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ABSTRACT

This chapter explains how volume of trade appears to influence the
log-return distribution of assets. To compensate for this is rather
difficult. One strategy if you wish to predict prices is to consider the
joint distribution of price and volume and derive the marginal
distribution of price. This will be typically more fat-tailed than the
normal. One can base confidence intervals on the predicted price
based on the marginal distribution which will be smaller than under
normality. The point estimate of price should be the same. A simpler
alternative is to work with the conditional distribution of price given
volume. To predict prices you can derive a confidence internal, but this
will depend upon predictions of tomorrow’s volume which may prove
rather troublesome.

5.1 INTRODUCTION

For many years both financial economists and statisticians have been
concerned with describing the behaviour of stock prices. The price changes
in a stock market can be regarded as a result of the influx of new information
into the market and of the re-evaluation of existing information. At any point
in time there will be many items of information available. Thus, price changes
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between transactions will reflect the interactions of many different items of
information. For example, in the prediction of price changes the difficulty
comes from the uncertain arrival of new information as well as the random
quantity of information at each point of the time series under study. Even
though there is a remarkable discrepancy between the concepts of behaviour
of stock prices held by professional stock market analysts, on the one hand,
and by academics on the other, the form of the distribution of stock returns is
important to both groups because it is a crucial assumption for mean-variance
portfolio theory, theoretical models of capital asset prices, and the prices of
contingent claims. In this chapter we examine the distribution of daily and
weekly logarithmic returns of the FT100, FT30 and the firms that make up the
FT30 over the period of 1988 to 1990. We uncover the usual results found by
authors working with American data, namely that logarithmic returns
measured either daily or weekly do not look normally distributed.

We then briefly discuss the literature that relates the price distribution to the
volume of shares traded, a topic which has been examined in great detail by
financial economists. The contribution of this chapter is to use volume, rather
than time, as the forcing variable in our stochastic process for prices. Based on
this assumption that business activity (volume) is driving the price and not
time, we ‘change the clock’ of our process and re-evaluate the distribution of
logarithmic returns when a certain volume of trade has elapsed, equal to the
average weekly volume. This brings about a significant change in the
distribution. It now appears much more normal and adds evidence to the
hypothesis that share prices follow a subordinated log-normal process where
the conditioning variable is volume. In Section 5.2 we present a review of the
existing literature and the mathematical framework. In Section 5.3 we discuss
normality testing, stock price indices and the price-volume relationship. In
Section 5.4 we present our conclusions. We include definitions of the different
normality tests in an appendix.

5.2 EARLY RESEARCH

Past studies of time series of prices at short intervals on a speculative market
such as that for corporation shares, indices or futures on commodities are
usually compatible with the log-normal random walk model which we shall
describe next. We shall present this model in its continuous time version, the
form in which it is currently most popular in financial economics. We assume
that s(¢), the price of the asset at time ¢, is generated by

Os(1) = alt,s)s(t)dt + o(t,s)s(t)dW (1) (1)

where « and ¢ represent instantanecous mean and volatility, respectively, and
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W (1) is standard Brownian motion (BM). The use of equation (5.1) is based on
the hypothesis that the continuous Brownian motion is followed during
periods between transactions and during periods of exchange closure, even
though prices cannot be observed in such intervals. It is well known that, if
a(t,s) = a and o(t,s) = o where « and o are constant, equation (5.1) has the
solution

s(t) = s(0) exp[(a — %ol)l +o(W(t) — W(0))] (5.2)

and that in the logarithmic form,

In s ) (a—Lo®) +o(W(t)— W(t—1)) (5.3)
s(t—=1)

We see from equation (5.3) that In(s(z)) follows a random walk with drift and

that errors are i.i.d. N(0,0?), i.e.

Ins(r) =Ins(t— 1) + (o — 1o%) + £(1) (5.4)
where
(1) = o(W(1) = W(t—1)) ~ N(0,0%)

The increments in the price process are stationary in the mean and
independent. If the mean is zero, this is exactly the random walk model.
Here, the price changes are not absolute price changes but changes in the
logarithmic prices which are independent of one another because stock
market investors are interested in proportionate changes in the value of
stocks.! Henceforth we will use the notation S(¢)=In(s(z)) and
AS(t) = In(s()) — In(s(z — 1)).

Besides empirical realism, the random walk model has a theoretical basis. If
price changes are predictable, then alert speculators can make money until
these opportunities are removed. Based on this argument, the efficient markets
hypothesis implies that security prices reflect all publicly available information.
This was first shown by Bachelier in 1900, when he derived the diffusion
equation of a random walk model for security from a condition that
speculators should receive no information from past prices. Later, Kendall
(1953) confirmed that each period’s price change was not significantly

'The reasons for using changes in logarithmic price is well explained in E. Fama (1965): the
change in logarithmic price is the yield, with continuous compounding, from holding the security
for that day; taking logarithms neutralizes most of the price level effect since the variability of
simple price changes is an increasing function of the price level; for changes less than £15% the
change in logarithmic price is very close to the percentage price change.
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correlated with the preceding period’s price change nor with the price change of
any earlier period. While Kendall worked with serial correlations for each
series separately, Osborne (1959) worked with ensembles of price changes,
which appeared to be approximately normally distributed with a standard
deviation proportional to the square root of the length of the period. This
proportionality of the standard deviation of price differences to the square root
of the differencing period is a characteristic of a random walk and had been
pointed out much earlier by Bachelier (1900). In Bachelier’s case, however, the
differences were arithmetic, while in Osborne’s they were logarithmic.

Normality of asset returns was a popular assumption in investigations of
investors’ behaviour. For this reason in the early stage of stock market study,
the normal distribution was considered as a good description of stock market
returns. The normal distribution arises in many stochastic processes involving
large numbers of independent variables. The traditional justification of log-
normality is based on a multiplicative version of the Central Limit Theorem
because the change of returns within a certain interval is a product of each
individual transaction change of returns. The normal distribution has special
virtues; it is linked with the classical Central Limit Theorem; it is stable,
meaning any linear combination of independent normals is itself normal; and
it is analytically tractable.

In the general theory of random walks the form or shape of the distribution
need not be specified. Previous authors (Clark, 1973; Epps and Epps, 1976;
Fama, 1963; Mandelbrot, 1963; Tauchen and Pitts, 1983) have found that the
price changes AS, =1In(s(¢)) — In(s(¢ — 1)), however independent, are not
normally distributed. Instead of having the normal shape, which would be the
case if the components in AS; were almost independent and almost identically
distributed, AS, is consistently more leptokurtic (is more peaked and has fatter
tails) than normality indicates. Also, several authors have noted that the
nature of the return distribution may change as the period length changes.
Assuming that the distribution is stationary with finite mean and variance, this
would imply that the leptokurtosis observed in the distribution of daily returns
will become less severe as we increase the interval of measurement. This is
because we are adding together independent increments with a finite variance
which allows an application of the Central Limit Theorem. However,
conditions sufficient for the Central Limit Theorem are not met by the
influences which make up AS,. The standard Central Limit Theorem holds
only when the number of random variables being added is at least non-
stochastic; in the case of speculative markets, this restriction may be violated.
The number of individual effects added together to give the price change
during a certain interval is random, making the standard Central Limit
Theorem inapplicable. Although this does not exclude the possibility of
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normal distributions from our consideration, it gives an insight into why non-
normality may arise in practice.

