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Abstract. Volatility estimators based on high, low, opening and closing prices have
been developed, and perform well on simulated data, but on real data they frequently
give lower values for volatility than the simple open-close estimator. This may be
due to the fact that for real data, the maximum (or minimum) price is often at the
beginning or end of the day. While this could not happen if the observed process
was log Brownian, it could happen if the observed process were log Brownian, but
observed only to the nearest penny. We develop the theory of such approximations

to derive the corrected versions of the basic estimators.

KEY WORDS: Brownian motion, Rogers-Satchell estimator, Fuler-Maclaurin

expansion, Wiener-Hopf factorisation.

1 Introduction

However imperfect the log-Brownian model for the movement of a share price may

be, this model is widely used in practice, and at least for long enough time scales
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the assumptions are not too bad (monthly returns look reasonably log-normal, but
daily returns do not, for example). The crucial parameter of the model is the
volatility o, and various ways are proposed for estimating it. If one views the log-
price process X; = oB; + ct at regular intervals of length ¢, then the differences
X(né) — X((n—1)é), n=1,..., N, should be independent Gaussians with common
mean ¢d and variance o2§. If one computes the sample variance to estimate 02§
(and thence o?), one comes up with an estimate of o which is not independent of 8,
as recent empirical work of Joubert & Rogers [3] on tick data shows; typically, the
estimate of 0% decreases with §. This calls into question the usefulness of estimating
from high-frequency data; it should be possible to exploit the wealth of information
available in such data, but as yet it is not clear how to do this. Accordingly, it
makes sense to make the best estimate one can from daily data, specifically the
open and close prices. However, the high and low prices each day are also readily
available in financial newspapers; and various estimators based on the open, close,
high and low prices have been proposed; see, for example, Parkinson [5], Garman
& Klass [1], Rogers & Satchell [6]. The present study arose from the empirical fact
that the crude estimator of % based only on open and close prices is consistently
higher than any of the estimators based on open, close, high and low; see Rogers,
Satchell & Yoon [7]. One possible explanation for this may lie in the often-observed
phenomenon that one of the end points of the interval [low, high] can be the open or
close price, which would be impossible if we were truly observing Brownian motion
with a drift. In this paper, we attempt to understand this apparent discrepancy
by assuming that a log Brownian motion drives the share prices along, but we only
observe the Brownian motion at times when it has moved a distance ¢ from where

it was last observed!. More precisely, if the log share price is
Xt = O'Bt + ct
we define 7 = 0 and

Top1 = Inf {t > 7, 0 | Xy — X(70)] > €},

IThis is a natural assumption if we realise that a share price will only be quoted to an accuracy
of a penny. Strictly, we should observe X only when exp(X) has changed by &, but the linear

approximation is acceptable in view of the relatively small percentage changes under discussion.



and

(1) Xt(a) = ZX(Tn)]{TnSt<Tn+1}'

n>0

If Xt(a) = sup{Xff) : 0 < u < t}, we shall copmute in Section 2 an expression
for EX;E)(Xt(E) — Xt(s)) and examine its behaviour as € | 0. The reason for being
interested in this is found in the remarkable fact (see [6]) that

ot

2) EX{(X, = X) = Vit

for all drifts ¢! We find the small-¢ asymptotics. In the case ¢ = 0 (which is a

comparatively innocent restriction in view of the typical values of ¢ and ¢), for fixed

t>0,
P 2% 2t 5e? e’
3 EXEXD - xO) T ey [ 24 =

In Section 3 we present and discuss the results of a simulation study which compares
the quantum-adjusted Rogers-Satchell (RS) estimate with other adjustments of the
estimator. The first thing one notices from the results is that (with a few exceptions
when the mean number of price moves in a time interval is small) all the adjustments
of the RS estimator agree to two significant figures. The second fact is that the
sample standard deviation of the various adjusted RS estimators is similar for all,
and is of the order of 30-50 % of the sample standard devialion of the naive open-
close estimator. The adjusted RS estimated values are also quite accurate; of 60
estimates computed for shares that move on average at least 10 times per day, only
5 were more than 2 standard deviations away from the true value, and 22 were
within 1 standard deviation. None of the results explain the empirical observations
of Rogers, Satchell & Yoon [7]; but in the conclusions we discuss various possible

