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Estimating variance from high, low, and closing prices

L. C. G. Rogers and S. E. Satchell

University of Cambridge

1. Introduction. A common assumption in modelling financial markets is that the price

of a share at time t may be expressed as exp(σBt + ct) where B is a standard Brownian

motion on R, and c ∈ R, σ ≥ 0 are fixed unknowns. In the Black-Scholes option pricing

formula, the exact value of the drift c in the log-price process Xt ≡ σBt + ct is not

important, but the variance σ2 enters explicitly into the formula, and, in practice, must

be estimated in order to use the formula. If one saw the whole of the sample path of X ,

one could deduce σ2 from the quadratic variation, but this is not helpful to a real observer

who will see at best the price at a sequence of closely-spaced times. A practically-useful

estimator of σ2 will use only a little readily available information; and the most readily

available information from a day’s trading of a share is the opening and closing prices,

together with the day’s highest and lowest prices. Usually the number of shares traded is

also easily available.

Parkinson [4] first raised this question, then Garman and Klass [2] considered the

problem of building an estimator based on the high, low and closing prices in the spe-

cial case c = 0 (so that X is just a multiple of Brownian motion). They found the

minimum-variance estimator among a class of quadratic estimators, but this estimator has

two drawbacks:

(1.1) the estimator will be biased if used in the case of non-zero c;

(1.2) in simulations, the numerical value obtained is not as close to the true value as it

should be.

The first drawback is to be expected: the estimator was built on the assumption c = 0. The

second drawback arises because in simulation, one models Brownian motion by a random

walk with Gaussian steps (say). Now the maximum of the random walk will in general be

smaller than the maximum of the Brownian motion – one is, after all, only viewing the

Brownian motion at a discrete set of times. Even taking observations at closer and closer

intervals of time corrects this only gradually; between any two times, the Brownian motion

wriggles very wildly! This snag was identified by Garman and Klass, and also by Beckers

[1].
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Let St ≡ sup{Xu : u ≤ t}, It ≡ inf{Xu : u ≤ t}, and define the estimator

(2) σ̂2 ≡ S1(S1 −X1) + I1(I1 −X1).

In this paper, we shall prove the following (see section 2):

(3) E[St(St −Xt) + It(It −Xt)] = σ2t.

The important thing is that the right-hand side is independent of c! Thus the estimator

works just as well for non-zero c, getting round (1.i). Have we had to pay much for this in

the case c = 0, where the Garman-Klass estimator is optimal? Not really: if σ̂2

GK is the

Garman-Klass estimator

σ̂2

GK ≡ k1(S1 − I1)
2 − k2(X1(S1 + I1)− 2I1S1)− k3X

2

1 ,

where

k1 = 0.511, k2 = 0.019, k3 = 0.383,

then

(4) var(σ̂2) = 0.331σ4, var(σ̂2

GK) = 0.27σ4.

Now this gets around (1.i), but what of (1.ii)? This problem remains; but we shall propose

an intelligent correction to the estimators which performs well in simulations. The analysis

of this corrected estimator is carried out in section 3, and in section 4 we present some

numerical results.

2. The unbiased estimator of σ2. Let T be an exponential random variable with

mean λ−1, independent of B. Then the law of ST is again exponential, with parame-

ter α ≡
(√

c2 + 2λσ2 − c
)

/σ2, and the law of −IT is exponential, with parameter β ≡
(√

c2 + 2λσ2 + c
)

/σ2. Now it is one of the features of the classical Wiener-Hopf factorisa-

tion of the Lévy process X that ST and ST −XT are independent, and ST −XT has the

same law as −IT (see, for example, Greenwood & Pitman [3]). Hence immediately

EST (ST −XT ) = ESTE(ST −XT )

= −ESTEIT

= 1/(αβ)

= σ2/2λ.
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But EST (ST −XT ) =
∫∞
0

λe−λtdtESt(St−Xt) so inversion of the Laplace transform gives

ESt(St −Xt) = σ2t/2

and a symmetric argument gives EIt(It −Xt) = σ2t/2, from which (3) follows.