Two responses to these empirical findings have evolved. The first centred on
the use of stable Paretian distributions (see Fama, 1963, and Mandelbrot,
1963). We shall not discuss the stable distribution in this paper but look
directly at the second approach, the use of subordinated stochastic processes.
The hypothesis is that the distribution of price changes is subordinate to a
stochastic process generated from a mixture or combination of distributions.
The price series evolves at different rates during identical intervals of time
where the variance of the distribution is itself a random variable. The different
evolution of price series on different days is due to the fact that information is
available to traders at a varying rate. Therefore, the distribution of price
changes should be defined conditional on the information-generating process,
so that the limit distribution of price changes is subordinate to some
distribution. For example, if P(¢) is normal with stationary independent
increments, and 7'(¢) has stationary independent positive increments with
finite second moments which are independent of P, then the subordinated
stochastic process P(7T'(¢)) has stationary independent increments and the
kurtosis of the increments of P(T(¢)) is an increasing function of the variance
of the increments of 7'(¢). Therefore, the introduction of any directing process
makes the distribution of the increments of P(7'(¢)) only more leptokurtic. The
limit distribution of a random sum of random variables which obey the
Central Limit Theorem is asymptotically normal with random variance, or
new terminology, subordinate to the normal distribution. Upton and Shannon
(1979) found that the asymptotic tendencies of the return distribution are in
agreement with the implications of the subordinated stochastic process
approach rather than the stable Paretian distribution. Kon (1984) proposed a
discrete mixture of normal distributions rather than a continuous mixture to
explain the observed significant kurtosis (fat tail) and significant positive
skewness? in the distribution of daily rate of returns for a sample of common
stocks and indices. He found that the data could be well described by a mixture
of normals, the actual number of normal distributions involved may vary
across firms. Stationarity tests on the parameter estimates of the discrete
mixture of normal distributions model revealed significant differences in the
mean estimates that can explain the observed skewness in security returns.
Significant differences in the variance estimates also can explain the observed
kurtosis.

2There is some evidence indicating that the assumption of symmetric empirical distributions may
be violated for certain phenomena, see Fielitz and Smith (1972) and Leitch and Paulson (1975).
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5.3 TESTING NORMALITY IN THE INDIVIDUAL STOCKS

We next describe our data. We collected the data for two Financial Times
indices and 30 individual British companies for the period of 1/1/88-31/12/90.
We chose this period to avoid any difficulty due to distributional shifts pre and
post the October 1987 crash. We started at 1/1/88 to allow some of the short-
run perturbations of the crash to settle down. It is an interesting question as to
whether there has been a distributional shift before and after the crash, but we
shall not address it in this chapter. Two indices, FT-SE100 and FT30, were
chosen since they have distinct features, which will be explained later in this
section. The 30 companies® chosen are the constituents of the FT30 index.
Three different time intervals, daily, weekly and fortnightly, were used for the
normality tests. For the weekly and fortnightly data, Friday was chosen as the
day to measure returns from.

The goodness-of-fit tests of normality* are based on the skewness statistic
/by, the kurtosis statistic b», a joint test using v/, and b, (Bera—Jarque Test),
and definitions are given in the Appendix. Where these tests are used, some
care should be taken; they are asymptotic tests and can only be justified by a
relatively large sample size, also the tests are sensitive to outliers (e.g.
unusually large deviations perhaps caused by stock crashes) (see Spanos,
1986). To cover this weakness, Klein’s method is added, which is based on the
comparison of observed frequencies with theoretical frequency within quantile
limits. Also, we reported the results from the Kolmogrov-Smirnov test.’
Detailed descriptions of these tests are in the Appendix.

We apply these test procedures to the 30 constituent companies of the FT30.
The results are generated in Table 5.1 for daily, Table 5.2 for weekly, and Table
5.3 for fortnightly. Only 12 companies out of 30 satisfied the five test statistics
used for normality based on the fortnightly data at « = 0.05, 11 for the weekly
data. None of the daily data satisfy all test statistics. This leads us to reject the
normal distribution of the stock returns traded in the London Stock Exchange.
Most of them failed to satisfy the kurtosis statistic b,, especially in the daily

3The weekly result for Beecham is omitted because of insufficient data since it was merged into
SmithKline Beecham during the period.

4Tests for departures from normality can be divided into parametric and non-parametric tests
depending on whether the alternative is given a parametric form or not. Several works on the
power of tests for normality reported that b, and v/b; are generally preferred, see (see D’Agostino
and Pearson, 1973; Gastwirth and Owens, 1977; Saniga and Miles, 1979; Shapiro and Wilk, 1965;
Shapiro, Wilk and Chen, 1968).

3Since the Kolmogrov—Smirnov test requires the complete specification of the null distribution,
the mean and variance of the specified simple normal hypothesis were taken as the (known) mean
and variance of the actual alternative distribution. This will cause a slight mismeasurement akin
to using normal tables for the 7 test. Our smallest sample is 156 observations, which renders this
effects quite negligible.
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Table 5.1 (S> — Sy), (Ss — Sa), (Ss — S3), .. (daily price)

B-J Vb by Klein’s x> (27) K-S

Allied-Lyons 331.2 0.505 6.089 110.7 0.057
Asda-MFI 1026.3 —0.391 8.650 148.8 0.079
BICC 197.2 —0.196 5.470 82.74 0.048
BOC 109.1 0.048 4.857 150.4 0.051
BTR 1108.8 —0.649 8.485 90.70 0.055
Beecham 14.39 0.161 3.878 44.28 0.038
Blue Circle 64.31 0.224 4.356 96.56 0.058
Boots 156.1 —0.042 5.223 58.79 0.058
British Airways 117.1 —0.071 4.921 199.6 0.067
British Gas 19.79 0.058 3.784 77.19 0.068
British Petrol 120.4 0.392 4.790 64.71 0.062
British Telecom 48.61 0.202 4.174 78.98 0.059
Cadbury 1224.8 1.064 8.857 142.2 0.092
Courtaulds 353.8 0.414 6.245 92.00 0.062
Gen. Electric 136.4 0.222 5.032 168.4 0.083
Glaxo 27.05 0.037 3.923 40.13 0.038
Grand Metro. 40.68 —0.123 4.109 43.98 0.050
GKN 134.7 —0.482 4.828 105.9 0.064
Guinness 319.8 0.601 5.948 129.8 0.065
Hanson Trust 76.68 —0.042 4.557 90.85 0.060
Hawker Siddeley 1782.9 -1.052 10.22 102.2 0.060
ICI 312.7 —0.696 5.824 55.07 0.045
Lucas 781.1 —0.356 7.925 113.8 0.067
M&S 130.8 0.059 5.033 122.2 0.072
Nat. West. Bank 371.3 0.095 6.426 108.2 0.063
P&O 178.5 —0.024 5.378 75.62 0.044
Royal Ins. 81.80 —0.086 4.601 129.5 0.061
Tate & Lyle 43.30 0.087 4.159 134.7 0.077
Thorn-EMI 85.96 0.027 4.650 54.58 0.050
Trusthouse 6.945 0.063 3.452 79.61 0.063
2 (2) = 5.99 at a = 0.05 and ¥(2) =9.21 at o = 0.01