explanations for this discrepancy.
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2 Asymptotic expansion of the mean value of the

estimator

The original proof of (2) proceeded via the introduction of an independent
exponential random variable 7' with mean A™!, and then invoking the Wiener-Hopf
factorisation of the Lévy process X to compute EXr(Xt — X7). While this is not
the only approach to (2) (a direct calculation with Brownian transition densities
is perfectly feasible), in the context studied here, the Wiener-Hopf approach pays
considerable dividends. In particular, it is clear that the process (X (7, A T'))n>0 is

a random walk stopped at an independent geometric time, and therefore

(4) X:(FE) and X:(FE) - X:(FE) are independent;

(5) —(Xj(f) — Xj(f)) has the same law as ng) = inf {Xff) 0<u< T} .

The proof of this may be found in Greenwood & Pitman [2] (see also Rogers &
Williams [8], 1.29). Thus we have

(6) EXPXF = X7) = BXY BKY - X))

so our first goal is to find an expression for the mean of X(TE) (and of —ng), although

this follows from the first, by changing the drift ¢ to drift —c). But
BXY) = ) PIXY) > ne]
n>1
(7) = &Y P(H,.<T),

where H, = inf{t : X; = a}. It is well known that for X; = o B; + ¢t

(8) P(H,. <T)= Fexp(—AH,.) = exp {—ns(x/cQ + 20?2 — c)/aﬂ \

(9) PH_,.<T] = exp {—na(\/ 2+ 2 o? + c)/aﬂ
— e—2nsc/cr2P[]_In6 < T]



Abbreviating v = v/¢? + 2A0?, we have therefore

(10)  BIXPIE-XP) = &) el N oot

n>1 m>1

r=2

m=1

—2rec/o?

“|1—e

_ 2

— EZ{HTW_l}P[HrngL
r=1

at least if ¢ # 0. Now we can invert the Laplace transform by inspection of (6) and

(10) to discover that (with b = 2¢/o?)

3 3 1 — 6—7’b£
@ ¢ _ yOy _ 2
(11) EXP(X - xP) =) {1_6_65 —1}P[Hra§t]-

r=1

We introduce the notation for x € R, ¢ > 0

¢ 2
|| (x — cs) ds
Fa)=PlH, <t]= | expd— ,
(z,1) = P[H, < 1] ey 52y s

which is the well-known Brownian first-passage distribution (see, for example Rogers

& Williams [8], 1.9). In what follows, we shall mostly be thinking of ¢ > 0 as fixed,
so we shall generally abbreviate F(z,t) to F'(z). Clearly, F(z) decreases from 1 to
0 as z increases from 0 to co. In terms of this notation, (11) becomes
2
vie vie £ € —rbe
(12)  EXO(XP - X)) = ——N (1 —e)F(re) — 2> F(re).

T
r>1 r>1

The first term of the right-hand side is approximately

(13) %/0 (1-— e_bz)F(:z:)dw
1 [ t r — cs)? ds
— Z/o (1 —e™) (/0 ;exp{—( 2023) } —27rs3>dw
1 [t ds * x (x — cs)?
B Z/o V2rs3 /_oo o P <_ 20?s ) da
ot
- 2

which is in agreement with (2), since the second term on the right-hand side of (12)

—gAmemx

5

is (to first-order in ¢)



However, we can be much more precise than this; the sums appearing on the right-
hand side of (12) are Riemann-sum approximations to certain Riemann integrals,
and the closeness of approximation is the subject of the Euler-Maclaurin expansion
(see, for example, Olver [4], Chapter 8). This says that for any integer m > 1, if
¢ :[0,a] — Ris C™*! then

(14) w(a) —p(0) —¢ Z ¢'(ne) = Z e {pM(a) — oM (0)}e" + ™R, 1

where ¢ = a/N is tending to 0, and the remainder term R,,.; remains bounded.

