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3
1. Let B be a BM(RB), that is, a Brownian motion on R . For the

. 3
moment, regard BO as some fixed (deterministic) point of IR

Let o denote the 'area integral' of B, defined by

(1.1 a, = a, + BSXdBS :

(0,t]

3
where uo is some fixed point of W , the X symbol signifies the vector

product, and d signifies the Itd differential.

Since
i j i3] . s
alal,ad) = —ptplat 7P,
the path of o determines the path of § modulo a global (in t) sign

change ft+ -B, For some remarkable examples of this kind of explicit

construction of one process in terms of another, see Stroock and Yor [1].

We wish to investigate how much information the process |a| carries
about {, but with a differenf interpretation of how this might be measured.
In a sense we want to know how much freedom we have to 'perturb' § without

changing |u|. Now, let us be more precise.

(1.2) THEOREM. Let E be a Brownian motion relative to the augmented

~ 3
filtration determined by B. Let « be a fixed point of R

, and let

0




Suppose that lat| = |atl, Vt. Then, on each component interval of the

~

open set {t: at.Bt # 0}, the function B is a constant orthogonal

transformation of §.

A much more complete description of the relation between B and E

will be given later.

Two of the results used in the proof of the theorem, Lemmas 1.3 and

1.4, have independent interest.

(1.3) LEMMA. We have the following skew-product representation:

2 4
IutXBt] = r( {Iusl + IBS| lds),

0,t]

where r 1is a BES(2) process. Thus, atXBt can never be zero at a positive
time,
Recall that s BES(2) process is a process identical in law to the radial

part of 2-dimensional Brownian motion,

For the next lemma, we need some notation:
0(3) denotes the group of orthogonal 3X3 matrices,
o(3) denotes the Lie algebra of skew-symmetric 3x3 matrices,
a superscript T signifies transpose,

1.2 .3 3

for a vector B = (B ,B ,8") im W", V(B) denotes the element of 0(3}

defined by
2
0 —83 B
vy = | 82 o -8,
-Bz 81 0

go that V(B)Yy = BXy, v ¢ RB.



We let 2 denote the Stratonovich differential.

(1.4) LEMMA. Let £ and B be two BM(I§5 processes. Suppose that

~

1.4 (i) B is a Brownian motion relative to the augmented filtration

generated by R,

1.4 (ii) |8 vt.

Then there existis a previsible (¢3) wvalued process H such that

(1.5) d58 = HdB,

o~

(1.6) B

N

HR

Now make the extra assumption that H iz a continuous semimartingale.

Define a 3*3 matrix valued process A by

(1.7) A =0, 0A=H 3H.

Then A E§A 0(3) wvalued, and

(1.8) @4 HOA,

Moreover, A solves an It equation

(1.9) dA = V(B)dx + V(A)ydt ,

where x 1is a l-dimensional semimartingale with canonical decomposition

(1.10) dx = A.dB + df ,

3
where A is a previsible R valued process, and f is a continuous

(adapted) process of finite wvariation.

The switching between Ité and Stratonovich is a little annoying.
However, (1.5) and (1.10) must be Itd equations, while the Stratonovich form
of (1.7) and (1.8) best brings out their meaning. In Stratonovich form,
equation (1.9) reads:

5A = V(R)Ix +-%V(A)at.



We emphasize that the 'converse' to Lemma 1.4 holds. Thus, take an
3
arbitrary previsibie R valued process A, and an arbitrary continuous
adapted process f of finite variation, Define x wvia (1.10), and A

{with AO = 0) via (1.9). Next define H wvia (1.8) with & an arbitrary

0
element of O(3). Finally, define 8 via (1.6). Then (1.5) holds, so

3
that B is a BM(R ) satisfying 1.4(i); =and, of course, 1,4(ii) follows

from (1.6).

