-
orem 1V.30.4 in Rogers and Williams (1987)). The process v;+ (y); has finite
variation since v; is decreasing (by Assumption 1) and (y); is nondecreasing
(by definition), and v+ (y): is a martingale since we can write it as the sum of
two martingales: v, + (y)¢ = (v +y7) + ((y)s —y7) = Ei[(log £7)°]+ ({y): — yf)-
Since vy = 0 and (y)o = 0, we have (y)r = vo. It is well known that there
exists some Brownian motion Z such that the continuous martingale y is
expressed as y; = Z({y):) = Z(vo — v¢); see, for example, Theorem IV.34.11
of Rogers and Williams (1987). We shall write v for the (continuous) inverse,
state-by-state, to the process t — (y);.

Since we see the entire process y on N = (0,t*), we may deduce the quadratic
variation process (y) there almost surely, by taking discrete approximations
to the quadratic variation; the proof of this well-known fact is given in various
places in the literature, for example, Theorem IV.30.1 of Rogers and Williams

(1987).

Note that since N is open and « is continuous, y~'(N) is open. Fix any
t € N. By a standard application of the law of the iterated logarithm (e.g.
Arnold (1974, section 3.1)), there exists a sequence of times t,, € N, ¢, | ¢,
such that

(23) 1 = limsupz(<y>5)_z(§y>t)

where we have used the abbreviation h(A) = (2Aloglog(1/A))'/2. Since
limajo A/R(A) = 0, it follows that

V¢, — Ut

n

24) lim
(24) nleo Yy, — Yt

= 0.

15



Pick any such sequence, by “inspection” of y in N. Along this sequence, we
have by a.s.-continuity of y, that y,, — y; in ® and (y,,,%,) — (y¢,¢) in R2.

Since all derivatives exist, the total derivative of W is tied to the partial
derivatives, and we have

W(ytn, Utn) —W(yt, Ut) - (ytn_ yt)Wy(yta Ut) - (’Utn— 'Ut)Wt(ytv t)

1/2

25) lim
(25) nfoo ((ye, —ye)? + (vr, —v1)?)

=0.

Now, the choice of ¢,,’s to satisfy (23) implies by (24) that

. Ut,, — U
26) lim - =0
(26) nteo (e, — y¢)? + (v4, — Ut)2)1/2
and

. Ye, — Yt
27) lim ~ =1.
1) R o =90 o (o, — 0P
Therefore, (25) becomes
(28) Tim W(yt”’zt“): thV(y“”t) = W, (31, v0).

Since W(ys,vs) = &ws, the left-hand expression is known along the sample
path, and therefore W, (y;,v;) is known almost surely there. This procedure
computes W, (y, v;) almost surely for a single t € N, and sigma-additivity
says that it will compute W, (y:, v;) almost surely for a countable dense set
of t € N, and for all ¢ € N by continuity. Therefore, W, (y:,v;) is deter-
mined almost surely from knowing &;w; and y; on NV in one realization. The
same construction can be repeated by induction to obtain all the derivatives
O*W/dy*. Since there are countably many derivatives, the construction will
work almost surely for all of them at once.

16



Now pick any ¢ € N. To show that knowledge of all partials with respect
to y at one value of v and one value of y implies knowledge of W(y,v) for
all y, we need to show that W(y,v) is entire (analytic on the entire complex
plane). From (22), we can write W (y,v) as the product of

2

(20) ¥,

which is entire in y, and

(30) /:o e~ H(z)dx

=—00
where

2
x
e~ 2w t”

(31) H(z)=1(Xe")

2T

For each real y, the bound (14) on I(-) implies that the expression (30) is
finite, so Lemma 1 (in the Appendix) implies that the expression (30) is
entire in y. As a product of two entire functions, W(y,v;) is also entire in
y, which shows that we can infer the function W (y,v;) of y on the entire
complex plane from all its partials with respect to y, and therefore (for any
t € N) from wealth and the stock process in N for a single sample path.