The coefficients ¢, are determined by the relation

, 0
(15) d et = 10— 5—

r>1
ek

k>0

where (By)r>o are the Bernoulli numbers, defined by the above relation (15). The

first few non-zero Bernoulli numbers are

(16) B():l, B1 :—l BQZ

27

In fact, the present application requires the Euler-Maclaurin formula applied to the
unbounded interval [0,00), and for this we require some bounds on the behaviour

at infinity of F'(z). The following result is much more than we need.

PROPOSITION 1 The function F is C* on R*, and for each n > 0

(17) sup |F(z)] exp{(z — ¢1)?/30%} = K,, < <.
x>0

Proof We take first the region 0 < x < 2¢t and write

Fo)=1- o) = [ Zen{-EoR 2

as

S
_ T ds
e—cz‘/o'2 F(CE) — / _e—x2/20-2se—c2s/20'2
1

27 53

o
Z/OO z [ —z2\" 1 _25/202 ds
et — —e -

., o0 \20%s) n! Vorsd

n>0




the power series being absolutely convergent because

<z x? 25/20° ds <
—ex e — < 0.
P P\ 202 Vo s2

The analyticity of F in [0, 2¢t] follows.

For the region = > 2¢t, we have

2 d

_C.I/U2F _ z 2 S
¢ (2) /0 o [ 20%s 202 | \/ors3
d
= / exp U—I—CQ/U)} Vodv

Hence

H(z) = ;c_l/Qe_“/C’Z)F(:r:)

= /Ooexp{ :C (v—l—cQ/v)} dv )
o/t 202 V2no?v

The smoothness of F'in [2c¢t, 00) is now evident, and the boundedness of exp{(z —

ct)? /301y F)(z) is easy to deduce.

The Euler-Maclaurin expansion on the infinite interval reads

(18) p(o0) = (0) =Y _@'(ne) =Y e,e™ {9 (00) — p(0)}.

n>1 r>1

If we now assume ¢ > 0 and define functions ¢o and @1 by ¢o(0) = ¢1(0) = 0, and

po(z) = b7 (1 —e7)F(x), i(z) = F(z),
then using the Euler-Maclaurin expansion (18) and observing that goén)(oo) =
gogn)(oo) = 0 for all n > 0, we conclude from (12) that

vie)r vle e bg 0-2t r AT
190  BEXOXY -x) = _bs{—+ crwé><o>}

2
r>1

—e {/000 F(z)dz + Z crergogr)(O)} .

r>1

Taking the terms in the expansion up to order &%, and using the fact that
/ F(z)dx = / P[X; > z]dz = EX,,
0 0
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we obtain

v(e) s vi(e € G-Zt ct — 52 QCzt
OEXI(XT - x[7) = -+ [——EXt] T [J—+5]

2 2 12 | o2
_i < n /OO o—%s/20 ds B gtc? 24 ﬁ]
12 0'2 t g'w/27r33 900'4 0'2
+0(e%)

We have in general that
EXI( — X0) = EXO(XE— X1),

so that the mean of the analogue of the Rogers-Satchell estimator XIS(E)(X;E) —Xt(e)) +
Xl(f) (XEE) - Xt(a)) is just twice the expression on the right-hand side of (20). A word
of caution: do not use (20) for ¢ < 0! The left-hand side of (20) should be (and is)
the same for —c as for +¢, but the expression on the right-hand side is only correct

for ¢ > 0. The remedy is obvious; substitute |¢| throughout the right-hand side.