To compute the variance of this estimator, we must calculate

E(ST (ST −XT ) + IT (IT −XT ))
2

= ES2

T (ST −XT )
2 + 2EST IT (ST −XT )(IT −XT ) + EI2T (IT −XT )

2

= 2ES2

TE(ST −XT )
2 + 2EST IT (ST −XT )(I −XT )

= 8/α2β2 + 2EST IT (ST −XT )(IT −XT )

since ST and ST −XT are independent exponentials of parameters α, β respectively;

= 2σ4/λ2 + 2EST IT (ST −XT )(IT −XT ).

The cross-moments are hard to compute in the case of non-zero drift, but in the case c = 0,

Garman and Klass have computed enough of the moments to evaluate these; the answer

var(σ̂2) = 0.331σ4 comes from applying this.

Notice that the L2 triangle inequality gives a quick estimate for EY 2, where Y =

Y1 + Y2 = S1(S1 − X1) + I1(I1 − X1), because, as follows easily from the joint law of

ST (ST − XT ), EY 2

1
= EY 2

2
= σ4/2; thus EY 2 ≤ 2σ4 and var(σ̂2) ≤ σ4. Moreover, this

bound is, of course, valid for any drift c, and not just c = 0, which was assumed in the

exact computation above.

3. Correcting the estimator. We shall now propose a correction to the estimators of

section 2 which largely overcomes (1.ii). The amount by which the random-walk simulation

underestimates S1 will depend on the fineness of the mesh chosen; the more steps taken

by the random walk in the time interval [0,1], the better the approximation to S1 we shall

obtain. So we shall assume that we know the number N of steps taken by the random-walk

during [0,1], and shall take h ≡ 1/N . Thus if X is the log-price process, we shall assume

that we see the maximum and minimum of {Xkh : 0 ≤ k ≤ N} and X1, and must estimate

S1 from this information.

Let us just review the situation. If S1 denotes the maximum of X by time 1, and

S denotes the maximum of the embedded random walk, then we have that

S1 = S +∆,
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say, so that

S1(S1 −X1) = ∆2 + (2S −X1)∆ + S(S −X1).

Similarly, if I denotes the minimum of the random walk by time 1, then I1 = I− ∆̃, where

∆̃ has the same law as ∆, and so

I1(I1 −X1) = ∆̃2 − ∆̃(2I −X1) + I(I −X1).

Thus the estimator σ̂2

1
is

(4) σ̂2

1
+ (∆2 + ∆̃2) + ∆(2S −X1)− ∆̃(2I −X1) + S(S −X1) + I(I −X1).

Now we shall show that E∆ + aσ
√
h for some a (in fact, a ≡

√
2π

[

1

4
−

√
2−1

6

]

), and that

E∆2
+ bσ2h for some other constant b (in fact, b ≡ (1 + 3π

4
)/12). Thus we propose to use

the estimator σ̂h where σ̂h is the positive root of the equation

(5) σ̂2

h = 2bσ̂2

hh+ 2(S − I)aσ̂h

√
h+ S(S −X1) + I(I −X1),

obtained from (4) by replacing ∆, ∆̃,∆2 and ∆̃2 by their expected values. All that remains

is to compute the values of a and b.

Suppose that the maximum value S taken by the random walk (Xkh)
N
k=1

is x,

achieved at time t, a multiple of h. We shall ignore the possibility that X may take a value

> x outside of the interval [t− h, t+ h], so that the underestimate ∆ ≡ S1 −S = S1 − x is

assumed to be well approximated by sup{Xs : |t− s| ≤ h} − x. If Hx ≡ inf{u : Xu = x},
we have

P [Hx ∈ ds|t− h < Hx < t,Xt = x]/ds

= hx(s)pt−s(0)
/

∫ t

t−h

hx(u)pt−u(0),(6)

where pt(·) is the transition density for X , and hx(·) is the density of Hx. Since the

interval [t−h, t] is typically small, we shall assume that hx(s) is effectively constant through

this interval, and since pt−s(0) = exp(−c2(t − s)/2σ2)/
√

2πσ2(t− s) is approximately

(2πσ2(t− s))−
1

2 , we shall assume that the conditional density (6) can be approximated by

(7) P (t−Hx ∈ du|t− h < Hx < t,Xt = x)/du + (4uh)−
1

2 .