To infer the function H(z) of x from the function W(y, v) of y for some v > 0,
we will make use of the theory of Fourier transforms (as in Rudin (1974,
chapter 9)). Recall that the Fourier transform of a function f: ® — R is
given by®

@) fo= [T e

6Some authors, including Rudin, substitute —i for i in the definition. (Perhaps they
are labelling the two roots of —1 differently than we do!) The exact definition does not
matter so long as we are consistent.
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Since W (y,v) is entire, it is well-defined to use a complex argument y. Since
W (y,v) is the product of expressions (29) and (30), it follows that

33y Vlw.v) _ g <—Q) .

6—92/27] v

We established earlier that knowledge of £w; and y; on N implies knowledge
of W{(y,v) for all complex y and some v > 0. Hence, by (33), this also
implies knowledge of H. But the bound (14) on I(-) implies that H € L*(R).
Since the Fourier transform is an L?-isometry, knowledge of His equivalent to
knowledge of H (via the inversion formula). But knowledge of H is knowledge
of the marginal utility U’(-) up to the constant X, variation of which is a
rescaling that does not change preferences. Obviously, knowledge of the
preferences implies knowledge of the whole solution to the choice problem,
and we are done. 1

3 Implications for Empirical Research

Our recoverability results (Theorems 2 and 4) in previous sections are sug-
gestive that it may be possible to obtain a reasonable estimate of preferences
from one or a few sample paths. In the binomial model, the result is only
suggestive because actual stock returns are not in the support of the model
and because the result only implies knowledge of marginal utilities of realized
wealths. In the continuous model, the result is only suggestive because ob-
servations are discrete while the result assumes observation of the continuous
sample path. In both cases, transaction costs or other trading considerations
may introduce small errors that are mathematically important even if they
are not very important economically. However, none of these problems are
necessarily important barriers to estimation in a statistical model with a re-
striction to a parametric class of utility functions:” the parametric restriction

"Or, estimation should indeed be possible in a nonparametric model given sufficient
smoothing in the estimation procedure.
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and the statistical analysis can smooth over any gaps or error terms in the ob-
servations. This section reports simulations that illustrate useful estimation
of preferences from 5 years of monthly observations of a single sample path
in continuous time. More technical details are contained in the Appendix.
Our results are consistent with the findings of Hodges (1991), who discusses
not only estimation of the preferences of an agent following an optimal strat-
egy, but also estimation of the degree of inefficiency of an agent following
a possibly suboptimal strategy. In general, our simulations are intended to
persuade the reader that this is a fruitful area; ultimate application will be
influenced by the institutions and the nature of the available data.

One case that would be very easy to analyze is the case of constant relative
risk aversion with lognormal stock returns. In that case, the portfolio choice is
a fixed proportion of wealth, and estimation of preferences would be trivial.
Another case, translated power utility, is also easy to analyze, since the
risky portfolio holding is linear in wealth and the discount factor (as in the
examples in Dybvig, Rogers, and Back (1995)). The simulations here indicate
that estimation is possible for more general preferences. Specifically, the
simulations assume a utility function that exhibits possibly different levels of
relative risk aversion 75! below and 47! above the initial wealth level. This
particular specification could be used to test whether risk preferences are
the same for increases and decreases compared to initial wealth. This is a
simple example to exposit; it is not much more complicated to have multiple
breakpoints.® Depending on the location and number of breakpoints, useful
estimation may or may not still be possible; we expect that useful estimation
should be possible if there are not too many breakpoints and they are neither
too close together nor too far from typical values of terminal wealth.

For security prices, we assume the standard lognormal model with a single
stock for which p, r, and o are constant across time and states of nature and
satisfy g > r and ¢ > 0. To make the estimation problem more realistic, we
add noise to the portfolio choice at each data point (consistent with practice