While no closed-form expression holds for ¢ # 0, for the case ¢ = 0 we can establish

_ ), < (e . ol /2t  5e? & 1
25
—————— 4+ 0().
360(2706t3)2
Is it reasonable in practice to proceed on the assumption that ¢ = 07 If not,

we could always make some simple estimate of ¢ and proceed using that, but
the dependence of the integral terms on the right-hand side of (20) on ¢ and o
complicates matters. Taking some typical values, ¢ = 0.2 and ¢ = 0.12 would be
reasonable for the annualised volatility and returns, and the unit of time ¢ = 1/250
would correspond to a trading day. With these values, we consider the coefficients of
the powers of € on the right-hand side of (20). The term in ¢ has ¢t/2 = 0.00024, and
EX; = \/% = 0.05046 when ¢ = 0, so the contribution of ¢t/2 is unimportant.
For the term in &? we have 2¢*t/0? = 0.0029, which is negligible compared with 5.
The term in & has a contribution ¢/a* = 3, to be compared with the integral, which
is equal to Q/W = 63.08 when computed with ¢ = 0. It is clear then that for
typical values of the parameters the assumption that ¢ = 0 cannot do much damage,

and will simplify the calculations.



What is the impact of this in practice? If we saw on each day j(j = 1,..., N) the
high price S;, low price I;, opening price O; and closing price C;,?> we could use

these to form the Rogers-Satchell estimator of o?:

(22) Ths = N D (S = 0)(S; = C)) +(C; — L)(0; — 1)},

using ¢ = 1/250 since we are assuming 250 trading days per year. Knowing the size

e of the price-quantum, we would now modify this estimate to 52 which solves
2 bt &P !
23 52 = Gps + 2660 — — — + —(2r6H7) 2.
( ) O, JRS—I_ g o 6t + 3( TO, )

This is an expansion in powers of ¢/y/f (which should not be surprising!)

Abbreviating h = £/+/1, we have

8  5h? I
24 52 = ¢ —|—h&£\/j———|-7.

Observe that \/8/7 = 1.596 and (1871')_1/2 = 0.1330, so that (&5\/18—7r)_1 will be of
the order of 0.66. In order that this approximation should be good, we shall want &
to be reasonably small. If we took a typical value for ¢ as being approximately 0.2,
we would want h to be at most 0.1 to ensure that the order-A term was not too large
compared with &3, corresponding to & being of the order of 1072. Such figures are

reasonable; a $ 10 share quoted to the nearest penny would give such an e.

3 Numerical study

The effects of this correction and others were investigated numerically, as follows.
Firstly, a value for o is picked, and a unit of time 7 fixed; we report in detail on
the case where 0 = 0.2 and 7 = 1/250, corresponding to a unit of time equal to one
trading day. Next, a value of ¢ is chosen, in the light of two considerations. One is
that e should be a realistic proportion of a share to stand for a price quantum (and

for this the range 107% to 10~* looks appropriate); the other is that the expected

?We mean log prices, of course. The opening price now enters because we have up to now

assumed that the process X begins at zero.



number of price movements in the day, 70?/¢?, should also be reasonable. With
7 = 1/250, o = 0.2, this ranges from 1.6 (¢ = 107?) to 1600 (¢ = 10~*), which

covers any imaginable real situation.

The distribution of T" = inf{u : |B,| = 1} is not known in closed form, but
expressions for it can be found; using one of these, the distribution function F
of T was computed and stored numerically. The inverse distribution /="' was also
computed and stored numerically, and then a sequence Uy, Us, ... of pseudo-random
U(0,1) numbers was generated. From these, random variables Ty = F~'(Uy) were
computed, and used as follows. The partial sums S, = Y ;_,(¢/0)*T} are computed
sequentially, and at the same time a random walk (&,,) is computed; the increments
are independent of (5,) and take values +¢ with equal probability. The running
values of &, = SUPj<, &k and §n = infi<, & are computed and held. The random
walk is stopped once S, exceeds the unit of time 7. At this point, the values
of (&€, §) are stored, and constitute the result of the first simulation. The whole
procedure is repeated to produce a total of N simulations; let the outputs be denoted

(vaHj7Lj)7 .7 = 17"'7N7 with Hj > Xj > L]"

For each period j, we compute estimates v, ; of the variance o2, where the label a
belongs to the index set A = {OC, RS, RS1, RS2, RSQ}. The five estimators are

defined as follows.
(i) The open-close estimator, voe. This is the most primitive; we take
voc,; = XJQ/T

If X; were the value of ¢ B at time 7, then we would know that Fvoc = o?. Since

it is formed from the embedded random walk, we know that in fact
Fvoc < 02;

but we have no closed-form expression for the bias as a function of ¢ and 7 (if we
had, we would have a closed-form expression for the first-passage density of the BES
(3) process). Accordingly, we let voc stand as a (biased) estimator of ¢%; as ¢ | 0,

the bias decreases to zero.