—0.23 < /b <028 ata=0.05 and —0.403 < \/b; <0.403 at a =0.01

2.51 < by <3.57 at a = 0.05 and 237 < by <398 at a = 0.01

KS < 1.36/v/N at a = 0.05 and KS < 1.63/v/N at a = 0.01

x2(27) = 40.1 at a = 0.05 and 2(27) = 47.0 at a = 0.01

data, while the symmetry looked quite reasonable. The tables suggest that the
length of interval is closely related to the kurtosis of stock returns. Weekly
versus daily of not rejecting the null hypothesis is 14 versus 1. This indicates
that daily information arrivals fluctuate relatively more than weekly ones. This
phenomenon becomes more apparent in our fortnightly data of Table 5.3. Only
nine companies failed to satisfy the kurtosis statistic, and in general normality is
improved. However, there exists a difficulty in symmetry due to the insufficient
data since the fortnightly data reduced the sample size. This evidence is
consistent with the findings of other authors.
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Table 5.2 (5S> — S1), (S35 — S2), (S4 — S3), ... (weekly price)
B-J Vhi by Klein’s 2 (12) K-S
Allied-Lyons 30.28 0.664 4.702 41.04 0.090
Asda-MFI 28.29 —0.519 3.416 11.29 0.051
BICC 1.632 —0.140 3.416 9.803 0.053
BOC 1.701 0.091 3.478 15.01 0.067
BTR 8.118 -0.339 3.889 9.311 0.041
Beecham - - - - -
Blue Circle 5.572 0.431 3.337 9.783 0.057
Boots 0.853 0.091 2.687 11.83 0.042
British Airways 3.720 0.110 3.724 16.19 0.049
British Gas 12.88 0.231 4.330 17.69 0.053
British Petrol 7.801 0.421 3.702 21.96 0.063
British Telecom 7.816 0.271 3.953 10.93 0.057
Cadbury 388.3 1.838 9.799 27.93 0.107
Courtaulds 0.777 —0.162 3.119 8.831 0.030
Gen. Electric 0.313 —0.087 3.133 4.739 0.042
Glaxo 3.354 0.242 3.531 9.253 0.040
Grand Metro. 1.284 -0.122 3.372 9.937 0.046
GKN 1.225 —0.203 3.152 20.08 0.041
Guinness 3.990 0.244 3.612 14.62 0.049
Hanson Trust 0.897 —0.185 2.980 10.12 0.050
Hawker Siddeley 44.45 -0.792 5.080 25.87 0.050
1CI 10.94 —0.254 4.194 12.27 0.065
Lucas 49.08 —-0.424 5.614 19.70 0.062
M &S 0.452 0.125 2913 8.444 0.045
Nat. West. Bank 31.67 0.543 4.922 8.595 0.064
P& O 1.048 —0.115 3.329 7.529 0.038
Royal Ins. 6.284 0.322 3.743 9.471 0.044
Tate & Lyle 6.696 0.353 3.730 38.93 0.050
Thorn-EMI 2.266 -0.293 2.928 9.243 0.047
Trusthouse 2.809 0.302 3.258 8.897 0.061
¥*(2) = 5.99 at a = 0.05 and ¥3(2) =921 at a = 0.01
—023< b <028 ata=0.05 and —0.403 < /b; < 0.403 at a =0.01
2.51 < by <3.57 at = 0.05 and 2.37 < by <398 at « = 0.01
KS < 1.36/V/N at a = 0.05 and KS < 1.63/v/N at a = 0.01
x2(12) = 21.0 at a = 0.05 and x2(12) = 26.2 at a = 0.01
5.3.1 Indices and their distributions

There has always been the need for a summary statistic to measure stock
market performance, since the aggregate performance of the stock market is
an indicator of the state of the overall economy and monitoring the
performance of the market provides a powerful source of information for
investment decisions. As a summary of the direction and extent of average
changes of stock prices, stock price averages® or indices provide a convenient
way to summarize general market movements. They are constructed by



126  Return Distributions in Finance

Table 5.3 (S2 — S1), (S3 — S2), (S4 — S3), ... (fortnightly price)

B-J NG by Klein’s x> (3) K-S

FT30 Index 0.215 —0.104 2.849 0.697 0.034
FT100 Index 0.310 —0.047 2.705 1.973 0.034
Allied-Lyons 3.779 0.382 3.760 4.391 0.066
Asda-MFI 56.55 ~1.179 6.439 8.004 0.085
BICC 1.463 —0.244 2.540 4.654 0.065
BOC 0.035 0.020 3.096 1.635 0.062
BTR 1.637 —0.325 3.282 3.762 0.083
Blue Circle 1.475 0.299 2.690 3.171 0.072
Boots 0.600 —0.150 2.692 1.106 0.046
British Airways 0.788 —0.245 3.026 2.620 0.067
British Gas 0.093 0.066 2.489 2.040 0.064
British Petrol 1.552 0.203 3.558 2.007 0.071
British Telecom 0.690 —0.198 2.765 3.093 0.046
Cadbury 63.33 1.453 6.322 15.90 0.133
Courtaulds 3.023 —0.435 2.586 5.477 0.064
Gen. Electric 0.023 —0.037 2.962 3.438 0.073
Glaxo 0.263 —0.034 2.723 2.331 0.051
Grand Metro. 0.593 —0.115 2.640 3.439 0.040
GKN 0.553 —0.201 3.086 0.557 0.036
Guinness 16.39 —0.541 4.967 2.343 0.051
Hanson Trust 1.455 0.174 2.428 1.160 0.069
Hawker Siddeley 24.75 —1.110 4.638 14.67 0.1169
ICI 4.045 —0.537 3.299 2.025 0.048
Lucas 8.645 —0.117 4.614 3.521 0.082
M &S 1.590 0.341 3.154 4.609 0.070
Nat. West. Bank 7.491 0.137 4.493 7.115 0.088
P&O 2.644 —0.341 2.411 5.513 0.070
Royal Ins. 1.453 0.248 3.447 3.745 0.081
Tate & Lyle 0.241 0.010 3.271 1.586 0.062
Thorn-EMI 2.069 —0.265 2.404 8.086 0.098
Trusthouse 2.508 0.409 3.316 1.994 0.072
X2(2) = 5.99 at a = 0.05 and X*(2) =9.21 at a =0.01

—0.23 < /b; <028 at a=0.05 and —0.403 < /b; <0.403 at a = 0.01

2.51 < by <3.57 at a = 0.05 and 237 < by <398 at a = 0.01

KS < 1.36/v/N at a = 0.05 and KS < 1.63/v/N at a = 0.01

x2(3) =781 at a = 0.05 and X*(3) =113 at a = 0.01

%Even though the price average such as the Dow Jones Average has been widely quoted, it is
criticized for the following reasons; splitting bias in which the divisor for the average has to be
adjusted regularly to accommodate splits and it implicitly puts more weight to the stocks that
remain unsplit, anti-growth bias since growth stocks split more than non-growth stocks,
arithmetic mean bias which gives equal weight to equal absolute rather than the percentage
changes in stock prices, etc.
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sampling; selecting some manageable number of stocks to act as a proxy for
the universe of all stocks. The sample is then weighted in some way, assigning
different levels of importance to various component stocks. Next, the weighted
sample is averaged, arithmetically or geometrically, to produce a single
summary number. If it is a price index, the weighted average of the sample is
further divided by a constant to relate it to an arbitrary but intuitively
meaningful base value.