8 As usual, it is more problematic to have a breakpoint in an unknown location since, for
example, the location of the breakpoint is not identified when the coefficients of relative risk
aversion are equal. This invalidates the usual asymptotic analysis of the null hypothesis of
equal risk aversion above and below the breakpoint, since not all parameters are identified
under the null hypothesis.
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given avoidance of transaction costs and model misspecification) and, less
importantly, we add noise to the theoretical portfolio return (consistent with
practice given tracking error). Specifically, the portfolio choice at each time
period is multiplied by a unit-mean lognormal variate whose log has a stan-
dard deviation of 5% (500 basis points) and wealth after each time increment
is subject to a unit-mean lognormal shock whose log has a standard devi-
ation of 0.5% (50 basis points). These standard deviations are intended to
be conservative (relatively large numbers), and the 5% error in the portfolio
choice implies that the manager is doing a very imprecise job of following the
strategy. (A simulation whose details are not reported in the paper indicates
that the estimation error is reduced by about 60% when the portfolio choice
has 2% error instead of 5% error.) The portfolio value to which noise is added
is the correct one given the actual wealth and time to maturity, not what
would have been predicted without tracking error for that level of the stock
price at that time—this is consistent with the forward-looking perspective of
managers, who base their portfolio on how much wealth they actually have
and not some hypothetical amount they should have. For simplicity, we take
all the noise terms and the normalized stock price innovations to be mutu-
ally independent. This is like assuming that the portfolio deviations are very
short-lived, since otherwise the tracking error in a period would be related
to the stock performance times the persistent part in the portfolio error. For
formal empirical work with actual data, it might be nice to estimate the
covariance structure of the error terms; for the current purpose of showing
that there is useful information in even a single observation of a portfolio
problem, our assumptions should suffice.

Estimation in the simulations chooses the risk aversion parameters v;' and
A7! that minimize the nonlinear sum across time of the squared errors in
predicting at each of the 60 months to maturity the portfolio holding in the
risky asset as a proportion of wealth, where the prediction uses the theoretical
optimum for that level of wealth and time to maturity. More details are given
in an Appendix. The simulation results are summarized in Tables 1 and 2.
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4 Continuous Consumption

While a problem with no consumption up until the horizon is a good repre-
sentation for problems like investing for retirement, consumption withdrawal
is an important feature of many portfolio problems. Fortunately, almost the
same recoverability result holds as in Theorem 4, provided preferences are
smooth enough, even without such a strong assumption about returns. The
proof would be similar to the proof of Theorem 4; here is a sketch of how
it would work. Assume that the agent’s von Neumann-Morgenstern utility
function is

T
(34) / e~ u(e;)dl,
t=0
where u(-) is the felicity function and § is the pure rate of time preference.’

The budget constraint is wr > 0 where

t

t
(35) wy = wo —I—/ ws(rsds + ol ((ps — rsl)ds + 05dZy)) —/ csds
s=0 s

=0

and (Vt € [0,T])w; > 0. This is equivalent to the following reduced problem.

Problem 5 Choose an adapted consumption process ¢, t € [0,T], to maxi-
mize E[fL,e % u(c)dl] subject to E[f;Z, ¢, = wo.

This problem will have existence of a solution under conditions parallel to
those of Theorem 3.

In the consumption withdrawal problem, path independence works in a more

subtle way, although fortunately we do not need path independence to recover
preferences. The first-order condition for Problem 5 is

(36) e_‘stu'(ct) = A&

9The text assumes a finite horizon; the only material difference given an infinite horizon
is that the existence of a solution is more subtle.
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Up to a constant of proportionality A that does not affect preferences, this
expresses u’ as a function of ¢; and ¢, and we can infer all the derivatives of this
function with respect to & along the sample path using the same approach as
in the proof of Theorem 4. If we take u’ very smooth (for example if log(u(¢))
is analytic in log(c), then we can recover the entire utility function from the
one sample path. Note that this argument requires less structure than we
assumed before and that ¢ need not be Gaussian. So long as a solution exists
it suffices that ¢ is locally random (ji # 0 almost everywhere).

Of course, it is a strong assumption to take log(v'(¢)) analytic in ¢. However,
the parametric restriction in actual estimation should suffice.

Another extension that is possible is to incorporate random income over time.
Provided the income process has as finite number of state variables and is
known (resp. estimable), preferences should be recoverable (resp. estimable).
Of course, some care would have to write down precise sufficient conditions.