10



(ii) The Rogers-Satchell estimator, vgs. This time, we use the definition
vrs; = {H;(H; — X;) + Li(L; = X;)}/7.
As before, as ¢ | 0 the bias decreases to zero.

(iii) The first adjusted Rogers-Satchell estimator, vgs;. In [6], a simple
correction to the Rogers-Satchell estimator was presented. The situation was that an
underlying Brownian motion was viewed at time intervals of 6, and the sup and inf
of the resulting embedded random walk were recorded — but this sup underestimates

the true sup! To compensate for this, we find the positive root s of the quadratic

S

2(H - L 1) 2616
E— )a1f8+ —
T T

where a; = V27 {3 — (V2 —1)/6}, by = (44 37)/48, and then set
VRs1 = 5°.

Note that in [6], only the case where 7 = 1 was discussed, but the general story is

easily deduced.

While this adjustment is inappropriate (the quantisation is happening here in the
spatial variable, not time), we still compute it. What should be the value of 67
Surely we can do no other than choose the mean time between price moves, namely
e?/o?; we simply take the {rue value for this. This seems the best we can do in the
circumstances; in any application of the adjustment of Rogers & Satchell, we would
need to rely on some additional information on the volume of trading, and what
that information was would determine how we chose §. Explicitly,

a(H — L)\/g—l— {ai(H - L)*6+ (H(H— X))+ L(L — X))(r — 2616)}%
T —2b6 ’

[N

(UR51) =
(iv) The second adjusted Rogers-Satchell estimator, vgsy. The adjustment
of [6] was intended to compensate for the discrepancy A between the true sup of
the Brownian motion and the sup of the embedded random walk. But in this case,

since the discretisation is happening in space, the discrepancy A is simply the sup

11



of a Brownian motion conditioned to hit —e before il hils +¢.> Routine calculations

with the scale function give us

2
PIA < z|hit — e before +¢] = -
etz
so that
E[Alhit — ¢ before +¢] = ¢(2log2 —1) = eay,
E[A?hit — ¢ before +¢] = &*(3 —4log?2) = &°b,.

Since the sup of the Brownian motion would be H* = H + A, and the inf would be

L* =L — A, where A is an independent copy of A, we get

H(H*—X)+ L*(L*—X) = HH-X)+L(L—-X)+AQ2H - X)+ A*
—A(2L — X) + A?

by taking expectations we get on the left-hand side o7 and on the right-hand side
TEvrs + 2E(H — L)EA + 2EA*.
Accordingly, we define vgsy by

TURs2 = TUrs + 2(H — L)cay + 2&%by.

(v)  The ‘quantum’ correction to the Rogers-Satchell estimate, vgsg.

Recalling the relation (24), we find the unique positive s solving the (cubic)
) h \/§ 5h? N h3
sS=w sy/— — — ,
" T 6 s/I8t

2
VRSQ = S .

and then define

As before, h = ¢/+/T.

We then compute v, = N1 Zﬁ\le vy ; for each o € A, together with the associated

sample standard deviation

N 3
SD, = {N—1 > wli— vg}

i=1

3Gtrictly speaking, this would not be true if the sup were attained at the last move of the price,

but we have no worries over ignoring this!
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and the results obtained are shown in Table 1. Also in Table 1 we display
the corresponding estimates for various aggregations of the simulation data, to
investigate how the estimates react to changes in e, or changes in 7. To form
aggregates in ¢, we pick some integer m bigger than 1, and only view the random
walk when it moves across the grid m € Z (the values H;, L; for this aggregated
problem can be computed from the corresponding values for the original problem,
but the simulation has to separately keep track of the X; for each aggregation of

interest). The time aggregation is done in the obvious way.