Indices are usually weighted by the number of shares outstanding for each
stock multiplied by the price of the stock. These capitalization weights reflect
relative weights based on each company’s capitalization. FT-SE 100, S&P 500
and NYSE indices belong to this category. The value weight indicates changes
in the aggregate market value of stocks. Thus, changes in general market value
are more reflected in these indices for studies of relationships between stock
prices and other things in the national economy with more importance to a
relatively few large companies.

The FT-Actuaries Share Indices are weighted arithmetic averages of the
price relative; the weights used being the initial capitalization, subsequently
modified to maintain the continuity when capital and constituent changes
occur. They are derived to show the longer-term changes associated with the
value of a portfolio over time, although still reflecting day-to-day movements.
The Financial Times—Stock Exchange 100 Share Index generally represents
the 100 largest companies by market capitalization. The choice of 100 shares
was to hit the balance between the practical difficulty of collecting around 750
shares on a real-time basis needed to turn the All Share Index into a real-time
index, and yet having sufficient cover of the market to closely follow the
movement of the All Share Index. It mirrors the movement of a typical
institutional portfolio. A base figure of 1000 was chosen to make the index
more tradeable on the futures or options markets as a high base contract figure
usually produces whole number changes every day. As a preliminary, we
carried out the same tests reported in Tables 5.1 and 5.2 for the FT100 from
1/1/88 to 31/12/90. The results are presented in Table 5.3. We delay the
discussions of results until after an analysis of the FT30.

The Financial Times Ordinary Share Index (FT30) is the geometric average
of 30 securities on an unweighted or unit-weighted basis and aims to show
short-term movements in the market. The geometric average’ involves the
product of n numbers of component stocks and the nth root of that product
which preserves the integrity of successive upward and downward percentage
changes in stock prices. The Index is calculated on a ‘real-time’ basis from the

It has an unavoidable downward bias; the geometric mean is always less than the arithmetic
mean of the same numbers.
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start of trading at 9 a.m. A closing Index is produced soon after 5 p.m. on the
basis of prices collected at the close down of the Stock Exchange SEQA
system. Since the Index is unweighted the calculation is simple. Also, it is
sensitive because it is based on heavily traded blue chip shares which are the
first to respond to any changes in stock market sentiment. The equal-weight
indices may be more appropriate for indicating movements in the prices of
typical or average stocks and are better indicators of the expected change in
the prices of stocks selected at random since relatively small companies are
more sensitive to economic trends. Thus it has been widely followed up to the
advent of the FT100.® The 30 constituents are carefully selected so as to form a
representative spread across British industry and commerce. The number 30
was originally chosen as the best compromise between ease and spread of
calculation, on the one hand, and, on the other, the need to avoid too large an
influence by freak movements in one or two individual share prices. Its
constituents are heavy industry (6), textiles (4), motor & aviations (3),
electrical manufacturer and radio (3), building materials (3), food, drink and
tobacco (6), retail stores (2), financial institutions (2), miscellaneous (1).

Since the FT30 is a geometric average index, it is easier to make allowances
for capital changes, and to replace constituents, without the need for rebasing.
Moreover, it damps down the impact of large rises in individual constituents.
Despite its advantages it tends to bias the Index downwards over the longer
term. This is partly a purely mathematical effect,’ but it also reflects the way
that poorly performing constituents enter into the Index. Therefore, the FT30
Index should not be used as a long-term measure of market levels or as a
yardstick for portfolio performance. It should be used for the purpose for
which it was precisely designed, as a sensitive indicator of the mood of the
market, originally from day-to-day and now from hour-to-hour.

We present the results of our normality tests on the indices in Table 5.4 and
Table 5.5. The normality tests of the FT100 and the FT30 show similar
conclusions to the individual stocks as before. Each day of the trading days
from Monday to Friday was tested. Only Monday and Friday for the FT30
and Wednesday for the FT100 follow a normal distribution at the 5% level.
There is no striking improvement in the FT30 compared with individual shares
while the FT100 looks reasonably normal. In fact, the FT100 index satisfies all
the tests at the 1% level.

A possible problem with these datasets is the presence of serial correlation.
We investigated the FT30 and FT100 daily and weekly data. The only

8The Index has been used since 1935. About a quarter of its constituents have remained in the 30
throughout the period.
This is by Jensen’s Inequality, E[g(X))] < g(E[X]) where / is convex.



Are stock prices driven by the volume of trade? 129

Table 5.4 Tests for normality of FT100

Monday Tuesday Wednesday Thursday Friday
Observations 157 157 156 156 157
Bera—Jarque x? (2) 3.3529 1.0450 2.2581 6.6615 4.3629
Vb = ms/m3? 0.0610 —0.1771 —0.2545 —0.2496 0.2709
by = my/m3 3.7078 3.1877 3.3010 3.8845 3.6146
Klein’s x? (12) 15.8752 21.9950 6.6425 7.6476 10.3683

Notes: Details and definitions of the notation are given in the Appendix.
Here and in Table 5.6 the bold numbers indicate not rejecting the null hypothesis of normality.

Table 5.5 Tests for normality of FT30

Monday Tuesday Wednesday Thursday Friday
Observations 157 157 156 156 157
Bera—Jarque x? (2) 1.8002 6.6907 6.3208 9.9176 2.8183
Vb = ms/mi? —0.0247 0.3476 —0.2507 —0.2845 0.2448
by = my /3 3.5239 3.7390 3.8528 4.1008 3.4403
Klein’s x2 (12) 6.7854 11.0823 7.1537 11.6313 18.1187
2(2) = 5.99 at o = 0.05 and ¥3(2) =9.21 at o = 0.01
—0.23 < b <028 ata=0.05 and —0.403 < v/b; <0.403 at a=0.01
2.51 < by <3.57 at « =0.05 and 2.37 < by <398 at a = 0.01
2(12) =21.0 at o = 0.05 and Y2(12) = 26.2 at a = 0.01

significant autocorrelations found were the first lagged variables for daily data
in both cases, in fact the coefficient for the FT30 was estimated at 0.083 with a
t-level of 2.226 and for the FT100 0.084 with a level of 2.257. For stationary
processes, the behaviour of test statistics based on functions of the first four
moments will not be influenced by autocorrelation under the null at least
asymptotically. However, the power of the tests may well be affected. Since the
alternative to normality is not specified, this seems a problem for further
research. One could fit an Edgeworth-type family under the alternative and
calculate the power function as a function of the autocorrelation coefficient,
but we have not done this. If the autocorrelation processes were non-
stationary this would influence our test statistics, but then the question of
testing for normality becomes meaningless.

Log-normal and log-stable distributions have multiplicative stability but
not additive stability. Strictly speaking, if individual asset returns are log-
normally (or log-stably) distributed, FT100 returns must have some other
distribution while FT30 has a log-normal distribution. Thus if we believe the
process has each share generated by equation (5.1), we might expect better
results for normality for the FT30 than for the FT100. Against this, there is a
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possibility that adding more shares together, in the case of the FT100, will
induce normality via central limit theorem results. The results in Tables 5.4
and 5.5 indicate that instability under addition, and the problem of changing
weights, are not a practical concern under the conditions studied because there
is little evidence that FT30 is better suited to a normal distribution than
FT100."° The practical importance of these complications is an empirical
question.