5 Conclusion

We have shown that an investor’s entire portfolio strategy is revealed by the
dynamic strategy on a single sample path. The main assumptions are that
the agent has von Neumann-Morgenstern preferences over terminal wealth
and faces complete markets with i.i.d. investment returns. This result helps
us to understand better the nature of the assumptions we make, and our
simulations suggest the result may have useful implications for empirical
analysis.

22



Appendix

Technical Lemma

There follows a technical lemma that was used in the proof of Theorem 4. It
provides a sufficient condition for the moment generating function (or equiv-
alently the Fourier transform) to be entire (analytic on the whole complex
plane).

Lemma 1 Let m be a non-negalive measure on R. Then the momenlt-
generating function M(s) = [,2_. e**m(dz) is analytic on the entire complex

plane if and only if M(s) is finite for all s € R.

PROOF Obviously, an entire function is finite everywhere in . Conversely,
suppose M is finite on . Then we want to show that M is entire. Since M
is finite on R, it is clear that all moments of m are finite, so we may consider
the approximating (polynomial) functions

o1) M= [T (0 mfas),

for N =0, 1,... We want to show that the My’s converge uniformly to M
on compact subsets of the complex plane. Fix C' > 0, and take any complex
s, |s| < C, and positive integers K < N. Then

) m(dx)

IN

(38) | Mn(s) — Mx(s)] /:_OO % (Is;;lj

j=K+1 \ J°

< /:_oo ]—:il (C]}TP) m(dz)
< [T (S man

g!

T==00 SoK 41
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Now as K increases, this decreases to 0 by monotone convergence, provided
that for some K the integral is finite. But the integral is bounded by

[ (8o - [ o

< [0 (4 e mda)
= M(C)+ M(-C)

< o

Thus the Cauchy sequence (My(s))n>o converges uniformly in {|s| < C'};
the limit, M(s), is therefore analytic, being the uniform limit of analytic
functions. 1

More Simulation Details

We shall firstly (a) describe the set up in a general context, then (b) explain
the steps involved in the simulation, and finally (c) give more detail for the
specific example considered here.

(a) Under our assumption that the spot rate, return and volatility of the
stock are constant, the stock price process is given by

Sy = SoexploZ; + (p — a*/2)1]
and the state-price density is given by
6 = expl—rt — iZ, — 1/2

with i = (p —r)/o. As is well known, an agent maximising Fu(wr) subject
to initial wealth wg invests so as to achieve terminal wealth

wr = ]()\fT)
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where the constant X is chosen to satisfy the budget constraint:
wo = E[¢rI(Ar)].

If we abbreviate ¢r/é = & for 0 < t < T, we have by the independent
increments property of Z and () that

wy = Et[ftT]()\fT)] = V(tv )‘ft)a
where
V(t, ”l?) = EftT](xftT).

It is a simple exercise in [t6 calculus to verify that the optimally-investing
agent holds wealth

[l
- Erevi(t2)
in the risky asset, and therefore holds a proportion

_AGVe( )
= V(LA

Q =

of his wealth in the risky asset.

(b) In our particular application, the utility (and hence the function V)
depends on several parameters, 8; we write V(¢,z;6) to make this explicit
when necessary. We now make some choice of # and wgy, and simulate a
sequence (wy, ay)i=oa,.. .Na of (wealth, portfolio) pairs in the following way.
In what follows, the simulated random variables X, Y, and Z; are all drawn
independently.

(i) From w;a we compute the multiplier A; by solving
wia = V(jA, Aj&ja)-

(ii) We then simulate aja by

Ve, . fi
V(JA,)\J‘&A) ' ;'Xj

where the X; are IID log normal random variables of mean 1.

aja = =Aiéja
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(iii) We simulate an increment Z;11 ~ N(0,A) of the Wiener
process, and a log normal random variable Y;4; of mean 1, and
use these to define wjaqa via

winsa = VIA + A, Xjéjara) Y

where {iara = &ja exp(—(r + 3%)A — iZj41).
(iv) Repeat.