Now we consider the piece of the path of X between Hx = t−u and t. This is a Brownian

bridge of duration u, and as such may be represented as

(8) Yx = σ
(

1− s

u

)

W

(

us

u− s

)

, 0 ≤ s ≤ u,
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whereW is a standard Brownian motion (see, for example, Rogers & Williams [5], Theorem

IV.40.3). The distribution of the maximum of Y is easy to compute:

P [Ys > y for some 0 ≤ s ≤ u] = P [σWv > y(u+ v)/u for some v ≥ 0],

= P [Wv − yv/uσ > y/σ for some v ≥ 0]

= exp(−2y2/uσ2)

by the well-known result on the law of the maximum of a downward-drifting Brownian

motion. Hence if Z ≡ sup{Xs : t− h ≤ s ≤ t} − x, we have

P (Z > α|t− h < Hx < t,Xt = x)

=

∫ h

0

e−2α2/uσ2

P [t−Hx ∈ du|t− h < Hx < t,Xt = x]

=

∫ h

0

e−2α2/uσ2 du

(4uh)
1

2

=

∫ ∞

h−1

e−2α2s/σ2 ds

(4hs3)
1

2

.(9)

Hence we deduce

(10) E(Z|t− h < Hx < t,Xt = x) = σ(2πh)
1

2 /8.

If now we set Z ′ = sup{Xs : t ≤ s ≤ t + h} − x, then the situation for Z ′ is essentially

the same as for Z, and Z and Z ′ are independent conditional on Xt = x and Xs < x for

|s − t| > h. The same approximation to the distribution of Z ′ can be used, so we shall

assume that Z and Z ′ are independent, with distribution given by (9). The amount by which

the random walk maximum under-estimates the maximum of X is thus (approximately)

Z ∨ Z ′, whose mean value we now compute, by calculating

E(Z ∧ Z ′) =

∫ ∞

0

dα

∫ ∞

h−1

e−2α2s/σ2 ds

(4hs3)
1

2

∫ ∞

h−1

e−2α2u/σ2 du

(4hu3)
1

2

=

√
2π

16h
σ

∫ ∞

h−1

ds

∫ ∞

h−1

du(s3u3(s+ u))−
1

2

=

√
2πh

16
σ

∫ ∞

1

dv

∫ ∞

1

dy(v3y3(v + y))−
1

2

=

√
2πh

16
σ

∫

1

0

ds

∫

1

0

dt(s+ t)−
1

2

=
√
2πh(

√
2− 1)σ/6,
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after some calculation. Hence we have

E(Z ∨ Z ′) = E(Z + Z ′ − Z ∧ Z ′)

= σ
√
2πh

[

1

4
−

√
2− 1

6

]

.(11)

Thus we have shown that E∆ + E(Z ∨Z ′) = aσ
√
h, where a is the constant stated above.

It remains to prove that E∆2
+ E(Z ∨ Z ′)2 = bσ2h.

Recalling the distribution (7) of Z, we compute firstly

EZ2 =

∫ ∞

0

2αdα

∫ ∞

h−1

e−2α2s/σ2 ds

(4hs3)
1

2

= σ2

∫ ∞

h−1

1

2s

ds

(4hs3)
1

2

= σ2h/6,(12)

and then

E(Z ∧ Z ′)2 =

∫ ∞

0

2αdα

∫ ∞

h−1

e−2α2s/σ2 ds

(4hs3)
1

2

∫ ∞

h−1

e−2α2u/σ2 du

(4hu3)
1

2

= σ2

∫ ∞

h−1

ds

(4hs3)
1

2

∫ ∞

h−1

du

(4hu3)
1

2

1

2(s+ u)

=
σ2h

8

∫

1

0

ds

∫

1

0

dt

√
st

s+ t

=
σ2h

4

(

1− π

4

)

,(13)

after some calculation. Hence immediately from (12) and (13)

E[(Z ∨ Z ′)2] = σ2h

{

1

3
− 1

4

(

1− π

4

)

}

=
σ2h

12

{

1 +
3π

4

}

,

which is to say

E∆2 = σ2ρh = σ2
h

12

{

1 +
3π

4

}

.