5.3.2 The price—volume relationship

The price—volume relation is critical to the debate over the empirical
distribution of stock prices. According to Karpoff (1987), the variance of the
daily price change and the mean daily trading volume depend upon three
factors: (1) the average daily rate at which new information flows to the market,
(2) the extent to which traders disagree when they respond to new information,
and (3) the number of active traders in the market. In general, volume is
positively related to the magnitude of the price change and, in equity markets,
to the price change per se. Clark (1973) derives the positive relationship through
randomness in the number of within-period transactions. The daily price
change is the sum of a random number of within-day price changes. The
variance of the daily price change is thus a random variable with a mean
proportional to the mean number of daily transaction. Since the trading
volume is related positively to the number of within-day transactions, so the
trading volume is related positively to the variability of the price change.
Another possibility, suggested by Tauchen and Pitts (1983), comes from the
fact that the change in the market price on each within-day transaction or
market clearing is the average of the changes in all of the traders’ reservation
prices. Assuming that there is a positive relationship between the extent to
which traders disagree when they revise their reservation prices and the
absolute value of the change in the market price, the price variability—volume
relationship arises because the volume of trading is positively related to the
extent to which traders disagree when they revise their reservation prices.
When sampled over fixed calendar intervals (e.g. days), rates of return
turned to appear kurtotic compared to the normal distribution in the previous
tests. Here, we can develop the explanation of price behaviour by
incorporating volume into our consideration. Price—volume tests generally
support the mixture of distributions hypothesis which implies that price data
are generated by a conditional stochastic process with a changing variance
parameter that can be proxied by volume. Osborne (1959) attempted to model

101n fact, there are 12 for FT30 versus 14 for FT100 significant entries in the tables.
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the stock price change as a diffusion process with variance dependent on the
number of transactions. This could imply a positive correlation between V' and
|AS], as later developed by Clark (1973), Tauchen and Pitts (1983), and Harris
and Gurel (1986). In statistical terms, we are postulating a conditional
distribution of AS, given V. If we assume a marginal distribution of V" we
know the joint distribution of AS and V, and if we integrate out V' we have the
marginal distribution of AS. This marginal distribution may well exhibit the
characteristics discussed earlier.

Clark (1973) used trading volume as a measure of the speed of evolution
from new information. The distribution of the increments of the price process
would then have a distribution subordinate to that of the price changes on
individual trades, and directed by the distribution.of trading volume. Trading
volume is taken as an instrument for the true operational time, or an imperfect
clock measuring the speed of evolution of the price-change process. Clark
showed that the kurtosis has been very much reduced when price changes with
similar volumes were considered. His method is to group by similar volume
classes, treating each observation independently, not as time-series data. As
long as there is no autocorrelation, his regrouping works. However, if there is
any serial correlation, this method will be misleading. Epps and Epps (1976)
have suggested that volume moves with measures of within-day price
variability because the distribution of the transaction price change is a
function of volume. The change in the logarithm of price can therefore be
viewed as following a mixture of distributions, with transaction volume as a
mixing variable. Tauchen and Pitts (1983) derived a bivariate normal mixture
model of price and volume with a likelihood function based on the variance-
components scheme. They also considered growth in the size of speculative
markets; as the number of traders grows secularly over days, the variance of
price changes declines monotonically while the mean volume of trading grows
linearly with traders.

First, following Clark’s (1973) method, the normalities of weekly FT30 and
FT100 changes were tested conditional on the traded volume. Instead of
grouping the samples within the same range of volume, the prices were

Table 5.6 Tests for normality conditional on volume

FT-SE100 Index FT-30 Index
Observations 157 157
Bera—Jarque x2 (2) 1.6505 0.2492
Vb = ms/mi? 0.2270 0.2477
by = ma/m3 2.5869 3.0129

Klein’s y2 (12) 12.8490 11.0454
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Table 5.7 Price change at every equal amount of traded volume based on weekly averages

B-J Vb by Klein’s 2 (12) K-S

FT30 Index 0.249 0.247 3.012 11.05 0.054
Allied-Lyons 9.573 0.203 4.187 15.06 0.059
Asda-MFI 0.310 —0.074 2.834 4.427 0.053
BICC 4.034 —0.400 3.073 19.26 0.037
BOC 0.958 —0.190 3.060 11.88 0.065
BTR 16.80 —0.513 4258 15.73 0.061
Blue Circle 7.147 0.225 3.947 16.59 0.054
Boots 0.480 —0.121 2.872 5.296 0.044
British Airways 2.120 —0.286 2.958 8.973 0.045
British Gas 0.573 0.052 3.281 8.381 0.056
British Petrol 1.155 0.190 2.804 5.674 0.055
British Telecom 0.159 0.066 3.084 8.378 0.034
Cadbury 5.429 0.498 3.024 18.82 0.060
Courtaulds 16.75 -0.331 4.474 22.62 0.063
Gen. Electric 4.769 0.304 3.608 21.60 0.059
Glaxo 3.115 —0.317 2.721 10.53 0.051
Grand Metro. 2.130 —0.269 3.198 11.73 0.061
GKN 14.66 —0.688 3.659 23.09 0.068
Guinness 21.97 0.007 4.907 15.80 0.072
Hanson Trust 0.182 0.082 2.970 13.86 0.044
Hawker Siddeley 2.807 —0.329 3.022 6.110 0.043
ICI 0.663 —0.030 3314 6.726 0.039
Lucas 39.75 —0.066 5.494 29.17 0.054
M&S 8.721 0.382 3.870 10.23 0.040
Nat. West. Bank 21.59 0.264 4.744 8.464 0.052
P&O 53.59 0.653 5.621 14.09 0.058
Royal Ins. 1.415 0.152 3.360 8.354 0.044
Tate & Lyle 2.661 —0.143 3.572 15.61 0.038
Thorn-EMI 0.179 0.081 2.960 9.308 0.044
Trusthouse 4.245 —0.098 3.789 10.66 0.041
2 (2) = 5.99 at a = 0.05 and ¥(2) =9.21 at o = 0.01

—0.23 < /b <028 ata=0.05 and —0.403 < \/b; <0.403 at a =0.01

2.51 < by <3.57 at a = 0.05 and 237 < by <398 at a = 0.01

KS < 1.36/v/N at a = 0.05 and KS < 1.63/v/N at a = 0.01

x2(3) = 21.0 at a = 0.05 and X2(3) = 26.2 at a = 0.01

collected at every 4010 million volume of trade based on the London Stock
Exchange as an approximation since FT30 and FT100 are not real instruments
for trading. The reason for 4010 million is a convenience to compare the result
with those from Tables 5.3 and 5.4 since 4010 million is an average weekly
trading volume during the period.