Once we have simulated the sequence (wy, a4)i=o0,a,...Na, We estimate the
parameters # by minimising

3 (o 4 1 AN a1 0)E)
o V o
where the A; are determined from the w;a via

WA = V(]Av )‘ijA; 0)7

that is, the model portfolio choice for simulated observation j is the the
optimal continuation given wealth at that point in time (which is different
from what the model would have predicted given wg and &g ;a).

(c) The preferences are characterised by

-mn <
](Z)_{ Woz for z <1

] wezT® forz>1 7

where 1/7, is the relative risk aversion coefficient for wealth less than wy,
and 1/4; is the relative risk aversion coeflicient for wealth greater than wy.

Step (i) of the simulation requires the inversion of the function V(¢,-). We
can here compute V (¢, -) and its derivatives explicitly, although the inversion
is done numerically. Since log &y ~ N(—n7, i*7), where n = r + i*/2, 7 =
T — t, we have

2 =2 d
V(t,;L‘) — /6—(y+nr) /24 Tey](xey)iyl
(2mjitr)3
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—logx T 7”]27')2
—logz (y + 777')2 ) I_’Yldy

+ w / ex — + vy — T

of p( 27 YN | g
1-— 2n — (1
= woz " exp ( T( 70)( 772 H ( 70))) (I)(Z )
1-— 2n — (1 —
+ wox—% exp (_T( 71)( 772 © ( 71))) ® (Zl)

where ®(z) = 1 — ®(z) = P(Z1 < z) is the standard normal distribution
function, and where

_ —logz +n7 — (1 — )i’

= NG

As with most numerical optimizations, some care is required to avoid infea-
sible and numerically stable regions. Our estimators (based on the netlib
program acm500 and transformed +’s) start from points far from the opti-
mum and always converge under the criterion given the algorithm. Included
in the algorthim is an ability to restart the algorithm (with different starting
values) when it wanders into part of the parameter space where the numer-
ical calculation of derivatives has an overflow, and this was done manually
in fewer than 1% of the draws in the most extreme case.'® Any remaining
shortcomings of our optimization procedure (for example because of numer-
ical rounding error or too forgiving a convergence criterion) probably give
us less precision than the full optimum, and therefore our results potentially
understate the potential precision of the estimates.
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true | mean | stddev | min 5% 25% | 50% | 5% | 95% | max