Note that we may equally well apply this correction to the Garman-Klass estimator,

and in this case obtain the estimator σ̂2

GK,h, where σ̂GK,h solves

σ2 = k1(S + I + 4(S − I)aσ
√
h+ 2σ2h(b+ a2))− k2X1(S + I)

+ 2k2(IS − (S − I)aσ
√
h− a2σ2h)− k3X

2

1
.
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4. Numerical results. The simulations simulated a random walk with Gaussian step

distribution. If N = 1/h is the number of steps taken by the random walk in [0, 1], then

each has mean ch and variance σh. We standardised on 400 simulations for each choice

of the parameters (σ2, c, N) chosen. The tables show the values of the estimators together

with a 95% confidence interval in each case.

If one looks at the entries of the table in which the confidence interval contains the

true value, one gets a good picture of how well the four estimators perform relative to one

another. In Table 1, we see that of the 16 readings for σ̂2

h, all but one are successful (that

is, the confidence interval contains the true value.) The corrected Garman-Klass estimator

is successful in 3 out of 4 cases when the drift is 0, but not successful in any other cases.

This is not surprising, in that we know that σ̂2

GK,h is designed to be good in precisely this

situation. We see also that for N = 20, 100, the uncorrected and corrected estimators are

widely different, and even for N = 500 the uncorrected values lie outside the confidence

intervals of the corrected estimators. For N = 2500, the uncorrected values lie in the

confidence intervals of the corrected estimators. For c = 3, only σ̂2

h is any good at all.

In Table 2, we give the performance of the estimators in a situation where the

variance and drift are more typical of the financial applications. We take some typical

figures for the annual variance of the log-price and for the return (if the return is 5%,

say, we assume that the price process Xt ≡ exp(σBt + ct) satisfies E(X1) = 1.05X0) is a

Brownian motion with drift 0.05.) We then consider a single day’s trading of that stock.

Again, σ̂2

h is doing well, but now we see also that σ̂2

GK,h is doing comparably well; the

drift is small compared to the variance, and so the Garman-Klass estimator is not really

suffering. All the same, it is clear that the corrected estimators are performing far better

than the uncorrected ones; indeed, for variance 0.2, none of the trials with the uncorrected

estimators is successful!

Table 3 takes annual data for the log-price of some stock; it shows what happens if

one attempts to estimate the variance of log-price from the annual high, low, and closing

prices. In this situation, typically the number of shares traded will be large, and so one

expects that the effect of using the correction will be less pronounced. This indeed turns

out to be the case, but if one looks at the success rates of the uncorrected estimators, then

one sees that taking N = 500 is generally not enough to save the estimator, and even when

N = 2500 the estimator may be significantly in error. The Garman-Klass estimator is still

doing well here, even though the size of the drift (compared to the variance) is larger.
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Table 1: simulation performance of the four estimators, variance 1, 400 simulations.