While this is a very crude approximation to market activity, the results are
very encouraging. Table 5.6 shows strong support for the subordinated
stochastic process hypothesis with a volume-normalization. Both indices are
not significant under the normal distribution hypothesis at « = 0.05. The total
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Table 5.8 Price change at every equal amount of traded volume based on fortnightly averages

B-J N by Klein’s x> (3) K-S

FT30 Index 0.957 —0.096 2.485 0.314 0.045
FT100 Index 1.604 —0.130 2.337 3.988 0.063
Allied-Lyons 1.593 -0.321 3.300 5.509 0.073
Asda-MFI 0.615 —0.180 2.748 3.013 0.071
BICC 4.137 —0.567 3.132 4.699 0.080
BOC 3.396 —0.508 2.803 4334 0.046
BTR 0.491 —0.161 2.774 1.228 0.050
Blue Circle 2.417 0.415 2.730 7915 0.062
Boots 0.827 —0.124 2.553 4.799 0.074
British Airways 3.201 —0.472 3.341 4.548 0.090
British Gas 2.436 0.275 2.318 3.839 0.063
British Petrol 1.132 0.076 2.422 0.810 0.051
British Telecom 1.633 —0.317 2.664 7.829 0.087
Cadbury 2.276 0.188 3.759 5.967 0.117
Courtaulds 1.891 —0.171 2.307 2.885 0.060
Gen. Electric 2.177 0.367 3.383 2.172 0.054
Glaxo 1.090 —0.252 3.299 2.137 0.053
Grand Metro. 3.226 —0.491 3.231 4227 0.051
GKN 1.304 —0.221 2.536 2.279 0.047
Guinness 8.824 —0.440 4.417 2.205 0.048
Hanson Trust 0.856 —0.194 2.655 2.842 0.055
Hawker Siddeley 8.218 —0.718 3.727 7.689 0.114
ICI 3.397 —0.409 2.365 6.110 0.077
Lucas 2.768 —0.467 3.016 2.885 0.069
M &S 15.47 0.817 4.488 6.764 0.078
Nat. West. Bank 52.34 0.527 6.926 5.602 0.077
P&O 4.036 0.002 4.128 0.704 0.070
Royal Ins. 0.200 —0.118 2.914 2.444 0.047
Tate & Lyle 4.549 —0.449 3.793 1.093 0.053
Thorn-EMI 0.343 0.087 3.279 0.482 0.059
Trusthouse 2.089 —0.347 2.580 0.412 0.090
X*(2) = 5.99 at a = 0.05 and X*(2) =9.21 at a = 0.01

—0.23 < /b; <0.28 at a =0.05 and —0.403 < /b; <0.403 at o =0.01

2.51 < by <3.57 at a = 0.05 and 237 < by <398 at a = 0.01

KS < 1.36//N at a = 0.05 and KS < 1.63/v/N at a = 0.01

X*(3) =781 at a = 0.05 and X*(3) =113 at a = 0.01

trade-volume of the London Exchange was used for indices measured in
millions since the indices are not traded, and the trade-volume for individual
companies is measured in thousands. When applied to individual companies,
the normality was also improved by a 20% increase in the numbers of
companies that satisfy all tests (see Table 5.7).

Finally, relating to footnote 5, we attempted to improve our K — S test by
eliminating the mean and variance. This can be chosen by the following
argument. The rates of return normalized by volume (S; — S,—;)/ ¥, and
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Table 5.9 (S; — S1)/V2, (S3 — $2)/ V3, (S4 — S3)/ Va4, ... (daily price)

B-J N by Klein’s x? (12) K-S

FT30 Index 22.70 —0.191 3.758 46.68 0.034
Allied-Lyons 50.36 0.273 4.140 25.28 0.073
Asda-MFI 10.68 —0.028 3.579 73.07 0.072
BICC 226206 —4.566 87.19 1333 0.212
BOC 35.60 —0.049 4.058 58.73 0.052
BTR 36.33 —0.238 3.962 43.34 0.064
Beecham 1.714 —0.129 2.807 25.99 0.057
Blue Circle 166.3 —0.232 5.249 56.53 0.070
Boots 12.37 0.113 3.584 20.42 0.063
British Airways 172.8 —0.084 5.334 60.98 0.067
British Gas 9.164 0.179 3.402 29.51 0.052
British Petrol 64.50 —0.052 4.426 36.15 0.045
British Telecom 0.070 0.011 3.042 49.68 0.054
Cadbury 11.40 0.124 3.548 47.49 0.046
Courtaulds 135.7 —0.084 5.067 51.94 0.053
Gen. Electric 15.40 —0.075 3.682 58.30 0.067
Glaxo 8.491 0.052 3.508 30.55 0.020
Grand Metro. 3.285 0.078 2.717 31.16 0.031
GKN 113.5 —0.104 4.886 63.84 0.050
Guinness 7.453 0.010 3.486 40.74 0.044
Hanson Trust 38.45 —0.169 4.051 59.29 0.081
Hawker Siddeley 1215.4 —0.055 9.206 72.26 0.079
ICI 10.60 —0.215 3.389 33.16 0.044
Lucas 1060.2 —0.041 8.797 116.2 0.070
M &S 3.929 —0.039 3.344 90.39 0.080
Nat. West. Bank 302.6 0.265 6.051 55.90 0.069
P&O 4.680 —0.099 3.331 46.10 0.038
Royal Ins. 45.25 —0.227 4.108 95.98 0.059
Tate & Lyle 210.5 —0.182 5.557 122.2 0.104
Thorn-EMI 11.44 —0.246 3.348 41.28 0.036
Trusthouse 275.0 0.422 5.829 21.27 0.051
X2(2) = 5.99 at a = 0.05 and X*(2) =9.21 at a =0.01

—0.23 < /b; <028 at a=0.05 and —0.403 < /b; <0.403 at a = 0.01

2.51 < by <3.57 at a = 0.05 and 237 < by <398 at a = 0.01

KS < 1.36/v/N at a = 0.05 and KS < 1.63/v/N at a = 0.01

x2(27) = 40.1 at a = 0.05 and X2 (27) = 47.0 at a = 0.01

(St42 = Se41)/ Visa — (Sis1 — Sr)/ Vi1 where S is the logarithmic price, were
tested for the daily and weekly data. The latter one is motivated for the
Kolmogorov—Smirnov test because it doesn’t require specifying any
parameter except the variance. Of course, since the variance is unknown, we
have to estimate it and the discrepancy from the ‘true’ variable is quite minimal
— see footnote 5. The reason of normalization by volume is that traded volume
reflects the market activities, upon which the behaviour of prices depends.
Then, the result is quite close to the normal distribution. Tables 5.7-5.10
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Table 5.10 (Sz — S])/ Vz, (S3 — Sg)/ V3, (S4 — S3)/ V4, (weekly price)
B-J N by Klein’s 2 (12) K-S