The results in Table 1 demonstrate a number of conclusions.
1. The standard deviations of adjusted RS estimators typically are about 30-50
% of the standard deviation of the simple estimator voc;

2. All the adjusted RS estimators agree well, usually to at least two significant

figures;

3. For high intensity conditions, all the high-low estimators are good (a 95 %

confidence interval contained the true value in 55 cases out of 60 observations);
4. The estimators improve as ¢ decreases and 7 increases;
5. Usually vgs1 > vRsa;
6. With these simulations, we always find vrsg > vrs1-

To explain points 5 and 6, we observe that to find vgsi, we solve (for standard

deviation s)

H-L 5 € S—I—Qb g2 52
VT 'al\/F.a Y o2

(25) s’ = vrs +

to find vRrge we solve

(26) s* = vgs +

and to find vrsg we solve

8 9 5
2 2 pnedosi] o —
( 7) i RS S\/j( \/7_' 6



We note that E((H — L)/\/T) = /8/7, and a; = 0.45361 > a, = 0.38629. Also,
by = 0.27968 > by, = 0.22741. Thus if we replaced 2 throughout (25) by 1, (which
should be approximately true), it is clear the estimator vgs; would typically be
bigger than vgrge. Likewise, since 2a; = 0.90722 < 1, we are not surprised to see
(comparing terms up to first order in (25) and (27) that vgsg comes out typically
higher than vgs;. Also, since (H — L)/+/7 in (25) gets replaced by its mean value
in (27), we are not surprised to see the variance of vgsg slightly smaller. However,

the low values of vpo¢, even with small e, are surprising, and demand explanation.

4 Conclusions

We have constructed an adjustment to the basic RS estimator introduced in [6] which
performs well in simulation. Its behaviour is very similar to that of other adjustments
of the RS estimator, as has been shown both theoretically and numerically. The
simulation study demonstrates conclusively that we should always prefer to use one
of these estimators rather than the crude open-close estimator, since the standard

deviation of the open-close estimator is typically 2-3 times larger.

We have not found an explanation for the observation of Rogers, Satchell & Yoon
[7], who found that when used on actual daily data, the open-close estimator gave
values that were quite a lot higher than those from all estimators based on highs
and lows as well. One possible explanation for this is as follows. Suppose that on
different days the log share price is moving like a Brownian motion with a drift that
may change from day to day (there may be justification for this, in that there tends
to be some negative correlation between the price changes on successive days). Thus
on day j, the log share price is Xy = 0B, + ¢jt, (j —1)6 <t < j6, where the drift
¢; 1s decided at the beginning of the day. Suppose for simplicity that the process
c is stationary, with mean zero. Now if this were the case, then the mean of the
open-close estimator would be Elvoc| = o + E[c?]/§, whereas the mean of the
RS estimator would be o2, because of the remarkable fact that the RS estimator

is an unbiased estimator of the variance for all values of the drift. If this were

14



the explanation of the observations of Rogers, Satchell & Yoon, then we have an

additional reason to use one of the adjusted RS estimators; because the variance

2

that should be input to any calculation of option prices should be the value o*,

not the higher value E[vpoc]. Set against this is the observation that any high-low
estimator is making use of properties of the Brownian model much more heavily
than the simple open-close estimator, which must be expected to be more robust to

departures from the Brownian model.

Another possible interpretation of the failure to explain the observed data may be
that the Brownian model of share prices is not a good model of reality, and a model
with some sort of stochastic volatility may well do a better job; this is undoubtedly
true, but it seems hard to think of a qualitative mechanism which would produce
the observed tendency for high or low prices to occur at the beginning or end of a

day.
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TABLE 1a. Estimates of 1000?%, with ¢ = 4 x 10~*
(Average 1000 price moves per day)