c N σ̂2 σ̂2

h σ̂2

GK σ̂2

GK,h

0.000 20 0.689 ± 0.045 0.992 ± 0.061 0.678 ± 0.039 1.023 ± 0.058

0.000 100 0.856 ± 0.051 0.999 ± 0.058 0.856 ± 0.047 1.020 ± 0.057

0.000 500 0.968 ± 0.059 1.035 ± 0.062 0.962 ± 0.051 1.038 ± 0.055

0.000 2500 0.921 ± 0.051 0.948 ± 0.052 0.911 ± 0.044 0.942 ± 0.046

1.000 20 0.649 ± 0.049 1.016 ± 0.069 0.795 ± 0.050 1.274 ± 0.083

1.000 100 0.805 ± 0.054 0.967 ± 0.062 0.948 ± 0.055 1.152 ± 0.068

1.000 500 0.914 ± 0.059 0.986 ± 0.062 1.035 ± 0.055 1.124 ± 0.060

1.000 2500 0.904 ± 0.056 0.936 ± 0.057 1.049 ± 0.058 1.089 ± 0.060

2.000 20 0.540 ± 0.052 1.026 ± 0.075 1.026 ± 0.057 1.790 ± 0.099

2.000 100 0.784 ± 0.063 1.006 ± 0.074 1.331 ± 0.073 1.678 ± 0.092

2.000 500 0.948 ± 0.066 1.047 ± 0.070 1.424 ± 0.072 1.568 ± 0.080

2.000 2500 0.964 ± 0.058 1.008 ± 0.060 1.435 ± 0.074 1.497 ± 0.077

3.000 20 0.390 ± 0.046 1.070 ± 0.073 1.462 ± 0.073 2.748 ± 0.138

3.000 100 0.720 ± 0.066 1.007 ± 0.079 1.807 ± 0.085 2.339 ± 0.109

3.000 500 0.840 ± 0.065 0.963 ± 0.070 1.870 ± 0.088 2.089 ± 0.098

3.000 2500 0.922 ± 0.066 0.979 ± 0.069 1.980 ± 0.096 2.079 ± 0.101
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Table 2: simulation of the four estimators on daily stock prices, 400 simulations.

return N 104σ̂2 104σ̂2

h 104σ̂2

GK 104

Annual variance 0.1

= daily variance 0.0002739

0.000 20 1.887 ± 0.124 2.717 ± 0.166 1.858 ± 0.106 2.804

0.000 100 2.346 ± 0.140 2.738 ± 0.160 2.345 ± 0.130 2.795

0.000 500 2.653 ± 0.160 2.835 ± 0.169 2.636 ± 0.139 2.844

0.050 20 1.881 ± 0.132 2.729 ± 0.175 1.876 ± 0.109 2.857

0.050 100 2.280 ± 0.141 2.662 ± 0.159 2.307 ± 0.124 2.745

0.050 500 2.506 ± 0.140 2.676 ± 0.148 2.455 ± 0.123 2.645

0.100 20 1.818 ± 0.129 2.652 ± 0.174 1.857 ± 0.113 2.831

0.100 100 2.166 ± 0.134 2.524 ± 0.151 2.167 ± 0.116 2.578

0.100 500 2.655 ± 0.146 2.833 ± 0.154 2.580 ± 0.127 2.779

0.150 20 1.758 ± 0.123 2.549 ± 0.165 1.758 ± 0.103 2.679

0.150 100 2.262 ± 0.147 2.644 ± 0.167 2.291 ± 0.129 2.732

0.150 500 2.611 ± 0.154 2.787 ± 0.162 2.527 ± 0.130 2.723

Annual variance 0.2

= daily variance 0.0005479

0.000 20 3.684 ± 0.269 5.335 ± 0.361 3.643 ± 0.221 5.542

0.000 100 4.721 ± 0.281 5.512 ± 0.319 4.732 ± 0.254 5.638

0.000 500 5.009 ± 0.302 5.349 ± 0.319 4.917 ± 0.267 5.299

0.050 20 3.765 ± 0.281 5.512 ± 0.371 3.852 ± 0.227 5.896

0.050 100 4.513 ± 0.293 5.276 ± 0.332 4.545 ± 0.254 5.423

0.050 500 5.094 ± 0.303 5.444 ± 0.320 5.033 ± 0.265 5.428

0.100 20 3.709 ± 0.275 5.392 ± 0.371 3.738 ± 0.234 5.686

0.100 100 4.474 ± 0.265 5.231 ± 0.300 4.553 ± 0.23 5.429

0.100 500 4.802 ± 0.273 5.129 ± 0.289 4.758 ± 0.246 5.127

0.150 20 3.683 ± 0.277 5.299 ± 0.369 3.613 ± 0.225 5.456

0.150 100 4.679 ± 0.300 5.452 ± 0.338 4.663 ± 0.254 5.548

0.150 500 5.061 ± 0.303 5.406 ± 0.320 4.989 ± 0.271 5.379
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Annual variance 0.3