FT30 Index 6.753 0.294 3.832 21.92 0.054
Allied-Lyons 13.44 0.298 4.309 11.11 0.061
Asda-MFI 2.147 —0.198 2.583 10.15 0.050
BICC 1.197 0.042 2.579 9.926 0.051
BOC 2.339 0.264 3.283 11.39 0.059
BTR 1.330 —0.134 2.636 8.070 0.044
Beecham - - - - -
Blue Circle 10.74 0.459 3.899 9.616 0.050
Boots 1.000 0.047 2.619 14.58 0.045
British Airways 0.366 0.101 2.877 16.97 0.060
British Gas 35.00 0.294 5.245 16.28 0.055
British Petrol 0.855 0.151 2.800 9.522 0.046
British Telecom 0.205 —-0.007 2.823 4.047 0.049
Cadbury 7.519 0.534 2.875 20.86 0.056
Courtaulds 0.128 —0.070 2.986 12.43 0.035
Gen. Electric 1.823 0.032 2.474 19.53 0.056
Glaxo 1.520 0.183 3.315 21.54 0.057
Grand Metro. 0.561 —0.108 2.801 8.944 0.039
GKN 1.633 —0.240 3.146 10.38 0.044
Guinness 1.322 0.222 3.077 6.755 0.029
Hanson Trust 1.935 —-0.272 2.958 18.03 0.058
Hawker Siddeley 4.149 —0.396 3.108 15.97 0.068
ICI 0.378 0.040 3.228 6.476 0.030
Lucas 20.33 —0.163 4.738 29.72 0.057
M &S 1.290 0.170 2.713 7.605 0.053
Nat. West. Bank 12.33 0.456 4.033 17.23 0.063
P& O 2.634 —0.188 3.513 6.908 0.050
Royal Ins. 5.126 0.330 3.595 17.27 0.041
Tate & Lyle 2.550 0.211 3.462 19.52 0.062
Thorn-EMI 1.390 —0.190 2.737 20.31 0.061
Trusthouse 0.912 0.187 3.001 7.984 0.048
X*(2) = 5.99 at a = 0.05 and X*(2) =9.21 at a = 0.01

—0.23 <+/b; <028 ata=0.05 and —0.403 < /b, <0.403 at a=0.01

2.51 < b, <3.57 at a = 0.05 and 2.37 < b, <398 at a = 0.01

KS < 1.36//N at a = 0.05 and KS < 1.63/v/N at a = 0.01

x*(12) = 21.0 at a = 0.05 and x2(12) = 26.2 at a = 0.01

clearly show the improvement upon the normalization by volume, but the
effect on the K-S test is minimal.

To summarize the results of our transformations, we shall use the Bera—
Jarque statistic, which could be thought of as a quadratic loss function in
skewness and kurtosis. For the 29 companies in the FT30, excluding Beecham
because of merger within the data period, the average value of the Bera—
Jarque for weekly data is 22.91 (Table 5.2), for the equal volume case it is 8.549
(Table 5.7) and for the volume weighted case it is 4.694 (Table 5.10). If we
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Table 5.11  (S3 — $2)/ V3, (S2 — S1)/ V3, (S5 — S4)/ V3, (Sa — S3)/ Va4 ... (daily price)

B-J Vbi by Klein’s x> (27) K-S

FT30 Index 0.929 —0.095 2.849 21.17 0.027
Allied-Lyons 35.08 —0.125 4.472 22.59 0.056
Asda-MFI 10.68 —0.028 3.579 73.07 0.072
BICC 130828 —6.929 93.08 123.6 0.149
BOC 39.46 0.099 4.570 29.73 0.053
BTR 33.19 0.098 4.438 39.98 0.058
Beecham 0.458 0.038 3.224 2.118 0.041
Blue Circle 202.4 —0.125 6.576 39.48 0.051
Boots 34.50 0.183 4.434 36.13 0.052
British Airways 285.6 —0.307 7.214 32.00 0.043
British Gas 3.674 0.172 3.339 18.80 0.038
British Petrol 23.89 —0.223 4.148 60.07 0.050
British Telecom 3.364 —0.048 3.452 31.24 0.062
Cadbury 9.237 0.335 3.370 47.44 0.093
Courtaulds 144.1 0.016 6.024 38.94 0.059
Gen. Electric 5.820 —0.066 3.594 31.35 0.045
Glaxo 13.62 —0.051 3.924 26.65 0.060
Grand Metro. 0.014 0.012 2.982 33.34 0.031
GKN 105.8 0.649 5.244 94.64 0.091
Guinness 36.57 0.032 4.522 24.74 0.030
Hanson Trust 13.34 0.162 3.861 25.56 0.047
Hawker Siddeley 1211.9 0. 974 11.55 39.46 0.074
ICI 12.83 —0.450 8.345 84.28 0.096
Lucas 462.8 —0.450 8.345 84.28 0.096
M &S 8.824 0.135 3.698 33.56 0.043
Nat. West. Bank 319.8 0.174 7.493 55.78 0.102
P&O 3.829 —0.002 3.493 39.94 0.053
Royal Ins. 27.43 0.147 4.287 42.86 0.062
Tate & Lyle 47.97 —0.090 4.736 46.82 0.073
Thorn-EMI 2172 0.108 3.302 26.47 0.058
Trusthouse 240.7 0.285 6.867 32.38 0.068
X2(2) = 5.99 at a = 0.05 and X*(2) =9.21 at a =0.01

—0.23 < /b; <028 at a=0.05 and —0.403 < /b; <0.403 at a = 0.01

2.51 < by <3.57 at a = 0.05 and 237 < by <398 at a = 0.01

KS < 1.36/v/N at a = 0.05 and KS < 1.63/v/N at a = 0.01

x2(27) = 40.1 at a = 0.05 and X2 (27) = 47.0 at a = 0.01

throw out the largest in each case and divide by 28, we get 9.86, 6.94 and 3.61
respectively. Further, when we used a volume amount equivalent to the
average of two weeks’ trade, only three out of 31 time series rejected the Bera—
Jarque statistic (Table 5.8), which is also consistent with the fact that the
nature of the return distribution becomes normal as the period length
increases. We might hope that these adjustments to normalize each firm,
indeed using our, admittedly crude, adjustment brings about a substantial
improvement. For the FT30 the corresponding Bera—Jarque values are 30.28,
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Table 5.12  (S3 — S2)/ V3, (S2 — S1)/ V2, (S5 — S4)/ Vs, (Sa4 — 83)/ V4 ... (weekly price)

B-J Vhi by Klein’s x% (12) K-S

FT30 Index 7.371 0.031 4.505 1.219 0.089
Allied-Lyons 12.69 —0.078 4.970 7.715 0.104
Asda-MFI 0.270 0.131 2.880 3.767 0.069
BICC 0.309 —0.090 2.750 2.123 0.083
BOC 0.437 0.180 3.073 2.160 0.070
BTR 3.806 —0.012 4.082 2.474 0.054
Beecham - - - - -
Blue Circle 21.56 —0.305 5.502 9.549 0.101
Boots 0.873 —0.199 3.331 0.558 0.068
British Airways 2.590 —0.311 3.639 6.538 0.103
British Gas 72.68 1.140 7.143 4219 0.134
British Petrol 1.164 0.286 2.823 1.105 0.087
British Telecom 0.100 —0.004 2.825 0.408 0.056
Cadbury 0.493 —0.148 2.747 0.729 0.054
Courtaulds 1.673 —0.109 2.316 5.131 0.096
Gen. Electric 0.137 0.010 2.796 3.237 0.071
Glaxo 0.380 —0.027 3.338 1.087 0.033
Grand Metro. 0.975 —0.250 3.224 4.534 0.073
GKN 0.323 —0.051 3.299 1.910 0.076
Guinness 0.268 —0.114 2.825 2.802 0.061
Hanson Trust 1.015 0.035 3.555 3.561 0.092
Hawker Siddeley 0.636 0.029 2.562 2.001 0.093
ICI 0.311 0.152 3.059 0.569 0.045
Lucas 1.716 0.031 3.724 4377 0.131
M &S 1.136 0.240 3.346 2.381 0.072
Nat. West. Bank 8.706 0.676 3.922 7.570 0.062
P&O 4.441 —0.053 4.164 3.635 0.074
Royal Ins. 1.369 0.321 2.908 4.688 0.062
Tate & Lyle 1.961 —0.320 3.440 2.328 0.113
Thorn-EMI 2.735 —0.321 3.655 2,615 0.091
Trusthouse 0.563 —0.041 3.408 3.487 0.100
X*(2) = 5.99 at a = 0.05 and X*(2) =9.21 at a = 0.01