Notation. We continue to use
Greek letters for processes with valueg in 'ms,
capital Roman letters for 3%3 matrix valued processes;
small Roman letters for real valued processes.
For continuous semimartingales x and y, we write Itd's formula for
the derivative of a product as
d(xy) = xdy + (dx)y + dxdy.
gso that dxdy = d{x,y). This extends to 3xX3 matrix valued continucus semi-
martingales as
d(XY) = XdY + (dX)Y + dXdy,

where, with X; denoting the (i,j) th compoment of X,
(dXdY)i d X X
K < L) -

We make much use of the standard formulae:
(oxB)xy = (a.v)B - (B.v)u, (axB).y = a.(Bxy),
(axBY. (yx8) = (. YI{(R.S) -~ (@.8)Y(B.Y),

ete..
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3
2. Proof of Lemmag 1.3, Let B be a BM(R ), and let o be its area
integral. Define
2 2
a = [8]7, b = (a.B), c = |af”.

It is intuitively clear that the triple (a,b,c) 1is Markovian, and this is

easily confirmed from the following calculations:

(2.1) da = 2B8.d3 + dB.dB

]
]

28.d8 + 3dt,

(2.2) db

0.dpf + (da).B + (do).(dR) = o.dB,

{(2.3) dc = 2c.da + do.do

I

2o, (BxdB) + (BxdB).(BxdB)

2(axB).dR + 2adt,

What clinches the Markov property is of course that
- 2 2 2 2 2
(2.4) u = laxp]® = |a|®]B{® - (@.8)° = ac - b".

Thus the diffusion process (a,b,c) has drift (3,0,2a2), and diffusion
matrix
43 2b 0

2b c 4]

We do not actually use here the Markovian nature of (a,b,c), but it did

suggest the skew-product formula.

From (2.4},

(2.5 du ade + cda + dadc - 2bdb - dbdb

]

2{a(oxB) + ¢ - bol.dR + (232 + 3¢ - c)dt

z{ls|2(axs) + (oxB)xal}.dB + 2(|B|4 + ]u|2)dt.
Thus

du

2(|B|4 + |a|2)dt = d(local martingale),
dudu = 4u(|8|4 + |a|2)d§.

It is well known that these properties imply Lemma 1.3.



3.

Proof of Lemma 1.4.

~

8

Let & and E be two BM(]R3)

processes, with

8 Brownian motion relative to the augmented filtration determined by B.

Then the martingale representation theorem guarantees that there exists a

previsible O0(3) wvalued process H such that
(3.1) dB = HdB.
Suppose further that |Et| = |Bt|, Yt Then
d(B.B) = 2B.dE + 3dt = d(B.8) = 28.dB + 3dt.
Hence
~ e Tru
8.dR = (H B).dR = BR.dB

TN "~
and so H B = 8, equivalently, B = HR,

H on a set of measure zero, we do hot a
that
(3.2) 8 = HB (for all t).

Now, we assume that H 1is a continuous

derivative of (3.2), and comparing with

(3.3) (dH)B + dHAR = 0.

It will be convenient for a moment

for almost all t. If we modify

ffect (3.1). Hence, we can assume

semimartingale. Taking the Ité

(3.1), we see that

to work with Stratonovich derivatives.

From

HE® = I,
it follows that

(OHE. + HOH® = ¢, so i N Y b
Let
Ay =0, A= mlom = -3,
Then, obviously, A 1is o0(3) valued, and
{3.4) dH = H3A.
The Itd form of (3.4) reads
1

dH 2

HdA + —dHdA.



Thus (3.3) now yields
(3.5) (HAA)B + 3 (dHAA)E + dHS = O,

Let M be the martingale part of the 3%3 matrix valued process A, and
let F be the continuous finite-variation part: A =M + F. On looking
at the martingale part of (3.5), we see that

(HdM)BE = 0, so (dM)B = 0.

It is easy to deduce, using the fact that M is skew-symmetric, that

dM = dmV{B),
where m is & l-dimensional martingale. Necessarily, we have
dm = A.dP

3
for some previsible R valued process A.

We now have

dH = HV(E)dm + d(finite variation),

80
dHAA = HdAdA = Hamam =8 A !%v(g)2at,
and
(dHAAYR = 0.
Moreover,
dHdf = HV(B)dmdf = HV(B)Adt.
Substitution in (3.5) now gives
(HGF)B + HV(BR)Adt = O,
so that

(dF)B + V(B)idt = (dF)E5 - V{(A)pdt = 0,
Since TF 1is skew-symmetric, we must have
dF = V(8)df + V(A)dt,

where f 1is a l-dimensional continuous finite-variation process.

Lemma 1.4 is proved.