= daily variance 0.0008219

0.000 20 5.423 ± 0.387 7.876 ± 0.517 5.491 ± 0.325 8.359

0.000 7100 6.880 ± 0.454 8.054 ± 0.521 7.009 ± 0.425 8.369

0.000 500 7.888 ± 0.451 8.431 ± 0.477 7.833 ± 0.409 8.447

0.050 20 5.782 ± 0.455 8.413 ± 0.607 5.874 ± 0.371 8.960

0.050 100 6.755 ± 0.424 7.878 ± 0.476 6.755 ± 0.340 8.049

0.050 500 7.426 ± 0.413 7.937 ± 0.436 7.363 ± 0.367 7.940

0.100 20 5.684 ± 0.403 8.230 ± 0.534 5.631 ± 0.324 8.566

0.100 100 6.604 ± 0.404 7.729 ± 0.459 6.726 ± 0.361 8.026

0.100 500 7.812 ± 0.450 8.342 ± 0.473 7.660 ± 0.372 8.257

0.150 20 5.090 ± 0.384 7.445 ± 0.513 5.209 ± 0.320 7.985

0.150 100 7.094 ± 0.435 8.256 ± 0.490 6.946 ± 0.364 8.262

0.150 500 7.917 ± 0.453 8.458 ± 0.477 7.815 ± 0.386 8.426
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Table 3: simulation of the four estimators on annual stock prices, 400 simulations.

Annual variance 0.100

return N 100σ̂2 100σ̂2

h 100σ̂2

GK

0.000 500 0.0972 ± 0.0061 0.1039 ± 0.0064 0.0957 ± 0.0050 0.1032

0.000 2500 0.0914 ± 0.0048 0.0941 ± 0.0049 0.0933 ± 0.0044 0.0965

0.050 500 0.0956 ± 0.0055 0.1020 ± 0.0058 0.0933 ± 0.0049 0.1005

0.050 2500 0.0981 ± 0.0058 0.1010 ± 0.0059 0.0967 ± 0.0049 0.1000

0.100 500 0.0924 ± 0.0054 0.0987 ± 0.0057 0.0915 ± 0.0049 0.0987

0.100 2500 0.0947 ± 0.0054 0.0975 ± 0.0056 0.0952 ± 0.0049 0.0985

0.150 500 0.0962 ± 0.0063 0.1031 ± 0.0067 0.0986 ± 0.0060 0.1065

0.150 2500 0.0993 ± 0.0058 0.1023 ± 0.0060 0.1020 ± 0.0056 0.1055

Annual variance 0.200

return N 100σ̂2 100σ̂2

h 100σ̂2

GK

0.000 500 0.1782 ± 0.0102 0.1907 ± 0.0108 0.1794 ± 0.0090 0.1937

0.000 2500 0.2004 ± 0.0118 0.2063 ± 0.0121 0.1977 ± 0.0104 0.2044

0.050 500 0.1905 ± 0.0112 0.2035 ± 0.0118 0.1883 ± 0.0098 0.2030

0.050 2500 0.1972 ± 0.0124 0.2033 ± 0.0127 0.2010 ± 0.0109 0.2079

0.100 500 0.1770 ± 0.0116 0.1893 ± 0.0122 0.1787 ± 0.0100 0.1929

0.100 2500 0.1959 ± 0.0109 0.2017 ± 0.0111 0.1955 ± 0.0101 0.2021

0.150 500 0.1884 ± 0.0111 0.2013 ± 0.0118 0.1877 ± 0.0099 0.2024

0.150 2500 0.2015 ± 0.0111 0.2075 ± 0.0114 0.1986 ± 0.0098 0.2053

Annual variance 0.300

return N 100σ̂2 100σ̂2

h 100σ̂2

GK

0.000 500 0.2931 ± 0.0184 0.3132 ± 0.0195 0.2896 ± 0.0158 0.3124

0.000 2500 0.2825 ± 0.0152 0.2911 ± 0.0156 0.2862 ± 0.0134 0.2960

0.050 500 0.2733 ± 0.0165 0.2922 ± 0.0174 0.2730 ± 0.0146 0.2946
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0.050 2500 0.2889 ± 0.0170 0.2976 ± 0.0174 0.2880 ± 0.0155 0.2978

0.100 500 0.2696 ± 0.0150 0.2883 ± 0.0158 0.2693 ± 0.0130 0.2907

0.100 2500 0.2825 ± 0.0164 0.2907 ± 0.0168 0.2757 ± 0.0142 0.2850

0.150 500 0.2752 ± 0.0158 0.2941 ± 0.0167 0.2750 ± 0.0140 0.2967

0.150 2500 0.2829 ± 0.0158 0.2915 ± 0.0162 0.2850 ± 0.0146 0.2948
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