—0.23 < /b; <0.28 at a =0.05 and —0.403 < /b; <0.403 at o =0.01

2.51 < by <3.57 at a = 0.05 and 237 < by <398 at a = 0.01

KS < 1.36//N at a = 0.05 and KS < 1.63/v/N at a = 0.01

x*(12) = 21.0 at a = 0.05 and x2(12) =25.2 at a = 0.01

0.249, and 6.753. The improvement for the FT30 in the weekly equal volume
case is quite remarkable. However, when we extended normality tests in the
fortnightly data, the improvement is not so dramatic as in the weekly data.
This is because a fortnight period is more normal and volume effects are
averaged out in the fortnightly data (see Tables 5.3 and 5.8). We have not
analyzed our fortnightly observations any further as they appear normal in the
first case and the number of observations is only 78.
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5.4 CONCLUSION

We tested the normality of speculative asset returns and indices in the London
Stock Exchange. Our results are consistent with previous studies. The
difference between the FT30 and the FT100 was one of our interests. If
individual asset returns were log-normally (or log-stably) distributed, FT30 is
expected to be better suited to a normal distribution. However, we found that
there was little evidence to support this assumption. When we normalized by
volume, FT30 performed better under the normal hypothesis. This gives some
support for the subordinated stochastic process hypothesis rather than the
stable Paretian distribution or the normal distribution hypotheses. Still, this
finding is limited to the specific time-period and specific market, further
theoretical work and methods are required.

The length of period has an importance for the nature of the return
distribution. In empirical observations, the minimum satisfactory period is
called for because the possibility of significant non-stationarity of the return
distribution increases as the time period lengthens. The problem of
stationarity occurs both intra- and inter-period. For example, in order to
observe log-normality in monthly returns it is necessary that the process
remain stationary not only during the individual months but also over the
collection of months observed. If the underlying process were slowly changing,
it might be that log-normality might be observed over some short sampling
interval, but over some longer sampling log-normality might be rejected due to
significant cumulative changes in the process. The question of the appropriate
length of individual periods, and appropriate length of sampling interval, is
empirical.

Finally one can interpret our results in two ways. In the literature that
regards prices following a logarithmic Brownian motion, we have shown that
the clock of the process is volume, not time. In the literature that is concerned
with the distribution of share prices, we have shown that the conditional
distribution of logarithmic price changes given volume is normally distributed.
These two ideas are not mutually exclusive. We have not considered how to
model volume. If we were to do so, we could, in principle, derive the marginal
distribution of prices and examine its properties directly.

APPENDIX

We encounter several distributions, related to the normal distribution, which
play important parts in the theory of statistics precisely because they are the
forms taken by the sampling distributions of various statistics in samples from
normal populations. The special position which the normal distribution holds,
mainly by virtue of the Central Limit Theorem in one or other of its forms, is
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reflected in the positions of central importance occupied by these related
distributions. Tests for normality can be divided into parametric and
nonparametric tests depending on whether the alternative is given a
parametric form or not.

The Kolmogorov—Smirnov test is a test of goodness of fit. Goodness-of-fit
tests are based on a comparison of the hypothesized cumulative distribution
function F(x) with the empirical distribution function F,(x) obtained from a
random sample of n observations. That is, it is concerned with the degree of
agreement between the distribution of a set of sample values (observed scores)
and some specified theoretical distribution. It determines whether the scores in
the sample can reasonably be thought to have come from a population having
the theoretical distribution. The test involves specifying the cumulative
frequency distribution which would occur under the theoretical distribution.
The point at which these two distributions, theoretical and observed, show the
greatest divergence is determined. Reference to the sampling distribution
indicates whether such a large divergence is likely on the basis of chance.
Define Fy(X) = a completely specified cumulative frequency distribution
function, the theoretical cumulative distribution under Hy and Sy(X) = the
observed cumulative frequency distribution of a random sample of N
observations = k/N where k is the number of observations equal to or less
than X. Then, the test statistic is D = max, |Fy(X) — Sy(X)|. The distribution
of D is not known for the case when certain parameters of the population have
been estimated from the sample. However, Massey (1951) gives some evidence
which indicates that if the K — S test is applied in such cases (e.g. for testing
goodness of fit to a normal distribution with mean and standard deviation
estimated from the sample), the use of the table will lead to a conservative test.
Empirically the K — S test exhibits surprisingly poor power (see D’Agostino,
1971; D’Agostino and Pearson, 1973; Pearson, D’Agostino and Bowman,
1977).

The most widely used parametric tests for normality are those based on the
skewness-kurtosis. The parametric alternative in these tests comes in the form
of the Pearson family of densities. The goodness-of-fit tests are based on the
sample second, third and fourth moment of the empirical distributions. These
are given, respectively, by

m m.
Vb =—; and by =— (A1)
iy, m

where

n

my = (X;—X) /nand X = ixi.

i=1 i=1
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The second moment is measure of spread or dispersion, the third moment is
measure of skewness or asymmetry, and the fourth moment is measure of
excess or kurtosis, which is the degree of flatness of a density near its centre.
The normal distribution has the property that its third and fourth cumulants
are both zero. Then, /b; is a good measure of non-normality against highly
skewed and long-tailed distribution since all odd moments of a random
variable about its mean are zero if the density function of random variable is
symmetrical about the mean, provided such moments exist. And b, is sensitive
to continuous, symmetric alternatives with heavy tails.

Under the null hypothesis of population normality, +/bjand b, are
independent and their standardized normal equivalent deviates are approxi-
mately X (v/b;) and X(by), where X(-) denotes a standardized normal
distribution, hence X?(v/b1) + X?(b,) is asymptotically x?(2), for details see
equation (A2). Bera and Jarque (1981) using the Pearson family as the
parametric alternative derived the following skewness-kurtosis test as a
Lagrange multiplier test. Let BJ be the Bera—Jarque statistic, then

gy N a2 o
where

=13 /G

1 nzzl ' nr:l '

where i, is typically a regression residual in our case i, = r, — 7 = r. Notice
that equation (A2) is the same as (Al) but that (A2) allows one to consider
residuals from linear regressions with sets of regression variables other than
just a constant.Financial support from the Newton Trust and Inquire (U.K.) is
gratefully acknowledged. The comments from David Damant (Paribas Asset
Management) have been very helpful. This paper has been produced as a
discussion paper for the Autumn 1991 Inquire Conference. Some of the
contents are still rather preliminary.
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