Days/block | voc | vrs | vrsi | vrsz | vo
1 4082 |3.816 |3.999 |3.971 | 4.006
(0.077) | (0.030) | (0.031) | (0.030) | (0.030)
5 3.941 [4.050 |4.135 |4.120 |4.138
(0.153) | (0.067) | (0.068) | (0.067) | (0.067)
25 3.943 | 3.974 |4.011 [4.005 |4.013
(0.351) | (0.149) | (0.150) | (0.149) | (0.150)
60 3.179 | 4.285 |4.309 |4.304 |4.311
(0.391) | (0.243) | (0.244) | (0.243) | (0.244)
250 3.624 [3.542 |3.552 |3.551 | 3.553
(1.357) | (0.342) | (0.343) | (0.342) | (0.342)

TABLE 1b. Estimates of 10002, with ¢ =8 x 10~*
(Average 250 price moves per day)

Days/block | voc VRS VRS1 VRS2 vQ

1 4.080 3.619 3.982 3.927 3.991
(0.076) | (0.029) | (0.032) | (0.030) | (0.031)

) 3.933 3.958 4.126 4.097 4.131
(0.153) | (0.066) | (0.069) | (0.067) | (0.068)

25 3.944 3.932 4.005 3.994 4.009
(0.351) | (0.149) | (0.152) | (0.150) | (0.151)

60 3.169 4.252 4.301 4.291 4.304
(0.389) | (0.242) | (0.244) | (0.242) | (0.243)

250 3.585 3.521 3.541 3.539 3.544
(1.357) | (0.345) | (0.346) | (0.345) | (0.346)
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TABLE 1c. Estimates of 1000?, with ¢ = 16 x 1074
(Average 62.5 price moves per day)

Days/block | voc | vrs | vrsi | vrsz | vo

1 4074 |3.255 |3.969 |3.862 | 3.967
(0.076) | (0.028) | (0.034) | (0.030) | (0.032)

5 3.944 [ 3.777 | 4.110 |4.055 |4.118
(0.154) | (0.065) | (0.070) | (0.067) | (0.068)

25 3.942 [ 3.867 |4.013 |3.990 |4.020
(0.349) | (0.150) | (0.155) | (0.152) | (0.153)

60 3.189 | 4.224 |4.323 [4.304 |4.328
(0.387) | (0.240) | (0.245) | (0.241) | (0.243)

250 3.568 |3.513 |3.555 | 3.551 | 3.560
(1.315) | (0.341) | (0.344) | (0.342) | (0.344)

TABLE 1d. Estimates of 10002, with ¢ = 40 x 10~*

(Average 10 price moves per day)

Days/block | voc VRS VRS1 VRS2 vQ

1 4.053 2.320 4.105 3.773 3.899
(0.075) | (0.027) | (0.042) | (0.031) | (0.036)

) 3.936 3.316 4.139 3.997 4.129
(0.154) | (0.063) | (0.076) | (0.066) | (0.070)

25 3.961 3.641 4.004 3.947 4.015
(0.348) | (0.146) | (0.158) | (0.150) | (0.153)

60 3.183 4.084 4.329 4.282 4.341
(0.385) | (0.236) | (0.248) | (0.240) | (0.243)

250 3.610 3.423 3.525 3.516 3.538
(1.338) | (0.350) | (0.357) | (0.352) | (0.356)
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TABLE 1le. Estimates of 10002, with ¢ =80 x 10~*

(Average 2.5 price moves per day)

Days/block | voc | vrs | vrsi | vrsz | vo

1 4030 | 1.175 |5.455 |3.910 |3.408
(0.075) | (0.026) | (0.076) | (0.033) | (0.048)

5 3.914 | 2628 |4.276 |[3.954 | 4.098
(0.154) | (0.059) | (0.087) | (0.066) | (0.076)

25 3.978 |3.239 |3.946 |[3.841 |3.952
(0.353) | (0.142) | (0.167) | (0.149) | (0.157)

60 3.191 |3.865 |4.355 |4.259 | 4.369
(0.393) | (0.224) | (0.248) | (0.231) | (0.238)

250 3.846 | 3.300 |3.504 |3.487 |3.525
(1.355) | (0.355) | (0.371) | (0.359) | (0.368)

19