Y% | 0.2 | 022 | 0.028 | 0.06 |0.18 | 0.20 |[0.22 |0.24 | 0.26 | 0.31

v | 0.2 | 0.20 | 0.058 | 0.17 |0.18 |0.19 |0.20 | 0.20 | 0.20 | 1.94

Y% | 0.2 | 0.20 | 0.029 |0.15 |0.18 | 0.19 |0.20 | 0.20 | 0.21 | 2.05

v | 03 | 030 | 0.009 |0.08 |0.29 |0.30 |0.30 |0.30 |0.31 |0.33

Y% | 0.2 | 0.20 | 0.017 | 0.17 |0.19 |0.20 |0.20 |0.21 | 0.22 | 0.67

7| 0.5 | 0.50 | 0.019 |0.25 |0.48 |0.49 |0.50 | 0.50 |0.51 | 0.56

Y% | 0.3 | 0.29 | 0.038 | 0.06 |0.21 |0.28 |0.30 |0.31 |0.33 | 0.39

v | 0.2 | 021 | 0.063 |0.19 |0.20 | 0.20 |0.20 | 0.21 | 0.21 | 1.95

Y% | 0.3 | 030 | 0.012 | 0.07 |0.28 |0.29 |0.30 | 0.30 | 0.31 | 0.39

v | 03 | 030 | 0.011 |0.25 |0.29 |0.30 |0.30 |0.30 |0.31 | 1.26

Y% | 0.3 | 030 | 0.010 |0.23 |0.29 |0.30 |0.30 |0.30 |0.31 | 0.48

7| 0.5 | 0.50 | 0.009 |0.33 |0.49 |0.50 |0.50 |0.50 |0.51 | 0.59

Y% | 0.5 | 049 | 0.062 | 0.06 | 0.46 | 0.49 | 0.50 | 0.51 |0.53 | 0.38

v | 02 | 021 | 0.089 |0.18 |0.19 | 0.20 |0.20 | 0.20 | 0.21 | 1.96

Y% | 0.5 | 050 | 0.017 | 0.08 |0.48 |0.49 |0.50 |0.51 |0.52 |0.59

v | 03 | 030 | 0.022 |0.24 | 0.29 |0.30 | 0.30 |0.30 |0.31 | 1.30

Y% | 0.5 | 0.50 | 0.011 |0.44 |0.48 |0.49 |0.50 |0.51 | 0.52 | 0.62

7| 0.5 | 0.50 | 0.006 | 0.40 |0.49 |0.50 |0.50 | 0.50 |0.51 | 0.54

Table 1: These simulations illustrate estimation of two preference parameters
from observations of a single portfolio in each of 60 months before maturity.
The first parameter, 7, is the inverse of the relative risk aversion parameter
below the initial wealth, and the second parameter, 1, is the inverse of the
relative risk aversion parameter above the initial wealth. The interest rate is
6.5%, and the market portfolio has a mean return of 16.5% and a standard
deviation of 20%, all on an annual basis. Each simulation is based on 10,000
draws, and assumes a noise with standard deviation 2% in the portfolio

strategy.
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true | mean | stddev | min 5% 25% | 50% | 5% | 95% | max

Y% | 0.2 | 0.22 | 0.031 | 0.07 |0.17 |0.20 |0.22 |0.24 |0.27 | 0.34

v | 0.2 | 0.20 | 0.040 | 0.17 | 0.18 | 0.19 | 0.20 | 0.20 | 0.21 | 1.23

Y% | 0.2 | 0.20 | 0.019 | 0.12 | 0.17 | 0.19 | 0.20 | 0.21 |0.23 | 0.33

v | 03 | 030 | 0.014 | 0.21 |0.28 |0.29 |0.30 |0.31 |0.32 |0.39

Y% | 0.2 | 021 | 0.029 |0.14 | 0.18 | 0.20 | 0.20 | 0.21 | 0.23 | 2.04

7| 05 | 049 | 0.027 | 0.13 | 047 |0.49 | 0.50 |0.51 |0.52 |0.61

Y% | 03 | 029 | 0.042 | 0.06 |0.21 |0.27 |0.29 | 0.31 |0.34 | 0.50

v | 0.2 | 0.21 | 0.056 | 0.17 | 0.19 | 0.20 |0.20 |0.21 |0.21 | 1.33

Y% | 0.3 | 030 | 0.029 | 0.06 |0.26 |0.29 |0.30 |0.31 |0.34 | 2.00

7| 03 | 030 | 0.012 | 0.06 |0.28 |0.29 |0.30 |0.31 |0.32 | 0.39

Y% | 0.3 | 030 | 0.022 | 0.20 | 0.27 | 0.29 | 0.30 | 0.31 | 0.33 |0.74

7| 0.5 | 050 | 0.018 |0.28 |0.47 |0.49 |0.50 | 0.51 |0.52 | 0.66

Y% | 0.5 | 049 | 0.076 | 0.06 |0.39 | 0.47 |0.50 | 0.52 |0.56 | 1.98

v | 0.2 | 0.21 | 0.099 | 0.17 | 0.19 | 0.20 | 0.20 | 0.20 | 0.22 | 1.99

Y% | 0.5 | 0.50 | 0.033 | 0.05 |0.45 |0.48 |0.50 |0.52 |0.55 | 0.65

7| 03 | 030 | 0.031 |0.24 |0.28 |0.29 [0.30 |0.31 |0.32 | 2.04

Y% | 0.5 | 0.50 | 0.028 | 0.35 | 0.46 | 0.48 | 0.50 | 0.52 | 0.55 | 0.75

7| 0.5 | 050 | 0.016 | 0.38 |0.47 |0.49 |0.50 |0.51 |0.52 | 0.64

Table 2: These simulations are similar to the simulations in Table 1 except
that there is more noise (standard deviation 5% instead of 2%) in the portfolio
strategy (either in the observer’s measurement of the market risk exposure
or in the manager’s compliance to the strategy). Useful estimation can still
be obtained from a single draw.
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