3 e~
4, Proof of Theorem 1.2. Let B be a BM{(IR ). Let B be another

BM(]RB) relative to the augmented filtration generated by 8. We assume

equality of the moduli of the area integrals:
~ 2 2
1% = [o, %, ve
By equation (2.3),

(4.1) 2(axR).dB + 2|B|“dt = 2(axp).dR + 2|B|“dt.
Equating the finite-~variation parts gives:

(4.2) B .1 =18 vE.

A}
We can now apply the trivial first part of Lemma 1.4 to show that, for
some previsible O(3) valued process H,

~

(4.3) dp

Il

HAdpB,

(4.4) E

If

HB

On equating martingale parts at (4.1), we obtain
(axB) .dB = (axB).ds,

whence (compare the argument leading to (3.2))

(4.5) axB = H(axB),

for almost all ¢, and it can be assumed that (4.5) holds for all t.

It is obvious from (4.5) that
~N2 2
loxB|™ = [oxg| .
Take Itd derivatives using (2.5) to see that (again via the argument

leading to (3.2))

1B12 @By + @xByxa = [8|%H(axR) + H{(axB)xa} ,
so that, from (4.2) and (4.5),
121%8 - @.Bya = |a|®HR - (a.8)Ha.

Thus, because of (4.4) and the given fact that |&1 = |u|, we have

~ o~

(4.6) (a.B)a = (o.R)Ha.



Take the scalar product of (4.6) with £ = HB, and recall that H

preserves scalar products, to find that

@52 = @
For a.B # 0, detine e = (E.E)t/(u.e)t = #1. Then (4.6) implies that
(4.7) a = eHa.
But
(axB) = H(axB) = (det H) (Ho)x(HB) = (det H)e(axf),
and, for w.B # O,

et = deth.

It is obvious from the definition of e +that e is continuous, and therefore
constant either at 1 or at -1, on component intervals of the set

{t: ut.Bt = 0}.

The reader will be able to see that, to finish the proof, we need only

show that if aox BO # 0, and e is globally constant (et = eo, vt),
then Ht = Ho, vt,
S6 assume that uo><80 # 0, and et = eO, Yt. Recall from Lemma 1.3

that then ut><8t # 0, Vvt. Then Ht is uniquely determined by the fact

that it maps the orthogonal triple

(Bt’ o X Bt’ th (utXBt))

into the triple

~

(Byy oy ¥ Byy egBy * (@ xB0).

Hence H 1is a continuocus semimartingale, and all the results of Lemma 1.4

apply. We use the notation of that Lemma.
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From (4.7},
o = eOHa,
so that
da = e Hde + e (dH)a + e dHda.
But
‘da = Bxdf = (HB)x(HdB) = (detH)Hda = e fid
so0 that
(dH)o + dHdo = O.
Thus,
(4.8) (HdA + %deA)a + dHdo = O,

Looking at the martingale-differential part of (4.8), we see that

HV(B)odm = H(Bxa)dm = 0, where dm = Xi.dR.

Since PBx o 1is never zero, it follows that dm 0. Thus, (4.8) reduces
to the statement
HV(BYadf = 0 = H(Bxa)df,

and, again because fX o is never zero, we have df = 0. Thus,

dA = 0, and Ht = HO’ Vt.

5. Example, The proof of Theorem 1.2 shows clearly how to comnstruct an

example to show what can 'go wrong' when o.8 = 0,

Let B be a BM(ﬁRB) with 80 =0, and let o = JBde . Let

T = inf{t > 1: 0 .8 = 0}.

t 't
Let
I, t <17,
H =
t J, tzT,

where J 1is specified by
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J(BT) ='BT, J(uTXBT) = uTX BT, J(YT) = -~y

T
where
2
_ » w = o
L BT (aT BT) |BT| T '
since a_.BT = 0. Note that
L
J(aT) = —aT
Set 80 =0,
= d
Bt [ Hs 8s
Then
- By t <1,
t
+ - = t =T
BT J(Bt BT) JBt’
Define o = Jﬁxdﬁ. Then, since detI = 1 and detd = -1,
- do, t<T,
da = t
t
- t =
Jdat, T
Thus
ut, t <71,
a, =
- - = - >
o J(ut uT) Jut, t T
Finall o | = Vt.
ina Y. Iu'.t| |at|’
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